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On the Notion of World Lines and Scattering Maitrix
for Directly Interacting Relativistic Point Particles

The notion of world lines is studied in the constraint Hamilto—
nian formulation of relativistic point particle dynamics. The particle
world lines are shown to depend (in the presence of interaction)
on the choice of the equal time hyperline, However, the relative
motion of a two-particle system and the (classical) § -matrix
are independent of this choice. We infer that particle trajectories
should not be regarded as strict observables in the classical
theory of relativistic particles.
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Introduction

We study the notion of particle world lines in the rela-

tivistic phase space formulation of classical point particles'

/18/

on the ovasis of Dirac's theory of

+) /4-6/

dynamics developed in
congtraint Hamiltonian systems
The N-particle dynamics is determined by a set of N gene-

ralized mass-shell equations

0w __ 1 2 _pt . B .. .
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which define a 7N dimensional surface VLL in the 8!l dimensional

"large phase space” [ N (for the spinless particle casge consi-

dered here a point in [—N is given by N pairs of 4-vectors
[3f=(x.f, , Xy, ry) ) Here 42_ are lorentz invariant functions

subject to some conditions recapitulated in Sec. 1B. We mention

here the important requirement that ¥, are first dass constraints,

which means that their Poisson brackets {VL)WZ}‘ vanish on M .

The functions ‘¢

o not only determine the generalized N-particle

mass shell ULL but also generate N vector fields on which
*) The constraint lamiltonian approach to relativietic point 79/
particle interaction was alpo adopted (in fact, rediscovered) in .
Recent work by F.Rohrlich /15/ which follows a similar path, differs
from ours in abandoning the notion of individual particle coordi-
nates and trajectory (a generalized notion of "relative coordina-
tes"- whose sum over all particles is not required to vanish -
is used instead. As noted recently by Professor Rohrlich (private
communication of October 1978) this difference is not essential:
a slight modification of his approach allows one to impose a linear
relation among the relative coordinates &, of ref./15/ and hence
define single particles' coordinates. A Lagrangian approach to the
problem of relativistic point particle interactions which leads to
similar constraint equations is being developed in the work of
Takabayasi et al. (see /17,8/ and further references cited there).




the restriction “"JL of the symplectic form -,g:% dx!:,\ dpar‘
on r~~ is degenerate. The relativistic Hamiltonia;ﬂis defined
as a linear combination of ¥, (with X -dependent coefficients)
that leaves invariant some 3(N-1) dimensional space-like surface
in the space of relative coordinates which will be called the
"equal time surface”. (An example of such a surface is the plane
M Xag =0 » where  xgg=x,-xp, ab=1,.. N and 7 is a
time-like vector which may depend on the momenta). The selection
of an equal time surface, which excludes the unphysical relative
time variables is analogous to specifying a gauge condition and
will be algo referred to in the sequel in such terma.

In Sec. 2A we introduce a notion of equivalent dynamics
which says, essentially, that two sets of constraints ‘?Q =0
and Q;: 0 are equivalent, if they lead to the same particle world
lines (for the same gauge and initial conditions) and to the same
realization of the Poincare group. (Equivalent dynamics corresponds,
in general, to different submanifolds Ji and biz of r-N ). We
prove (in Sec. 2B for the case N=2) that only straight world
lines(corresponding to a free motion) are independent of the
choice of the equal time surface (and hence,independent of the
Lagrangé multipliers A, in the Hamiltonian H=Y 2,% ). This
statement agrees with recent results of Sokolov/16/, obtained in
an alternative approach to the description of directly interacting
relativistic point particles. It also provides a new interpre-
tation of the so-called "no-interaction theorem" of Currie et al.

/2,3,10/ (for a recent discussion see 3150/7’11/). It is demon-

strated in Sec. 2C that in the 2-particle case, for ﬁ.= $ , the
2

relative motion (expressed in terms of the variables X and p.

B (0.1)
x*:x(—’.=.x—)—(5£t’, X =x, =X, . P;P;"Pl* .= P
P = N}.q—/‘l P;_ , ]"uii’/“-zzi, /41—I(‘._ =b’~;m’- (0.2)

orthogonal to the total momentum E) of the system) is gauge
invariant and so is the 2-particle S~-matrix.

An appendix includes a gynopsis of some basic notions of
difterential geometry (such as a symplectic form and a vector
field) used in the text, as well as a coordinate tree formula-
tion of the constraint Hamiltonian approach to relativistic point

particle dynamics and of the main theorem (of Sec. 2B).

1. Constraint Hamiltonian Formulation of Relativistic

N-Particle Dynamics

For reader's convenience we start with a brief recapitula-
tion of the constraint dynamics approach to the relativistic
N-body problem developed in ref./18/ (with a special attention

to the case N=2).

N
A. Poincar€ invariant symplectic structure on F' .

The free particles! mass shell

In order to avoid unnecessary complications, we shall only
deal with gpinless point particles in this paper. The general
case of (massive) spinning particles is considered in ref./18/.

