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Preasymptotic Effects in Nucleon-
Nucleon Large-Angle Scattering

The preasymptotic behaviour of elastic
nucleon-nucleon amplitudes is studied in the 1i-
mit of high-energy large-angle gquasipotential
scattering. Formulae obtained are used for a com-

mon description of experimental data on pp and
pn elastic scattering.

The investigation has been performed at
the Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

The Logunov-Tavkhelidze gquasipotential approach
proved to be one of the most efficient methods in
studying the asymptotic and preasymptotic beha-
viour of differential cross sections of high-energy
large-angle hadron scattering for the following
three reasons: First, the quasipotential equations
are essentially two-particle ones and thus are most
suitable for the description of hadron-hadron elas-
tic scattering. Second, the guasipotential equa-
tions themselves enable us to account self-consis-
tently for preasymptotic effects in transition
energy regions where the dominant interaction
mechanism is changed. Third, when considered in
the framework of quantum-field-theory models, the
quasipotential exhibits naturally the dependence
on the relative coordinate of colliding particles
and on their energy, as well. This indicates that
both the form of the guasipotential and magnitude
of its parameters can change with growing energy.

The structure of phenomenological quasipoten-
tials which account correctly for the experimental
data on high-energy elastic hadron scattering was
discussed in refs./18/, Their result suggests that
all the regquirements are met by analytic gquasipo-
tentials given by thg integral representation:

~ - 0o ~ - A -
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( s, t,u are the usual Mandelstam variables of
two-particle reaction).

The small-angle scattering is dominated by the
effects connected with the global structure of



hadron as a soft object of finite size that is
rendered correctly by the Gaussian quasipoten-
tials. The typical density function here is the
d -function:

;(s, x)=f)5(x—a), (1.1)

where parameters a and b may be slowly varying
functions of s.

As to the large-angle scattering, the beha-
viour of differential cross sections is controlled
by details of the inner structure of hadron at
short distances that is observed from the beha-
viour of p(s, x) near X=0. Thus, the automodel
asymptotics of differential cross sections of
large-angle exclusive scattering

=L s f(t/s); s~ e; t/s= const, (1.2)

originally understood within the assumption about
the presence of point-like constituents within
hadrons /+4/, can be obtained in the framework of
quasipotential approach provided the weak limit
for the function ;(&m

limsM (s, x=7/8) =¥ (p); 0<n<w; M>0 (1.3)

g-poo
does exist.

In that way we see, that in high-energy limit
the dynamics of small and large-angle scattering
is governed by different mechanisms, and accord-
ingly two asymptotic quasipotentials can be con-
structed. But as far as finite-energy large-angle
scattering is considered, certain interference
of two mechanisms takes place. That is, the "soft"
component of interaction connected with large
distances and given by the quasipotential with
density function (l.1) generates corrections to
the asymptotic amplitude, determined by short-
distance interaction that is predominant in this
region of momentum transfers. These corrections
decrease with growing energy and lead, in parti-
cular, to the deviation from strict automodelity
(1,2):

4

L (HVS)+1/SfﬁVS»; S - o00; t/s= const, (1.4)

.  goM

They also Dbreak the y;, -invariance of the am-
plitude even for Yg—invariant interaction that
manifests itself in nonzero polarization:

P . 1/s P(t/s). (1.5)

In this paper we shall apply the method previously
developed in refs. %8/ for the quantitative inves-
tigation of preasymptotic effects (1.4), (1.5) in
nucleon-nucleon large-angle scattering. In so
doing, the assumption about the charge indepen-
dence of strong interactions will enable us to
describe both reactions of pp and pn elastic scat-
tering with one set of parameters. Appropriate
helicity amplitudes with correction terms of two
leading orders in 14, where p is the c.m.s. mo-
mentum of colliding particles, are presented

in Sec. 2. In Sec. 3 the formulae obtained are
used for a detailed analysis of available experi-
mental data.

2, THE DESCRIPTION OF LARGE-ANGLE
NUCLEON-NUCLEON SCATTERING
AT MODERATE ENERGIES

The quasipotential equations for a system of
two particles with spin 1/2 have been derived in
a number of papers (see, e.g., refs. 7,8/ 'y, and
we use the equation from ref. B/, In the momentum
space it is of the form:

T(s. p, k)= £(s, P, K) + . (2.1)
> ~ > - A(S,(_;) ~ > -
+ [dgg(s, p, V555~ s G k).
E %(9)-E %i0

Here %(&S.E) is the off-mass-shell matrix scat-
tering amplitude, 3 and K are the c.m.s. momenta



of particles before and after the collision,

(@) - 2@5:;_2" ) E- Vs-Ep)-E®  and
e - BT 500G A G 28V Py

1,2
( R@ are the energy operators of the first and

second particles, resp.:

