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Introduction 

We study the notion of particle world lines in the rela-

tivistic phase space formulation of classical point particles' 

dynamics developed in/ 18/ on the oasis of Dirac's theory of 

constraint Hamiltonian systems*) /4-6 / 

The N-particle dynamics is determined uy a set of N gene-

ralized mass-shell equations 

'e -.i(m'--P.~) + ,~., . . . 
a- 2. a. '-' '+'u. \:<,2 , .. x •. ,,' P,' .. ,P )~ 1 ' "o.o =;<.,_-X£ > r' = (P."f- F. 2 

d N n o.. (.1. _u., 0. , .• ~, ' 

which define a 71l dimensional surface J..1 jn the 8JJ dimensional 

"large phase space" 

dered here a point in 

r~ (for the spinless particle case consi

r"' is given by N pairs of 4-vectors 

f~( ~ (~ 1 .P,, , XtJ, r,;) ). Here q>o. are lorentz jnvariant functions 

subject to some conditions recapitulated in Sec. 113. We mention 

here the important requirement that ~~ are fir~t class constrajnts, 

which means that their Poisson bracket, l tt'u, 1ft} vanish on J.{. • 

The functions 'fa. not only determine the generalized N-particle 

mass shell vU but also generate N vector fields on whtch 

*) The constraint Hamiltonian approach to relativistic point /'I 
particle interaction was also adopted (in fact, rediscovered) in ~ 
Recent work by F.Hohrlich /15/ which follows a similar path, differs 
from ours in allandoning the notion of individual particle coordi-

nates and trajectory {a generalized notion of "relative coordina
tes"- whose sum over all particles is not required to vanish -

is used instead). As noted recently by Professor Rohrhch (private 
communication of October 1978) this difference is not essential: 
a slight modification of his approach allows one to impose a linear 
relation among the relative coordinates ~"'- of ref./15/ and hence 
define single particles' coordinates. A Lagrangian approach to the 
problem of relativistic point particle interactions which leads to 
similar c~mstraint equations is being developed in the work of 
Takabayasl et al. (see /17,8/ and further references cited there). 
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'" the restriction '-"IJL of the oymplectic form ·-V:2: dx!: 11 dpo. 
N •<1 I" 

on r io degenerate. 'rhe relativistic Hamiltonian is defined 

as a linear combination of ~fa. (with j -dependent coefficients) 

that leaves invariant SOllie J( N-1) dimensional space-like surface 

in the space of relative coordinates which will be called the 

"equal time surface". (An example of ouch a ourface is the plane 

11 .><u.s = 0 , where xa.~=xa-><e, o.) = i,. N and n is a 

time-like vector which may depend on the momenta). The selection 

of an equal time surface, which excludes the unphysical relative 

time variables is analogous to specifying a gauge condition and 

will be also referred to in the sequel in such terms. 

In Sec. 2A we introduce a notion of equivalent dynamics 

which says, essentially, that two sets of constraints ~a. =0 

and tp = 0 are equivalent, if they lead to the same particle world 
(l. 

lines (for the same gauge and initial conditions) and to the same 

realization of the Poincare group,(Equivalent dynamics corresponds, 
- N 

in general, to different submanifolds J1 and J1 of r ) , lYe 

prove (in Sec, 2B for the case N=2) that only straight world 

lines(corresponding to a free motion) are independent of the 

choice of the equal time surface (and hence,independent of the 

Lagrange multipliers ila in the Hamil toni. an J,J~ 2_ ::1" ifla.), This 

statement agrees with recent results of Sokolov/ 161, obtained in 

an alternative approach to the description of directly interacting 

relativistic point particles. It also provides a new interpre

tation of the so-called "no-interaction theorem" of Currie et al, 

/ 2 ,3• 101 (for a recent discussion see also/7 • 11 1~. It is demon

strated in Sec. 2C that in the 2-particle case, for ~ = ~ , the 
L .z 

relative motion (expressed in terms of the variables x..L. an.cl P, 

4 

x.._=xil:x-xPe> 
5 l 

P=I"Lr1-/"-1P,, 

X=x.-x P;;rt-" ~ 
.. ~ • l. rz. ' 

f•, t- , ... , = 1' , ... ,-,~~ = hl~- h!i: 
s 

p~ 

orthoeonal to the total momentum P of the system) is gauge 

invariant and so is the 2-particle S-matrix. 