A manifestly covariant description of relativistic point
particles' kinematics requireg the use of 4-dimensional coordi-

nates‘and momenta. We shall congider the space UL( of "physical"

dynamical variables (including a separate time parameter




for each particle) as a 7N-dimensional surface in the

8l dimensional extended phase space ['N (which is spanned by

pseudoeuclidean particle coordinates x,, ... %y and momenta
AR ). For example the free particles' mass shell VQ; is
given by

r S i 2 1 ,
\MU:%(XL\JP\A)Q ’u::)R, a=1....N3 R‘=M“’ﬁ£'>0 or P:-——vmfl*’ﬂi)_}.
7 r~ ;
The "large phare space" can be regarded as a direct
product of single particle spaces: f'szflx,.,x [ « Each

carries a natural action of the (connected) Poincaré group fP :
oy . A
Jaa, A (x,py = (Ax +a, Ap)

and an Aut:?'—invarjant 1-form
o{(}a:-ﬁ‘ldxa_ (= - Pa" dxy ) : a=1,..,N. (1.7a)

T .
(Here Aut J‘ is the group of automorphisms of the Poincaré group
which consists of Poincare transformations and dilatations

1

(= (9%, 5F) ¢ >0. ) Its differential is a symplectic

3
form*) on ,_‘.1

wu=u(9a=<jx£/\c{r’ur (1.1b)

(summation over the repeated Minkowski space vector index M |
but not over the particle index @ , is to be carried out in the
right-hand side of (1.1b)). Thus we can define a (Aut?L».x Aut?

~invariant) symplectic form

N
w:Zﬂwuzde (9=qu) (1.1¢)

N
on I which gives rise to the canonical Poisson bracket rela-

tions
Y For reader's convenience we have swmmarized basic defini-

tions and facts concernin i i
in Appongisoste g symplectic forms and Poisson brackets

L

{oox i} =804 80 a k=1, N, pv=0,12,3 (1.2)
(all other brackets among the basic phase space coordinates
vanishing).

We shall assume (see Sec., 1B below) that the surface JL{ is
a Poincaré invariant submanifold of [ﬂN . (This is obviously true
for the free particle mass shell Jio;) As a consequence,‘L{ will

inherit the diagonal action of the Poincaré group in | . Its

infinitesimal generators are given by

P=Pi+.,.+~,, (1.3)
M= X AP+ ...+ X, AP, (1.4)
where the wedge product . is defined, as usual, by

XAPIuw =X py=Xopo . , (1.5)

For XA,& satigfying the canonical Poisson bracket relations (1.2)
P and M satisfy the Poisson bracket relations of the Poin-~
caré Lie algebra.

Ne shall proceed further with the special case N=2.

If we take as relative momentum (conjugate to the relative
coordinate X = X, -x, ) the variable p (0.2) then the centre
of mass coordinate jX: conjugate to thke total momentum I) (and
completing the set of 4-vectors P,E),X to a canonical quadruplet)

should be taken as

X=,¢‘x,_+)~,xl~— N—-—'S'H‘ (PP (1.6)

(Because of the s-dependence of the weights Ha (0.2) the noncon-
ventional last term in the right hand-side of (1.6) is required

to ensure the vanishing of the Poisson brackets {'><'T )(TV}

and {X“ pV} .)



The total angular momentum M (1.4) splits into a centre

of mass (orbital) part and a relative (internal) part:

M=X,P ., Xnp. (1.4)

On the free particle mass shell-]lo we have

tY ).2
St = D -_—“Fl_s = 20mprmy) 4 (—-’—5'—"11 ] 1.7

Phe weak equality sign = is used for equations that are only

valid on the physical subspace JL{(which coincides here with‘jlo)
of the large phase space R=Eﬂ

e note finally that the relative momentum p (0.2) is
orthogonal to ED on the mass shell:

Qo= 1 ey
\0~—§("’1:~'m:~["1 ‘.P:)':-FP’N"U. (1.8)

B. The generalized N-particle mass shell

The generalized mass shell bAL for N-interacting particles

is defined, according to/18/, by N constraints of the type
-1 z
Ya=3(mi-p)+ & ~0, a=1,..,N (1.9)

For the purposes of this paper we shall need the following pro-
perties of the deviations 43 from the free particle mass shell.

(i) ESEESEEéNHEEHQEHES‘ in order to simplify the discussion,
we shall make the slightly stronger assumption that #h» are

functions of the scalar products of Koo =Xg X and  p,

(ii) Compatibility: the constraints ¥, are first class,

{‘Pa,‘?g}xO (1.10)
(iii) Independence and time-like character: the @ s are

functionally independent and Eqs.(l.9) can be solved for the particle

energies, so that

(_{Edd- (”%%) >0 (An‘ >0, my,>0) (1.11)

for any choice of the I? -dependent time-like vector m; (the
sign is chosen to fit the free particle case; if we set for N=2
m = P / for P% &a:O/ then (1.11) is satisfied for

5 > mi-mil ),

Conditiona (ii) and (iii) along with some regularity properties
are partly incorporated in the following mathematical assumption
(see Appendix to ref./5/) which will be also adopted:

(iv) Fibre bundle structure om JM : the 7i-dimensional mani-
fold LLL ig a fibre bundle with N-dimensional fibres spanned by
the integral curves ©of the vector fields ;<Y on which the form
“ﬂM is degenerate (see Appendix A.1 as well ;s the discussgion
after Eq.(1.19) below). The 6N-dimensional base space e of VLL
(whose points L_ can be identified with the N-dimensional fibres
in M) plays the role of the physical phase space.

These requirements are supplemented in ref./18/ by the
following additional assumption:

(v) Separability: the free particle mass shell is recovered
for large space-time separation between the particles:

: p
LZVW $o =0 where XogL = xagﬂ = Koy — PXQQ '15—1

~Xag 7> gat, N

(confining potentials -~ of the type treated in ref./11/ - can
also be considered, however the separation of the mass term in
Eq. (1.9) becomes then ill defined).
[A regularity requirement also imposed in ref./48/ and designedto
exclude strong attractive singularities (leading to falling on

a centre) will not be discussed here.]