(1 2)(q) (1’2)+y(1'2))7(1'2)(¥.
0 0

If the charge independence of strong inter-
actions is assumed in the framework of isospin
symmetry, the differential cross sections both
of PP and pn scatterlng can be expressed via one
matrix amplitude T(s,p,k) as follows:

dUNN 2 MNN(» EM-iNN > l—(v l
dt ~ spin P, ®) . k) s=4(p2+m?)=ack 2+m?) ’
t= = -1
where
pp > —O'la -(7
M (p, k)=<‘l'1 (p)‘I’z —p)IT(spk)l‘Pl (k)ll' (k)\~ (2.2)
- U]’a
- ®F,° )T, PR («k)‘l'2 (k)>
and
n(P,k):<‘I’ (p)lv (—D)|T(spk)|‘l’ (k)ll' Bk)>. (2.3)
To solve the equation (2.,1), we are to choose the

explicit form of the quasipotential g(Sp,b

it is natural to represent it as a sum of "soft"
and "hard" components corresponding to the asymp-~-
totic gquasipotentials for the interaction at
large and short distances:

g(s,p.K)=g (s, p-k) + g, (s D, k).

In high-energy scattering with small momentum
transfers the spin-flip amplitudes are small as
comparz2d to the spin-non-flip ones. This require-
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ment is met by the following matrix structure of
the "soft" quasipotential 7,

~ -> - 1 2 d —»

gs(s5. 0= K =y Dy Pe (s, p-K).

As to the "hard" quasipotential, we shall
choose its matrix structure under the requirement
of ys—lnvarlance of interaction at large ener-
gies and momentum transfers 10/

g, (5P 0= y Dy @e (5.9 k) +
1) (1 1(2),(2) 3k
Yy YDy By B o (50 P, K.

The data available on pp small-angle scat-
tering are well reproduced by a simple purely
imaginary Gaussian potential with the density
function:

p (5. %) = 2igd(x - a)
and the parameters being//

iy (0) = -0.5; a~ 2.5 (GeV/c)
where iy(0)=-2r%/2 is the eikonal phase at the zero
impact parameter.

The "hard" component of the quasipotential is
to account also for the exchange forces in the
nucleon-nucleon system, so we take:

- —»2
k
£ (s P ) - dePlh(S He XPTOT
Bon(s. B B) = [ dxpg (s, we ~x-if
0

and the density functions p”JS,Q and pmJS,ﬁ
are approximated as follows:

(s, X) e "X® e TUx
P ) X) = —-——m—— T ;
1h TTV+»DSM vl

De —2iX(0) —dx



In ref.ﬁ/ we have obtained the helicity am-

plitudes of elastic pp scattering with the cor-
rections of two leading orders in W for arbit-
rary local vector- vector and axial-axial "hard"
quasipotentials. Then, generalizing that result
t? the case of the exchange vector-vector poten-
tial, we get for the helicity amplitudes of
elastic pp and pn scattering, the relation between
them being fixed in (2.2), (2.3):

pp .
T +4, ++ 8 1) =(1+ s, U)F‘l v, ~z) + D(s, t)Fl(y’ z) -

- 0.44(py /0)° (C(s, ) + D(s, w} ;
TP __ (s 9 =~(1- 2CGs, OF, (v, 2) + D(s, WF, (y, -2) -

~ 0.44(p, /)" (C(s, u) + D(s, )}

T2 - (s 0= 21C(s, OLF, (vs 2) + 0. 1(v + 1) - 0.2 1+ z))(po/p)z] +

+ (s, IF (v, ~2) + (0.1v + 1) - 0.22(1- 2)Xp, /) *] -
= D(s, OIF (s 2 + 0.1y + D) + 0.22(1 - 2)py/p) ] -

= D(s, WIFy (v, -2) + 0.2y + 1) + 0.22(1+ 2))(py /p)° 1};

TP oo (5 D ==V 1= 22[(C(s, v) - Cs, YF, () +

+(D(s,t) - D(s,u))F, ()]; (2.4)

T PP

i, 44 (s, =01+ 2)[C(s, WF, (v, ~z) + D(s,t)Fl(y, 7)];

TPD (5,9 =210 WIF (v, ~2) + 0.1 + 1) - 0.22(1~ 2)(P 0/p)2]—

+

- DS.OIF, (s ) + (0.1(y + 1) + 0.22(1 = D), /P 1}

TP s p=-vi- 221C(s, WF, () + D(s, HF, ()}

where Py = 1 (GeV/c); z=cosf is the cosine of the
c.m.s. scattering angle and

C s W1 C s vii
s, t) = = (——— ) ; C(s, u)= -3 (——————
s, M+ 4 ( sM lul+ 4d
y+1 y+1
D(s, t) = Do 5. ; D(s, u) D5
sM jt} + d sM |ul+d

Fo () = 0.469(p, /p) ~ 1-0.167(v + 1/2)(p,/P) ® .