(0.1) 

(0.2) 

An appendix includes a synopsis of some basic noti.ons of 

differential geometry (such as a symplectic form and a vector 

field) used in the text, as well as a coordinate free formula

tion of the constraint Hamiltonian approach to relativistic point 

particle dynamics and of the main theorem (of Sec. 2B). 

1. Constraint Hamiltonian Formulation of Relativistic 

N-Particle Dynamics 

For reader's convenience we start with a brief recapitula

tion of the constraint dynamics approach to the relativistic 

N-body problem developed in ref./ 181 (with a special attention 

to the case N=2). 

A. Poincar~ invariant symplectic structure on 

'rhe free particles' mass shell 

rN. 

In order to avoid unnecessary complications, we shall only 

deal with spinless point particles in this paper. 'l'he general 

case of (massive) spinning particles is considered in ref./181. 
A manifestly covariant description of relativistic point 

particles'kinematics requires the use of 4-dimensional coordi

nates and momenta. Ne shall consider the space _)}. of "physical" 

dynamical variables (including a separate time parameter 
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for each particle) as a 7N-dimensional surface in the 

8]! dimensional extended phase space r" (which i.s spanned by 

pseudoeucljdean particle coordinates .>< 1 , .• xN and momenta 

rl, . r N 

given by 

). I'or example the free particles' mass shell v~ is 

A 1 ) - JRS · 2 • • f. ,/Vtu-=IC"v.,r~)~ ICc= , u..-= 1, .,N; f., ==1'>1o., r.:.>o \."r PC::,Inz~t-fi)J. 

·:rhe "large phaRe space" rN can be regarded as a direct 

product of ninr;le particle spaces: r N == (x .. x ~ • Each 

carries a natural action of the (connected) Poincare' group P 
)lJ(J,/ij c :t , p J ·-7 ( II :t + o., 1\ P ) 

and an Aut 'Y -i nvar j ant 1-form 

I 9 ==- p J.xOc 
Cl a. "' 

( =··f, J.xt") 
"'!" 0. ) a. "" i' .... tJ. (1.1a) 

(Here Aut ;p i c the group of automorphisms of the Poincare group 

which consist. of Poincare' transformations and dilatations 

(x,P)-> (?X, f r), 9 > 0, ) Its differential is a oymplectic 

form*) on r 
<l. 

Wa ::o d f/tA.. :::: J x:;. II Jp"f (1.1b) 

(summation over the repeated Minkowskl space vector index f" 

but not over the particle index Q , is to be carried out in the 

right-hand slde of ( 1.1b) ). 'fhus we can define a (Aut':Px. x AutP 

-lnvarlant) symplectic form 

on r" 
Q.=t 

( e = ~ eQ_) 
0. 

(1.1c) 
.JL 

w ,-- L. wu. =d. e 
which gives rise to the canonical Polinson bracket rela-

tions 

~, For reader's convenience we have summarized basic defini
tions and facts concerning symplectic forms and Poisson brackets 
in Appendix A1. 

6 

f 1'- r< \~'a», "s } = Oae b v , a)== 1, ... , N, ,.... J) == 0. 1,2' 3 

(all other brackets among the basic phase space coordinates 

vanishing). 

( 1. 2) 

Ne shall assume (see Sec. 1B below) that the surface JA. is 

/ rN a Poincare invariant submanifold of • (This is obviously true 

for the free particle mass shell JA.0 .) As a consequence.,{£ will 

-N 
inherit the diagonal action of the Poincare group in l . Its 

infinitesimal generators are given by 

p := l"ir ... +f,. I 

M = XJ. A 'i + •.• + XN A PN 
where the wedge product " is defined, as usual, by 

0<11 P),_.., = x·,.. r,., -X.; Pr-. 

( 1. 3) 

(1.4) 

(1.5) 

For x~. l'g 

p and 

satisfying the canonical Poisson bracket relations (1.2) 

M satisfy the Poisson bracket relations of the Pain-

care Lie algebra. 