Now we again proceed to the special case N=2.
The compatibility condition (1.10) assumes a more tractable

form in terms of the functions

Dzd)i_d’g_, 4)—-‘/\(141‘1‘}4,_4)

i

(1.12)

where p, are defined by (0.2):
R _!__ k3 (1.13)
Moo = I 5 (my —m ).
We have

_ 2D ¢ ~0 (1.14)
{?Laléz.} - F")—x_— P;;—'F {D’d)} .
For a given D Eq.(1.14) can be regarded as a first order
partial differential equation for ¢ whose solution involves a
functional freedom. It was pointed ocut in ref./18/ that the spe-~

cial solution, for which

D:O:P—g——ji (1.15)

contains enough freedom to accomodate (in its quantized version
including spin) the quasipotential equations/12'14/ considered
so far. The general Poincar€é invariant solution of the second

equation (1.15) is a function of five among the six independent

» P ,andP

scalar products of the vectors X (excluding xI)):

¢=4’(Xi;5;PM_:PL;—pP). (1.16)

Other solutions (with D# 0 ) will be Cisplayed in Sec. 2A.

C. Equal time surface, Hamiltonian, gauge transformations

We shall define the time evolution of the system in terms of

the constraints (1.9). To this end we have first to select a

family of equal time surfaces. For the sake of simplicity, we
regtrict our attention to the 2-particle case and take the set

of hyperplanes in the space of relative coordinates
nx=0 (1.17)
is a P

We shall demand that the Hamiltonian

(X=XL_X1)1

where n -dependent time-like .vector such that

H ()
tion of the constraints which has zero Poisson brackets with % x

Hlﬂ)

(which will be taken positive in order to

}»n, ‘Q}:-O-
is & linear combina-

on‘[L « This requirement determines up to a single Lag-
range multiplier A
fix the direction of the time axis):

(n} A :)4)1. b ‘
H =;T,{(’”PL+”ﬁ')%+(n5—n;})@}(eo), (1.18)
. % () m A
(Note, that according to (1.11), 'n..é"—',:f'/A xn%bl-/) ,'::@J 4:0)
A family ﬂ" of functions on | =[?* is said to be gauge
invariant if the time evolution of each ¢ j“ generated by the

Hamiltonien (1.18) for any choice of n and 3} , does not lead
it out of ] , If in addition ﬂ“ is irreducible in the sense
that it does not contain a nontrivial gauge invariant subget,

then it will be called a (strict) observable. A special case of

an obsgervable is a single function of the dynamical variables
which has zero Poisson brackets with. the constraints on\/% « The
ten generators (1.3), (1.4) of the Poincare group provide examples
of such simple observables. In general, the observables are given
by 2-parameter families of functions { (¥;g,,0,), Y=(x,b;%,p)

defined by the system of partial differential equations

2w s ,
5o,= fre} i = [f e} (1.19a)



and the intial condition

f(r,0,00 = Fan. (1.19b)
We remark that if eqs.(1.19) are globally integrable (for
. ,9,)¢ ‘Rl) then they define a 2-parameter group, say C(Z), of
canonical gauge transformations .[(r).a-f(n:a,oa) = f[y(q,@)]
(fe d (0,,00¢ R*  implies  y(g o)e L)+ It is a subgroup
of an infinite parameter gauge group é;;) generated by arbitrary
linear combinations of %ﬂ and %; (with variable coefficientsf?
(This infinite parameter group reflects reparametrization inva-
riance of phase space trajectories.) For given ye Jl the groups
;u and Gﬁ, have the same 2-dimensional orbit X, which 1is
nothing but the fibre in A containing J . We shall see
in Sec. 2B below that (interacting) particle world
lines are only invariant under a subgroup 520 of ;Z;) generated
by multiples of the Hamiltonian.
Note that the Hamiltonian H of ref./18/ is obtained from
(1.18) by taking m=PD , - that is

Z"—'px =0, (1.20)
and 3={ ; assuming in addition that I? gﬁ?==0 (as it was done
in ref./186 we find
{ ) : .. P
HiP): H=p, % +p ¥ = ¢ -L(p*+£) (=0) (1.21)

(for m,, given by (0.2)). The Hamiltonians 2 H where M is
given by (1.21) along with the subsidiary condition (1.20) play
a privileged role in the 2-particle dynamics because of their
manifest covariance and symmetry with respect to particles per-

mutation and we shall often refer to them in what follows.

*’5@; can be defined as the subgroup of DiffCﬁ()(the group of all
diffeomorphisms ofju) which leaves each fibreagr invariant.

12

Note, finally, that the physical phase space E can be
parametrized in the gauge (1.17) by the points of the surface of

initial conditions
nE <ty * n %, (CJI),7Q=XQ—%'1‘@P)P) (1.22)

where the time parameter t has by definition, zero Poisson

brackets with all dynamical variables.