The exponent M determines the rate of the power
fall-off of differential cross sections with
growing energy; the quark counting rules 3/ pre-
dict the value M=5 We remark, that the formalism
developed can be applied for arbitrary asymptotic
quasipotentials. The Gaussian and power potentials
exploited above possess the advantage of being
characterized by only few free parameters, that
is, three real (C, D) and two integer (v,¥) ones.
Nevertheless, they will enable us to fit the data
on two reactions in a wide range of energies and
scattering angles.



3. COMPARISON WITH EXPERIMENT

Let us proceed now to the analysis of experi-

10-2
mental data on the differential cross sections
of pp and pn large-angle scattering in the energy 5
region of p,; > 7 (Gev/c) /1Y, 0

The differential cross sections are expressed
in terms of helicity amplitudes as follows:

- -
3

do NN NN 2, NN 2
“E;“““|T++ + ]T++ - |T+— . '+HT¥++—‘ .

The results of the fit are presented in the
table and in Figs. 1,2 and show good agreement
of theoretical curves with experiment. It should 0°
be noticed that the consideration of corrections
enables us to achieve better description of the

107

data as compared to the fits neglecting correc- 5 Cosb
tions/’®/, the number of fitted parameters being @ o7 05 05 04 03 02 o 0
the same. Fig. ~E— for pp scattering.
Table
- mb
C v D y d x 2 X 2 X2/X2 #_( /@ R-7 (GgY)
g 4
-8033 610 2.379
&pn 0 ) 309 159 1,94 . .
PREPE 463 +16 > +0.034
- S —
} —i_—r“T"*J
~-8166 634 2.415 I
pp +66 o +16 3 +0.033 137 79 1.75

We also remark that when describing pp scat-
tering only, the formulae (2.4) reguire practi-
cally unchanged values of the parameters (see
the table), This is a strong evidence in favour
of the chosen relation between the amplitide of
two reactions which is fixed by (2.2), (2.3).

The same conclusion is supported by comparing

i i - do
the ratio { I\}\‘.—W 12 F_lg__.i at
_dap" o, dg PP Cos® for pn scat-
Rp, ) = @ (90°)/ T (90°) 3 ) o2 b &) oL 06 tering.
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predicted by our model with that derived directly

from the data. The appropriate curves are depicted
in Fig., 3, where the dashed lines are predictions

of the statistical model/m/,by Fishbane and

Quigg /1% and by Wu and Yang 715/,

As was mentioned above, the consideration of
corrections results in the deviations from the
exact automodelity (l1.2) that can be gquantitati-
vely described by the effective power Nerr (s, z):

NN
—Ne” (s, 2)
dt Z = const

where N4 (s,2)»10 when s-~. The smooth approxima-
tions of differential cross sections obtained
allow us to predict the effective powers N4 (s.2).
Their values as functions of laboratory momentum
for different scattering angles are shown in
Figs. 4,5, The increase of Neﬁ@L) at small PL

R{80°)
10 | Statistical medel
o Chanowsky et.al /Akertof etal.
09
x  Perl etal/ Kammerud etal
08
Fishbane and Quigg
0.7
06
sl _ Wu and Yang
04|
03} 1

021 Charge symmetry
limit —lower bound
01 {

0 4
2 6 8 10 12 R _G_gl)

Fig. 3. Energy dependence of the ratio of the pn
to pp scattering cross section at 0 =90°
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\ Ouark counting rules prediction

p(8Y)

10 20 30 56 70 100

Fig. 4. Ne“(pL)for pp scattering.

U\ Ouark counting rules  prediction

22025

n (%)

6 10 20 30 50 70 100

Fig. 5. Ngg(py) for pn scattering.
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(these parts of curves are dashed lines) 1is
caused by the growth of corrections which are
compatible in this energy region with the leading
asymptotic term, The angular dependences of Nza
for different energies are plotted in Fig. 6.
They indicate that the approximation. developed
is self-consistent throughout the whole angular
range only for sufficiently high energies (pLZ

> 20 (GeV/c)). Nevertheless, the formulae ob-
tained reproduce correctly the experimental data
even for p  ~7 (GeV/c).