Ne shall proceed further with the special case N=2. 

If we take as relative momentum (conjugate to the relative 

coordinate X = x,- x2 ) the variable p (0.2) then the centre 

of mass coordinate X conjugate to ti:E total momentum p (and 

completing the set of 4-vectors p, P. x 

should be taken as 

X = ft, l<< +- h '• - f-<,s- ,.._, (x P) P . 

to a canonical quadruplet) 

( 1 .6) 

(Because of the $-dependence of the weights t'o. ( 0. 2) the noncon-

ventional last term in the right hand-side of (1.6) is required 

to ensure the vanishing of the Poisson brackets {X~ X ).1} 
and { X t<' P v} • ) 
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The total angular momentum ~1 (1.4) splits into a centre 

of mass (orbital) part and a relative (internal) part: 

.1\1::: X/I p + ><Ap. ( 1o 4 I) 

On the free particle mass shell J)u we have 

- p"- <= g\>l = ~ [s -- 2(-m~HH~) + ("'~;"d] (1.7) 

[The weak equality sign ~ is used for equations that are only 

valid on the physical subspace ~(which coincides here withJU
0

) 

of the large phase space f(= f~] 

We note finally that the relative momentum p 

orthogonal to J? on the mass shell: 

if- ( ( , 2. .,. '") p .. 
:-.:: 2 mt- mz -,i -1-pl. -= -f' :::>:U. 

B. The generalized N-particle mass shell 

(0.2) is 

( 1. 8) 

The generalized mass shell JA, for N-interacting particles 

is defined, according to/ 181, by N constraints of the type 

lfo. =i(~~-r~) +<Po. ~o. 0.=1, ... ,/'/. (1.9) 

For the purposes of this paper we shall need the following pro

perties of the deviations ~o. from the free particle mass shell. 

(i) Poincare invariance: in order to simplify the discussion, 

we shall make the slightly stronger assumption that cPQ are 

functions of the scalar products of x8G =xg- Xc and Pg 

(Li) Compatibility: the constraints If,_ are first class, 

{lfiu..lf'B}-:::::0 (1.10) 

(iii) Independence and time-like character: the \fo. ·.s are 

functionally independent and Eqs.(l.9) can be solved for the particle 

energies, so that 

8 

d == d.et ( 71 ()'fa. ) 
" o Pg 

> 0 ('nl. >0, nu>O) (1.11) 

for any choice of the P -dependent time-like vector -n; (the 

sign is chosen to fit the free particle case; if we set for N=2 

'Yl = P I for P £__ <P ~ 0/ 
<>'l, (l 

5 > I ')n? - m~ I ) • . 

then (1.11) is satisfied for 

Conditiono (ii) and (iii) along wi.th some regularity properties 

are partly incorporated in the following mathematical assumption 

(see Appendix to ref./ 5/) which will be also adopted: 

( iv) fibre bundle structure Ol'\ ).). : the 7N-dimensl.onal mani
~--

fold vU is a fibre bundle with N-dimensional fibres spanned by 

the integral curves of the vector fields )(~ on which the form 
« 

w~ is degenerate (see Appendix A.1 as well as the discussion 

after Eq.(1.19) below). The 6N-dimenoional base space r: of JL 
(whose points (~ can be identified with the N-dimensional fibres 

in J( ) plays the role of the physical phase space. 

These requirements are supplemented in ref./ 18/ by the 

following additional assumption: 

(v) separability: the free particle mass shell is recovered 

for large space-time separation between the particles: 

t,..._ ~(). = 0 
l. 

where 
p 

i<.<>.&l. = Xa.en = Xa..~- fJ Xa.g p> 
-.xt:llh...,., t-=1,. ··"' 

(confining potentials - of the type treated in ref / 11 1 - can 

also be considered, however the separation of the mass term in 

Eq. (1.9) becomes then ill defined). 

lA regularity requirement also imposed in ref./4 8/ and designedto 

exclude strong attractive singularities (leading to falling on 

a centre) will not be discussed here.] 
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Now we again proceed to the special case N=2. 