2, Space-Time Trajectories and Scattering Matrix

A. The notion of world line. Equivalent dynamics

For a Hamiltonian of type (1.18) choosing the time variable
as

t = nX (= n%=~nk) (2.1)

(or as some monotonously increasing function of . t ) amounts to
fixing the Lagrange multiplier A . Indeed, in order to ensure
the consistency of (2.1) with the time evolution, we should

require

& (t-nX)=t1={nX, H}~0. (2.20)

b
Taking into account that EL-: 2_._ 92 and, hence,
2p 2P, 9P

A
(n)

{’n;,_, HA }’:: {'n}?h H’;"’}: {'"X, H)("‘)}:: %—% (2.2b)

where A is the determinant (1.11), we find

’VLP ﬂa—” n?_/"
A= o(,— (5[:, o(zt{ ;5 Z:) L H=rdorpit, fsg_ﬂ). (2.2¢)
"‘_D—‘ mZ=

(If we set E':r«f(ﬂ)() where {'>0 then we get E=f%&)') Given

L)
o
-~

a pair of points (21,22) on the plane (1.22) and initial velo-



cities X, =v, , %,=1 at T=1, (where the dot indicates
differentiation with respect to the variable t ), we have a
unique pair of trajectories (xiw),xz(ﬂ) satisfying the initial
conditions

Aalto) = Ea |, Xo ()= Va  Jor X, lto)=F,=Ya— PP, ¥=F s et/
o =1,2.

These trajectories are independent of A (since a change of A
amounts to a rescaling of the time parameter on each world line),
but depend, in general, on m .

™o pairs of constraints ¢ ~0= ¢, and @’«‘:0?-’((;_ shall
be congidered as Bﬂysically equivalent if for any fixed chaice
of the time-like vector 7 they lead to the same world lines
for the same initial conditions, and if in addition they give
rise to the same realization of the Poincare group (the latter
means that there is a one-to-one correspondence )C'i of M
onto jz which leaves the world lines and the Poincare group
generators (1.3), (1.4) invariant)?

Note that this notion of physical equivalence singles out
the Minkowski space trajectory along with the Poincaré group
generators as a more fundamental object than the phase space
picture. The notion of particle momentum (for fixed coordinates)
is not determined by the canonical Poisson bracket relations.

Indeed the transformations

Yo ¥o=Xa, P Bo= b+ %F (L)) (2.3)

a’g'c=il“-‘N) XBszg—xc,
are eagily verified to be canonical (for any choice of the smooth

function F ). Moreover, they leave the coordinates unaltered and

We shall assume in addition that for large (space 1like) separa-
tions,~X%w2, the particle momenta f. and @, tend to the same
(time independent) limit. This implies the vanishing of F in
Eq. (2.3) for large (negative) arguments.

14

because of the Poincare invariance of F , the generators of the

Poincare group do not change either:

Z F’o. :Z:- P (:P) , Z Xa A Po sgxa,ipq (=M)_ (2.4)

o o

In fact, it is not difficult to prove that locally the transfor-
mations of type (2.3) are the most general ones with all these
properties. In the 2-particle case the second equation (2.3)

can be rewritten in terms of the single relative coordinate x=x,,

*)

as follows H

Po=p +x B, B = b —xB(ex?) (2.5)
(where Bw= %E -)e Such transformatioms leave the x -space

trajectories invariant and, therefore, relate physically equi-
valent theoriesg (in the above terminology) to each other.

We can use the freedom in the choice of B~ in (2.5) (or F
in (2.3)) to select a standard representative of the constraints
(1.9). One way to do that is to assume that for the privileged
gauge condition (1.20) and Hamiltonian (1.21) the relative velo-~

city % vanishes weakly for p=0 . We have

s=p-M2 +4[(PER)22 (P2£)2R T,

7P e (2.6)
Hence, our standardization condition is
L[ (p2y2D _(D2D)3 } =0 '
{zP 5[(PDP)’BP (L")"’)DP] - : (2.7)

(Note that the left-hand side of (2.7) has the form Als, x*) x=
=_B(1**) x , since the equation Hx(O for p=0=X allows to express

¢ as a function of x*,)

*J The fact that the functions @,, =L15--;‘ ~ (p, £xBG)]
are in involution was first noticed in ref. EJ .



B. Gauge dependence of interacting particles'world lines

#¥e shall demonstrate in this section that the notion of
gauge invariance (introduced in Sec. 1C) is too restrictive to
accomodate space-time particle trajectories in the presence of
a nontrivial interaction. More precisely, we shall establish the
following negative result.

Theorem. Consider for each point ¥ of the generalized 2~

particle mass-shell ,L( ,

Y=,k xup)e M, (2.8)
the 2-dimensional fibre ¥, = {set off(o,,0,), (0,,0.)€ Rf such that
%= {¥.€,}; v(5,0)= ¥} through : . The projections
7;;=ﬁa5;) a={2 of this fibre into the Minkowski gpace of each

particle,
FT; = {Xa(’hdt)c' Mo 5 (5,0,)¢ ]RZ} a=12 (2.9)

are one-dimensional, if and only if the trajectories 7; are
straight lines.

Remark. In a less technical language the theorem says that
a 2-particle system has gauge invariant world lines (in Minkowski
space) only if the motion ig free. Indeed, if the projections
were 2-dimensional we would need a (gauge dependent) subsidiary
condition to define the 1-dimensional world line of each particle.