As to the numerical values of effective po-
wers, the deviations from the quark counting
rules are larger for pn scattering, whereas
for pp scattering the corrections to different
helicity amplitudes considerably compensate each
other. For the interval 6 (GeV/c)<p; <12 (GeV/c)

Ouark counting rules preaichon

P = 50 B§)

06 04 02 0 -02 -0 -06

Fig. 6. Ne”(m for pp scattering.
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our model predicts the following average va-

lues of NPI .
eff

pn . pn
N (90°) =9.74; Nb o

that is in good agreement with the values derived
directly from the data/l1{It is worth mentioning
that the deviation of Ng% (90°) from N, =10 is
practically negligible for all energies P; 2

> 6 (GeV/c). This prediction is supported by re-
cent experimental results /16/

The power behaviour is observed also for the
inclusive production of particles with high p_,
where the dependences of effective powers on
energy are analogous to that discussed above. As
it was shown in ref. 17/, these energy-dependent
effective powers appear only if the deviations
from the Bjorken scaling in deep inelastic lepton-
hadron processes are taken into account,.

The nonzero mass of interacting particles
breaks the yB-invariance of the amplitude re-
gardless of the y5—invariance of interaction,
and this results in nonzero polarization decreas-
ing as s71 with growing energy. The polarizations
predicted by the model discussed for the proces-
ses of pp and pn scattering are plotted in
Figs. 7,8. In sign and order of magnitude, they
are compatible with the experimentally measured
polarizations.

Thus, the above analysis shows that in the
energy regions where the experimental data on
exclusive nucleon-nucleon large-angle scattering
are available, taking into account corrections
resulting from the interaction at large distances
considerably improves the description of the data.
Analogous results can be obtained if the parame-
ters of the "hard" quasipotential are assumed
to be logarithmic functions of energy/12/, that
brings, of course, an extra arbitrariness. But
our method enables us to avoid this arbitrariness
in a constructive way, as the correction parame-
ters are determined from the data corresponding
to the region of momentum transfers where the had-
ron dynamics is of a different nature.

(120°) = 8.32
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008
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004
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0 .
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Fig. 7. Predictions for pp polarization.
Pon
025
oo ()
020
015
20
010
30
- &0
Qos %
0
Cos@
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Fig. 8. Predictions for pn polarization.

Summarizing the above discussion, we stress
that the considered preasymptotic effects in nuc-
leon-nucleon large-angle scattering are characte-
ristic of the domain of energies and momentum
transfers where the hadron dynamics is dominated
by the interaction of point-like constituents of
hadrons at short distances, but the effects of the
global hadron structure, i.e., of large distances
are still pronounced. The magnitude of these ef-
fects makes it certainly necessary to take them
into account in describing and interpreting the
data.

The authors express their deép gratitude to
V.A.Matveev and A.N.,Tavkhelidze for interest in
the work and useful remarks. We thank also
V.K.Mitrjushkin, R.,M,Muradyan, L.A.Slepchenko,
and M.A.Smondyrev for fruitful discussions.

REFERENCES

l. Garsevanishvili V.R., Matveev V,A,, Slepchen-
ko L.A, Particle and Nucleus, 1970, No. 1,
p.91.

2. Goloskokov S.V., et al, Particle and Nucleus,
1977, 8, p.9%969.

3. Matveev V,A., Muradyan R.M,, Tavkhelidze A.N.
Lett. Nuovo Cim., 1973, 7, p.719; JINR,
E2-8048, Dubna, 1974.

4, Brodsky S.J., Farrar J.R. Phys. Rev.Lett.,
1973, 31, p.l153.

5. Goloskokov S8.,V., Koudinov A.,V,, Kuleshov S,P.
JINR, E2-11539, Dubna, 1978.

6. Goloskokov S.V., Koudinov A.V,, Kuleshov S.P.
JINR, E2-11633, Dubna, 1978.

7. Matveev V,A., Muradyan R.M., Tavkhelidze A.N.
JINR, E2-3498, Dubna, 1967.

8. Khelashvili A,A. JINR, P2-4327, Dubna, 1969.

9, Goloskokov S.V. et al, Theoret. i Matemat.
Fiz,, 1975, 24, p.l47,.

10. Logunov A.A,, Meshcheryakov V_.A., Tavkhelid-
ze A,N, Doklady Akademii Nauk SSSR, 1962, 142,
p.317.

17



11.

12.

13.
14.

15.
16.

17.

18

Benary O, et al. NN and ND Interactions.

A Compilation. Berkeley Preprint UCRL-20000 NN,
1970, Stone J.L. et al. Nucl.Phys., 1979,

B143, p.l.

Goloskokov S.V. et al, JINR, P2~10142, Dubna,
1976.

Eilam G. et al. Phys. Rev., 1973, D8, p.2871.
Fishbane P., Quigg C. Nucl.Phys., 1973, B6l,

p.469,

Wu T.T., Yang C.N. Phys. Rev., 1965, 137,
p.708.

Jenkins K.A, et al. Phys.Rev.Lett., 1978,
40, p.425.

Matveev V.A., Slepchenko L.A.,, Tavkhelid-
ze A.N. JINR, E2-11894, Dubna, 1978.

Received by Publishing Department
on March 22 1979,