The compatibility condition (1.10) assumes a more tractable 

form in terms of the functions 

D-= q:,t- <l>,_ q, = f'AL t ~L~ ( 1.12) 

where l"u. are defined by (0.2): 

M =.!..• ..1-t->n"- ') 
I 1- l. ;t. - :L 5 \ 1 m..< • 

(1.13) 

.Ve have 

{ 'f lf} =, vP _ p (}4:- + {D c:P}-::::0. 
i' ~ I a X (};t ' 

(1.14) 

For a given D Eq. ( 1.14) can be regarded as a first order 

partial differential equation for ~ whose solution involves a 

functional freedom. It was pointed out in ref./ 181 that the spe

cial solution, for which 

D==O= p'd<i> ax (1.15) 

contains enough freedom to accomodate (in its quantized version 

including spin) the quasipotential equations/ 12 • 14/ considered 

so f<lr. The general Poincare invariant solution of the second 

equation (1.15) is a function of five among the six independent 

scalar products of the vectors X p , and P (excluding x P): 

,p = .p ( )('~ ; $ ; p XJ., pL j - p p ) • (1.16) 

Other solutions (with Df 0) will be displayed in Sec. 2A. 

c. Equal time surface, Hamiltonian, gauge transformations 

Ne shall define the time evolution of the system in terms of 

the constraints (1.9). To this end we have first to select a 

10 

family of equal time surfaces. For the sake of simplicity, we 

restrict our attention to the 2-particle case and take the set 

of hyperplanes in the space of relative coordinates 

n.xzO (x= xL-x,.), (1.17) 

where Yl is a P -dependent time-like .vector such that /.,, 'f..\o-0. 

We shall demand that the Hamiltonian Ht-n> is a linear combina-

tion of the constraints which has zero Poisson brackets with nx 

II h. . t t ' H l"'-) on~. T lS requ1remen de·erm1nes up to a single Lag-

range multiplier ;\ (which will be taken positive in order to 

fix the direction of the time axis): 

~t;' = ,.;tp [ ('"-P._ + n ~~") 4?~ +- (nfi- n ~)~z} ("' O). (1.18) 

(Note, that according to (1.11), ·o H t .. ) o 11 1"') ~ A d 0 ) 
n if, ;, ~ n 'iJp,_ ~~~ -~ .;;p 4= . 

A family T of functions on r = / 2 is said to be gauge 

invariant if the time evolution of each fe ~ generated by the 

Hamiltonian (1.18) for any choice of n and ;:\ , does not lead 

it out of j . If in addition J is irreducible in the sense 

that it does not contain a nontrivial gauge invariant subset, 

then it will be called a (~) observable. A special case of 

an observable is a single function of the dynamical variables 

which has zero Poisson brackets with. the constraints on vi£ • The 

ten generators (1.3), (1.4) of the Poincare group provide examples 

of such ~· In general, the observables are given 

by 2-parameter families of functions t' ( (; !Ji,IT,J, f=(x
1

,P,_; x,_, p._) 

defined by the system of partial differential equations 

;~/= [+,~} ' ()~ = { t, f,_} 
(1.19a) 
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and the intial condition 

~· ( f, o, o) == fen. (1.19b) 

We remark that if eqs.(1.19) are globally integrable (for 

(cr,_,cr,_)EJ!. 2 ) then they define a 2-parameter group, say G(:1.>• of 

canonical gauge transformations {cn-.f((;tr,,a-:t)= /-'[r(a:,.,-_,.)J 
((t:J..t , (llj_,O':th R" implies {(aj_,IJ'.)E Jl). It is a subgroup 

of an infinite parameter gauge group ~~~ generated by arbitrary 

linear combinations of ~i and ~~ (with variable coefficients)~ 

('rhis infinite parameter group reflects reparametrization inva-

riance of phase space trajectories.) For given (E: )i the groups 

r;· and 
1(~) ~;L) have the same 2-dimensional 

nothing but 

in Sec. 2B 

the 

below 

fibre in )f containing J' , 
that (interacting) particle 

orbit '5-.. which is 

We shall see 

world 

lines are only invariant under a subgroup fj:,
1 

of f/-~1 generated 

by multiples of the Hamiltonian. 