Proof. In one direction the theorem is trivial. If the

constraints are given by

Le:‘rsé[”": - (P, +x B(izxL))z]x 0
fr (2.10)
G=gm: - (h~x B(p)' ] = 0

(cf. Sec. 2A), then obviously

fr
" Ffri-pp = 9% (= @ (2.11)
@} =0 = 22 (= {, 9T),

and hence, the projections Ty = 7Y, of the fibre i are one
dimensional.
The converse statement is both more interesting and more

difficult to establish: given that
dmTa=1, a=1,2, (2.12)

where 1; is the manifold (2.9) to prove that the constraints ¥L
can be chosen in the form (2.10). We shall proceed in two stepsi
First, we shall see, that the assumption of the theorem leads
to Eq.(2.11) for gome linear combinations of the original cons-
traints. Second, we shall show that the general solution of (2.11)
satisfying conditions (i)-(iv) of Sec. 1B is given by (2.10).
These two steps form the content of the following two lemmas.
Lemma 1. If assumption (2.12) is satisfied, then we can find
in the neighbourhood of each point ) of yAL two independent

linear combinations of the original constraints
€, = an ¢ =1 ¢ 2.1
(QQ,'_'Co.i(pi‘{"Cag,('pl, 0.—-1)2 ( 3)

that satisfy (2.11) or, equivalently,
2P 2P,

Proof of Lemma_ 1. Let 0; and 0o, be the proper-time

parameters on the world lines 71 and \Tl . Assumption (2.12)

implies that one can choose in the neighbourhood of each point

ye o, and q, as local coordinates in the fibre (smoothly

depending on the fibre); then

{X{, Va}z Bag j—%: N o, Z =1,2, (2.15)



where qu may depend on the point ¥ of M but not on the
index p (there is no summation in the right-hand side). Tt

follows from (1.11) that

[Bl= dot Bog (=B,By,—B,,B)#0. (2.16)
Setting
- Bﬁ — 1z
(C\QQ)Z (B a&) or CH = 15517 s C12=,T7 C19__—I_B__" (2.17)
CL:,:‘h,
181

we obtain

{x.g}= 45 o

One can construct such a continuation ofcag(andBab) offju for
which Eq. (2.18) becomes strong, and hence Eq. (2.14) 1is also valid
(in the strong sense).

{,1)¢} dxz . (2.18)

Note. This part of the proof readily extends to the N-

particle case. Assuming the validity of (2.15), (2.16) for a,é=1...,
N and setting

— N .
A zgi (B )08 4 , (2.19)

we obtain the counterpart of (2.18) for a=1,..., N . If we wish
to use (2.15) and (2.19) as global relations on J{ we have to
assume that JX, is a globally trivial fibre bundle (go that it
is diffeomorphic to ’: X RN). Such an assumption, however, is not

needed for the validity of our theorem (cf. Appendix A).

Lemma 2. The constraints ¢,~ 0 , satisfying (1.10) (2.14)
can be replaced by equivalent constraints of type (2.10) (which
describe the same manifold Ul( ).

Proof of_ lemma_2. Poincare invariance, along with (2.14)
tells us that each Q; depends on 3 scalar variables *)

5 Kgaln the global validity of this statement is not clear, but
it is actually only needed locally as explained in Appendix A.

o

which will be chosen as

— 1
Sa T3 P, Ug = xPp | a=1,2, o (2.20)

Eqs. (2.18) imply that b%k #0, a=1,2 , Indeed, assuming
that at least one of these derlvatlves vanishes, we can easily
show that the compatibility condition (1.10) has no non-trivial

solution satisfying (2.15), (2.16). Physically, this should be

expected, since the 4-velocities Jlb~, a=1,2 have to be
o

timelike vectors while (—' 9““) is space like (as a consequ-

ence of (1.17) for any choice of n ). Setting ‘¢, (2%’) Q;,
d5a
we can write
2.21
€= F (4o, ) 5, a=1,2. (2-21)
Using the Poisson bracket relations
{S:L)uz}: {uL5SZ}: ﬁ_P,_, {51 )= Uy, {vjsllelﬂv’
. (2.22)
{u = QIF: {l}" bug'}: Juilrul}:ui‘*uls
we obtain
I oF, )
6] = - (2 —-) Ok, 3
NE ( T A 5 U 5o 4t
L 2R DF ok  3F JE
+ 2V £ __i g’ 2.2
3“1 'DM (u +u1) 7 +3lf au) ( >

Since the variableﬂfﬁonly appears in the first term, its coefficient

=
should vanish so that g%l - - gfi; here the left-hand side is
1 Uy

independent of Uy while the right-hand side is independent

of U, s hence

F = Ci n —u, B, F o =C0+ru By, (2.24)



Inserting in (2.23), we find

N )
. 3 i 2 Fe ~f '

Cows = Cpuy = (u,ruy B +2vB[C (] - B (wru))] =0,
which leads to

/ ’

C, =(, =-B*-2vB¥

and we can set

C = L oml — B, C, =Ltwm? —yB* (2.25)

Pi=

in accord with (2.10).
This completes the proof of Lemma 2 and hence of our theorem.
We conjecture that the theorem is true for
any N 22, (The validity of this conjecture was verified for
N=3)
The negative result thus established is the counterpart of
the no-interaction theorem of Currie, Jordadn, Sudarshan and

/2’3’7’10/

Leutwyler in the constraint formulation of relati-

vigtic classical dynamics.

C. Gauge invariance of the relative motion and of the

scattering matrix

The result of the preceding section looks at first sight
rather distressing. In the presence of a non-trivial interaction,
particle world lines can only be defined if we fix an initial
data surface (of type (1.17)) and then they depend on the choice
of the vector nn , It turms out, however, that (at least for
constraints patisfying (1.15)) the gauge dependence is confined
to the +time evolution of the centre of mass variable and can be

taken explicitly into account. The physically relevant relative

20

coordinate trajectory and the 2-particle scattering matrix are
gauge invariant.
In order to see this, we first write the Hamiltonian that

leaves the gauge condition (1.17) invariant, in the form

il

(m) {
H @{(mPl+n3—;;b)<éi+(m[i—ﬂg§)‘(’z}

(2.26)
= H«—W'—P(ﬂg—f ~np)e (=0),

where H is given by (1.21).(It is obtained from the expres-

sion (1.18) for ¢ =¢, =4 and 2—-1 . We observe that
{"L,@}=O={P,‘€}, (2.27)

50 that the time evolution of X, and p is indeed independent

of the choice of N :

[ (n) .
e R VL B N L B2 TN
The gauge dependence of the centre of mass variable (1.6) can
be found explicitly by solving the equation
3){ ?1)(
5= =1X, ef=p, Z4-0. (2.28)

20
If we denote the variable conjugate to H by T , so that

%‘%{: X, H}, (2.29)

then the ¢ ~dependence of _)(étyv) is given by

X(’C’,O’) :X(f(_"o) + Poyo, (2.30)

The evolution of,)( with respect to the time parameter T o
conjugate to the Hamiltonian H(ﬁ) (2.26) can then be expressed

in terms of X{’t‘,:r):

X[’C("’] = X (v, L (= 2¢ np) =) (2.31)

mp op .

2



Similarly, for the individual particle coordinates we have

(n —np) P(e™) T
5 ("97 —mp) (=) T

%, [T]

X; (T, 0) R

o (2.32)
x, [T = X, (T, 0) —

Assume now, that we have an elastic scattering problem,

for which the following limits exist:

{im Zlm

PD_(’C) = L x (z,0)
e Tore T OF (2.33a)
where
: > = S+ P = 3
L+ P AR P; (2.33b)
b [x (0 - G -pH)0c]=0"; (2.34)
Torw
then for T —tee we have
dxg
AT [1 +(l) L ( g‘f-np)]P‘ a=42.

Obviously, the corresponding 4-velocities u:
(uz)=1)

transforms (by definition) the vectors

(normalized by

are independent of m . Since the scattering matrix

y_;‘ ., a” into

u;, ut, a* (all of which are gauge invariant), it is gauge inva-

riant as well.

3. Summary and discussion

The results of this paper may be summarized in the following -

simplified manner.

Define the generalized mass shell J{ and the equal time
surface by

M He-4(8o+p) + b (x,p,5)=0,

(3.1)
¥=3(mi-mi-pe ) =-pP=o;

(3.2)

nx x>0

Z(n): <,":. >O),
where we use the kinematical notation of Sec. 1A. Every linear
combination of the constraints (3.1) (with variable coefficients)

z n)

which has zero Poisson bracket with is proportional to

the "Hamiltonian"

H""-_-H+7‘L15(ﬂg~;fi—np)<€ (~0) (3.3)

The time evolution generated by this Hamiltonian leads to indi-
vidual particle trajectories [ given by (2.32)] which depend
explicitly on the time~like vector n . In the free particle case

the time 7T’ dependence of X4 8till includes the vector m ,

however the (straight) world lines of the two particles do not;

this can be made manifest by introducing the proper time variables

=(1-2F (n N m .
/tj.“<i ﬂP)T ) -’C,_:(u.r”z’;)fc", (3.4)
in terms of which we can write

l5
Xo (Ta) = Xa(0) = P Ta | a=12. (3.5)

The theorem proven in Sec. 2B asserts that the free motion
is the only one for which particle trajectories are "gauge" (i.e.,
n-) independent.

In the general case, the relative coordinate still has a

non-invariant evolution law

& "
x[TM] = 1e7] —x, [e] = x(T™,0) +15 ("2—,—, -ne) P (3.6)
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but the n -dependence is only present in the term proportional
to :P and hence disappears in the orthogonal relative variable
x (0.1). Thus the relative motion is gauge independent. An
elementary analysis carried out in Sec. 2C shows that the same
is true for the 2-particle scattering matrix.

It is only in the centre of mass motion (which is commonly
regarded as physicélly uninteresting) that the gauge dependence
of particle trajectories (in the presence of interaction) mani-
fests itself. This result seems to indicate that centre of mass
motion should not be regarded as a strict observable. It should
be noted however, that such a conclusion would imply non-obser-
vability of some relative variables in the N-particle case (for
Nz 3). We would like to point out that the constraint dynamical
approach to the case N = 3 is not yet fully understood *).

It 1s a pleasure to thank F.Rohrlich and S.N.Sokolov as well
as the participants of the quantum field theory seminar of the

Steklov Mathematical Institute for useful discussions.

*) Note that in the recent work by H.Crater/1/ on the 3-particle
case the compatibility condition {¥.,¢,4=0 is not satisfied,
Concerning the complications inherent to the many particle case

see /f3/ and /16/.
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APPENDIX A.