Note that the Hamiltonian H of ref,/ 18/ is obtained from 

(1,18) by taking n:P,- that is 

:t=PxzO, 

and A=i ; assuming in addition that 

in ref,/181 we find 

(1.20) 

P "E..t:. 0 (as it was done 
'iJ(' 

H (P) = ~ -= ~2 'ei f- j<, 1£'- = c/> -} ( p'" + t(s)) (zO) 
1 

(1.21) 

(for f'l,.~ given by (0.2)). The Hamiltonians ;t H where H is 

given by (1,21) along with the subsidiary condition (1,20) play 

a privileged role in the 2-particle dynamics because of their 

manifest covariance and symmetry with respect to particl~·per

mutation and we shall often refer to them in what follows. 

,.) 9«<) can be defined as the subgroup of Diff (M) (the group of all 
diffeomorphisms of,M) which leaves each fibre '5>t' invariant. 

12 

Note, finally, that the physical phase space ~ can be 

parametrized in the gauge (1.17) by the points of the surface of 

initial conditions 

n x, """t, .-;:;;;: -n x, (c:Jl.) x -=Xa._f<,-f'•cxPJP 
' 0.. s ~ 

where the time parameter \ has by definition, zero Poisson 

brackets with all dynamical variables. 

2. Space-Time Trajectories and Scattering Matrix 

A. The notion of world line. Equivalent dynamics 

(1.22) 

For a Hamiltonian of type (1.18) choosing the time variable 

as 

t == 'Yl..x ( ~ n:Xi::::: n:X,) ( 2.1) 

(or as some monotonously increasing function of t ) amounts to 

fixing the Lagrange multiplier ~ • Indeed, in order to ensure 

the consistency of (2.1) with the time evolution, we should 

require 

i_ ( t - n X ) == 1 - { /)'!X , H ~"')} -:>::; o. 
d,t 

Taking into account that 2... = L - L and, hence, 
of 1P~ ~P .. 

{ - H'n'L { - ., .... )} 1 X H("")} ?. d. nx1., .:1 J ~ nxJ., H;~ z l n , >- ~ 
11 

p 

where d is the determinant (1.11), we find 

nP ( J~ u{~~ ~W) ) ~ == T a,. ti=h'f•'/"•1(•, 'f~'f,-'fL • 
., o>e ""o'E' ' 
~p ar 

t = .{ ( .... x) where 
I - ;t ) (If we set f >0 then we get ..:1 ~ t:'(»X). 

( 2. 2a) 

(2.2b~ 

(2.2c) 

Given 

a pair of points <31.~:2.) on the plane (1,22) and initial velo-
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cities :i
1 

= tr
1 

, .:i:._ = 1i_ at t ="t0 (where the dot indicates 

differentiation with respect to the variable t ), we have a 

unique pair of trajectories (>< 1 (tl. x ... (tl) satisfying the ini tiel 

conditions 

Xa.lt0 ) = 1;0. . ,,... I - - tA,-/<L/ -n-n I Xa_. (to)== Va. or x ... (.t:o) == s.,_ == \".,_- -s~! r) r, s ~s,-fz,<>tc 
0.. = 1,2. 

These trajectories are independent of A (since a change of A 

amounts to a rescaling of the time parameter on each world line), 

but depend, in general, on n • 

Two pairs of constraints 'f
1 
"'0 ~ lf:z. and ~~a""'~ shall 

be c-onsidered as physically equivalen·t if for any fixed choice 
--~ 

of the time-like vector n they lead to the same world lines 

for the same initial conditions, and if in addition they give 

rise to the same realization of the Poincare group (t~e latter 

means that there is a one-to-one correspondence "( .... ( of )).. 
- / 

onto JJ which leaves the world lines and the Poincare group 

generators (1.3), (1.4) invariant):) 

Note that this notion of physical equivalence singles out 

the Minkowski space trajectory along with the Poincar~ group 

generators as a more fundamental object than the phase space 

picture. The notion of particle momentum (for fixed coordinates) 

is not determined by the canonical Poisson bracket relation&. 