A general coordinate free formulation of results

The objective of this appendix is two-fold. First, in Sec. A1,
we summarize for the benefit of the physicist reader some of the
terminology concerned with symplectic forms and vector fields.
Then, we present a general and precise differential geometric
formulation of the results of the present paper, including a
coordinate free recapitulation of the relevant part of the phase

space approach to relativistic point particle dynamics of ref./18/.
.
Al. Symplectic forms, vector fields, Poisson brackets - a synopsis )

Let [ be a differentiable manifold with local coordinates

=) . a 2-form « on [ is given in local coordinates by

w=§ 0oy A1, dY" (t2a,p < diml") (A1)

o A (& 3
where wﬂp(i) is a skew symmetric tensor and dY adl =" AXACM .
A vector field )<i=><(5) onl is given in local coordinates by

an expression of the form

X= Xd aaid (A.2)

-3
which determines (for each point X ) a contravariant vector }{({L

To each vector field ;{ and 2-form ¢« we make correspond a 1-form

. *K A
Xw =X & df (1.3)
X . P)
which i1s obtained formally from (A.1), (A.2) if we consider %s=*
«® .

as a differentiation with respect to d¥ (regarded as indepen-
dent variable) keeping in mind the antisymmetry of the wedge

= 0. dy* -
product. Similarly, for any 1-form G= O and vector field )(

) In writing this synopsis the authors were influenced by the
lucid exposition of the Appendix to ref. /5/.
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&
we make correspond a scalar function XQ =X" =6 (X),

Por a pair of vector fields X and Y we shall write
. 7 A ~B
WX, V)= X (Yu) =Y w,X (4.4)

clearly, w(X,Y):—w(y,X). The form w is called non-degenerate.
if the equality w(X,Y)=0 for any choice of X and fixed Y
implies S/::O - For the non-degeneracy of a 2-form « on | it

is necegsary that r is even dimensional: dim[ =2n ; 8 neces—
sary and sufficient condition for w to be non-degenerate is

then provided by the requirement that the 2n-form w?® does not
vanish. In the special case of the form (1.1b), we have wi#0 since it

is the volume form on ﬂ; . The form w isg called closed if
9 [ )
dw= 5w, dEadWdi® =0 () =1,); (4.5)

that ie equivalent to the Jacobi condition Bpw“,,rbawﬁ9+3ﬂ‘df“= 0
A closed, non-degenerate 2-form « is called symplectic,
To each (smooth) function £ () and symplectic form w

on [ we make correspond a vector field ;K; defined by

w(Xp, V) =-X, 0 = dF (V)= Y=, ¢

(A.6)

For each pair of functions f and j we define the Poisson

[hgd= o (Xe X5 = di(Xp) = -dg (X)), wn

It is eagily verified that in local coordinates

X; = {Y* 1} 2 =0 262, (1.20)
26

{F,;}=D—F W™ g (4.8b)

20 Y68
where ™ ig the inverse matrix of @W,, (which is also skew-

symmetric):
WAy = % (4.8¢c)
D‘p g(}.
Eq. (1.2) is then derived by noticing that

150 f= w0 (8.9)

N
Note that according to (1.1b) w= 2_ “a , where «a ig the
ezl
canonical symplectic form on the cotangent vector bundle *)

. 4
o =T"Mj (4.10)
on Minkowski space

“’a“"‘ea’—‘clxc’.ﬁdpah. ' (A.11) -

*) The tangent bundle TM over a differentiable manifold

M is a vector bundle with base Il and fibre the tangent
vector space T, M at each point x« (regarding M as the confi-
guration space of a dynamical system we can identify T M with

the velocity space at X ). The cotangeut bundle T*M

is defined 1in a similar fashion by replacing T x M

by its dual T; 11 (which is the gpace of linear forms on Tx M;

in the above mechanical picture the vectors in T, M play the role
of momenta).
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A2. Generual constrained formulationu of relativistic

Hamiltonian dynanmics

#de detine the extended N-particle phase space as the direct

product

'f—r:x.-- "rw ’ (A.12)

of the ("large") single particle phase spaces (A.10). It is equipped

with the symplectic form
N
W=y Wy (4.13)
a=1
(where 3 is given by (A.11)), and with the related Poisson

bracket structure (1.2). Ve have a natural action of the Poincare

group T in iﬂN with generators (1.3), (1.4):

A1
ta, N): (%0, oxyg ) = (Axgra, Apps o5 ARy ra s ARy) (a.14)

(that is the diagonal action of P in ™ ). we say that a point
Xel—N in j) -regular if the orbit FJ¥ has a maximal dimen-
sion (7 for N=1, 10 for N=2?2),

The ”'EEIEiEEEMEE}EEiXiiﬁiixﬁﬁﬂiiffEiEEvQXEEEEEE is specified

u with the following properties.

by giving a suomanifold Al < |
(1) JA is a counected Poincar€ invariant submanifold of [
of codimension f« (in other words, dim M= 7). The P -regular
points of AL form a dence open subset of M .
(2) The set kzr(wbw) of all tangent vectors on A{, on
which the restriction ‘UL% of the 2-form (A.13) is degenerate,

is an H-dimensional integrable vector subbundle of M, such that

the foliation

\/u—) I—; = Vu'/ k’er(a)‘ﬂ) (4.15)

28

is a locally trivial fibre bundle (cf. Appendix to ref./5/).
(Condition (2) ensures, in particular, the compatibility condi-~
tion (ii) of Sec. 1B for the constraints ¢q=0 which define
M in the neighbourhood of each point).