Indeed the transformatinns 

Y.a. ~ Xo.. = Xa.' F'a.. ~Po..,= i'a. + oa..Clikx:J) (2.3) 

a.,£,c = i, ... ,N, Xgc = Xg -XC> 

are easily verified to be canonical (for any choice of the smooth 

function F ). Moreover, they leave the coordinates unaltered and 

We shall assume in addition that for large (space like) separa
tions,-Xi-"", the particle momenta fh. and p~ tend to the same 
(time independent) limit. This implies the vanishing of F in 
Eq. (2.J) for large (negative) arguments. 

14 

because of the Poincare' invariance of F , the generators of the 

Poincar~ group do not change either: 

L P.,. = L Po. (,:- p) 
0.. ' <>-

'L. Xo. A Pa. ::= 2:><>-" p"' (= M) 
~ ~ . (2.4) 

In fact, it is not difficult to prove that locally the transfor

mations of type (2.3) are the most general ones with all these 

properties. In the 2-particle case the second equation (2.3) 

can be rewritten in terms of the single relative coordinate x~x,~ 

as follows *): 

P, = p + )<. :B( p2) 
l. ' 

P,. = P
2 

-x13(1x') (2.5) 

(where ]tu.) = d F 
.I"-

). Such transformatioDs leave the x -space 

trajectories invariant and, therefore, relate physically equi

valent theories (in the above terminology) to each other. 

We can use the freedom in the choice of B in (2.5) (or F 

in (2.3)) to select a standard representative of the constraints 

(1.9). One way to do that is to assume that for the privileged 

gauge condition (1.20) and Hamiltonian (1.21) the relative velo

city 'j( vanishes weakly for p = 0 • We have 

>< = r _ no<P t .![(poDp<P -(p a<PpD] •r s op ? l' 'Jf <>r . (2.6) 

Hence, our standardization condition is 

I noel> _.L[(p-o<~>ron -(u_oD)'dci>JJ{ ::;:_ 0 
l oP 5 ()P H .L J/' 'Of r~o:X 

(2.7) 

(Note that the left-hand side of (2.7) has the form A (s, x•)" = 

=--Blt•') x , since the equation J.l-:;::0 for p=D=:X allows to express 

s as a function of x• • ) 

~--·-- - '] 
The fact that the functions «t',, 4 = 3:["'"'~ .• - (P,,, !:Xll(v•J) 

are in involution was first noticed in ref. 1191. 

IS 



B. Gauge dependence of interacting particles1 world lines 

Ne shall demonstrate in this section that the notion of 

gauge invariance (introduced in Sec. 1C) is too restrictive to 

accomodate space-time particle trajectories in the presence of 

a nontrivial interaction. More precisely, we shall establish the 

following negative result. 

Theorem. Consider for each point ( of the generalized 2-

particle mass-shell .).{ , 

l = (x._, 1'1 ; x.._, P:a.) t J1, (2.8) 

the 2-dimensional fibre r~ ={set of{((r, ,0".), ccr.,<r.>E: R~ such that 

~-= { Y,'e11 }; 4(0,0) = d through ( • The projections 

1;,. =Ira 0',.., 0.=1, 1 of this fibre into the Minkowski space of each 

particle, 

~ = {xa.("'1 ,6,)E Mo..; (~,0',)~ R2
} o.-=1,2. (2.9) 

are one-dimensional, if and only if the trajectories 7;_ are 

straight lines. 

~· In a less technical language the theorem says that 

a 2-particle ayste~ has gauge invariant world lines (in Minkowski 

space) only if the motion is free. Indeed, if the projections 

were 2-dimensional we would need a (gauge dependent) subsidiary 

condition to define the 1-dimensional world line of each particle. 

li22f• In one direction the theorem is trivial. If the 

constraints are given by 

lf!rr _ 1 [ l. )2.] Q 1 == 2 m1- ( P1 +x B({x 2
) ~ 

w+r = .1..[ml. -
l;t - II. .2. (p._-X B(l_rxl.>)2

] ~ 0 

(cf. Sec. 2A), then obviously 
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(2.10) 

'JxL_ { 't't~"}= 0 :== ~ (;:::; {"' '€~"}) 
~- "'i, "" <>-:r:a. "-' 1. , 

and hence, the projections 'T'o..= 'it .. ~ of the fibre (,. 

dimensional. 