(3) Lets : M~ MNfM,A----M./ be the projection of M
on the configuration space (so that W(x,p,; .. 1%y, P,)= (ieitn)s
Denote by di’ the corresponding tangent map (mapping
vectors of7}/” on vectors of7; ﬂ1~’for x=(y) )« Then
we demand that (a) the rank of the map Jﬂ{}@r@qﬁ»>
is N and,moreover, (b) d?r('kér(wLM);) is spanned by N time-like
vectors. (This is the counterpart of condition (iii) of Sec. 1B)

(4) Al is maximal in the sense that it is either closed, or,
if it is not, then its closure jz contains a non-empty set S
of points on which some of the conditions (1)-(3) is violated.
(In particular, S should contain all gingular points of sz and
all points in which the rank of the map dﬁ7(7<ar(@”¢dy) of
condition (3) is emaller than N, but no other boundary,) MNore-
over, we demand that L(:‘/L—[ NS .

A manifold ,LL with the above properties is called the
generalized (N-particle) mass shell. The 6N dimensional factor
space I] (A.15) is called the (proper) phase space of the
system. The form w| 6 gives rise to a (non-degenerate) symplectic
form w, on [ . Indeed it follows from (A.15) that the values
w(X,¥Y) of the 2-form « for ?(,5/61;ll do not change when ;{
and >/ vary in the corresponding equivalence classes so that
@[, does indeed define a 2-form w, on [~ . The non-degeneracy
of ©, follows from the definition of Ker(w/y) . Since J{ and
& are both g) -invariant, {» inherits the action of the Poin-

caré’group and W, is invariant with respect to this action.
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de end up this section with a few comments.

1) Conditions (1)-(4) under which a submanifold A ¢ [
specifies a relativistic N-particle dynamics are a generalization
of assumptions (i)-(iv) of Sec. 1B. (The main difference is that
we do not demand that M ig defined globally in terms of N
equations of the type (1.9). On the other hand if assumption (1)
is satisfied and Ye M is P -reguler then in some sufficiently
in " there exist N Poincare in-

small neighbourhood of v

such that AL is given by

variant functions v, .. ¥y

the system of equations ¢ =0, a=1,..,N in this neighbourhood.)

There conditions, however, do not exhaust the physical desi-
derata, listed in ref./'®/, lost important, the separability re—
quirement (v) of Sec. 1B ig not included in (1)-(4), since it
is not used in the present paper.

2) Following the pattern of Sec. 2A we can say that two sub-
manifolds A{ and vll/ of IﬂNI satisfying (1)-(4) define phy~-
sically equivalent dynamics, if there exists a one to one canoni-
cal diffeomorphism of a neighbourhood of AL on a neighbourhood
ofVL(( which maps VL( onto b[[’ y breserves the form « and the
generators of the Poincaré group, and commutes with the projection
Tv  on configuration space (or, in other words, preserves the
particle coordinates x, ).

3) The somewhat complicated requirement (4) cannot be replaced
by the simpler condition that J( is closed if we want to incor-
porate zero mass particles.

4) The condition that M contains a dense open set of P-
regular points cannot be replaced by the stronger condition that

(AL consists entirely of such regular points, since this is

not the case even for the Tree particles' mass shell (the singular
set corresponding to collinear or complanar momenta and relatlive
coordinates). It can be demonstrated that the ‘P-regular points

~N

form a dense open set in and that there intersection with

M is dense and open in M for N+ 2.

A3. Non-invariance of particle world lines

Let us now assume the existence of invariant world lires.
Thie means that the projection 7, (¥,) of a fibre Y.c M (or,
equivalently, of a point J;& E_ ) on the a~th copy of HWinkowski
space, hAu 1s a one-dimensional submanifold 1n‘ﬁ1q. Oour objective
ig to find (under thisg angumption) a canonical form for the local
equat.ons of the 14-~dimensional Poincare invariant surface
MeT=T".

Part of the discussion is general and will ve carried outl
in the li-particle case. For every Xe\ﬁt there exist an (open)

~N
neighbourhood U<l "of ¥ anad 1 smmooth functions

t
1y -7 (N

defined in L]) such that

MNU =0 N, , (2.16a)

where
£.16b)
\/ua:{b’L—U; O (¥)=0} a=1 ...N (
Lioreover, as a consequence of (2),
Voo %]y =00 k-1, N (£.17)
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on. For every Jc M there exist a neighbourhood
Ucr ©of ¥ and I functions @ e (*([J), a=1,. N satisfying
(A4.16), (A.17) and such that

LF“IU: lpq (G ITIIUD SV Po.) Keo = Xg - K,

A ) (2.18)
—_ = N

?’RleI‘# 0, a=t, .

The proof is essentially that of Lemmal (Sec. 2B).

Corollary. If, in addition, the point ¥ ¢ v“ is P-regu-
lar then the neighbourhood {J and tke functions ¢, can be
chosen in such a way that %;_ only depend on the scalar pro-

ducts of their argumentsa:
kS
l'Fa =Y (X.’;,..., ¥nmiw 3 P, o, Xyyw Pa Pa) a =g, LN (A.19)

We now come to the 2-particle case.

Iheorem. In a relativistic two-particle theory with inva-
riant world lines if the point Jl\ji is g)—regular, then there
exist a neighbourhood [Jc r(zr*) of ¥ and a (smooth) function
B(ix*) in L} such that the constraints ¥ and ¢, have the
form (2.10). Moreover, the particle world lines are (globally)
straight timelike lines.

The proof of the first statement is actually given in Sec.
28. The fact that the world lines are straight lines giobally is
a consequence of the corresponding local statement and of the
smoothness of world lines. Their timelike charucter follows from

condition (3) (b).
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