(2.11) 

are one 

The converse statement is both more interesting and more 

difficult to establish: given that 

dlm'To.=i, o.==1,2.. (2.12) 

where 1; is the manifold (2.9) to prove that the constraints ~o.. 

can be chosen in the form (2.10). We shall proceed in two steps. 

First, we shall see, that the assumption of the theorem leads 

to Eq.(2.11) for some linear combinations of the original cons

traints. Second, we shall show that the general solution of (2.11) 

satisfying conditions (i)-(iv) of Sec. 1B is given by (2.10). 

These two steps form the content of the following two lemmas. 

be~ l• If assumption (2.12) is satisfied~ then we can find 

in the neighbourhood of each point 0 of ~ two independent 

linear combinations of the original constraints 

~flo,_= Co.i <{11. + Ca.:l.. ~2 • a.= 1, 2 

that satisfy (2.11) or, equivalently, 

-a!P, = 0 = o~ ... . 
'0 p,_ 0 pi 

(2.1)) 

(2.14) 

Rr2o! £f_L~~a_1~ Let ~ and ~2 be the proper-time 

parameters on the world lines ~ and ·~ • Assumption (2.12) 

implies that one can choose in the neighbourhood of each point 

tt:JJ. a:;_ and o';z. as local coordinates in the fibre (smoothly 

depending on the fibre); then 

f ~ } Jx~ l Xg ' reo.. = Ba.o - 6 , 0- ~ = i '2 ., d /}g ) ' ' 
(2.15) 
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where Bo.B may depend on the point l( of ).( but not on the 

index ~ (there is no summation in the right-hand side), It 

follows from (1,11) that 

I Bl = dJ: Bus ( = Bu B22 - B1.2 B21.) i= 0. (2.16) 

Setting 

(Co.!$)= (s-·a.) or c11 == B2.2 ' C - ~ C - 8, .. IBJ :z2-16t' 12--Fi3t' (2.17) 

we obtain 

{ 
i(j l d )(1 (" 

XJ. > To..J = '/ Oo.! ' 
"' crJ. 

c.2-1 =- B;z, ) 
IBI 

{X 2 1 ~ o.. } = ~)(._ ba.2 · 
"'(/2. 

(2.18) 

One can construct such a continuation ofCClg (andi3Qb) off}t for 
Which Eq, (2.18) becomes strong, and hence Eq, (2.14) is also valid 
(in the strong sense), 

lio!e~ This part of the proof readily extends to the N

particle case, Assuming the validity of (2.15), (2.16) for a,£:1, .... 

N and setting 
- N 
<f?o. = L (W

1)aB lfB , 
t~1 

(2.19) 

we obtain the counterpart of ( 2. 18) for o. = 1, ... , N • If we wish 

to use (2.15) and (2.19) as global relations on ),( we have to 

assume that Jl is a globally trivial fibre bundle (so that it 

is diffeomorphic to C X RN). Such an assumption, however, is not 

needed for the validity of our theorem (cf. Appendix A), 

.!!eJ!!III~ £• The constraints ~ ~ 0 , satisfying ( 1.10) (2.14) 

can be replaced by equivalent constraints of type (2.10) (which 

describe the same manifold .){ ) • 

~£of £f_~~a_2~ Poincare invariance, along with (2,14) 
- *) tells us that each ~a depends on J scalar variables 

*) Again the global validity of this stat~ment.is not c~ear, but 
it is actually only needed locally as expla1ned 1n Append1x A. 
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.) 

\} 

which will be chosen as 

sa. = ~ r.; , u.,_ = x P., a=1, 2 ' V= ~",_ . 
(2.20) 

Eqs. (2.18) imply that 0 ~4=0 a.=i,2 
;) Sa. • . Indeed, assuming 

that at least one of these derivatives vanishes, we can easily 

show that the compatibility condition (1.10) has no non-trivial 

solution satisfying (2,15), (2,16), Physically, this should be 

expected, since the 4-velocities Jxa..., a.= i, 2 have to be 
d CJo-

timelike vectors while x ( = ;) Ua.) is space like (as a consequ-
;;. Po. - -t-

ence of (1.17) for any choice of 11 ), Setting 'f'a. =- ( 0 'fo..) !('Q, 

we can write 

<eCl = r c~.~o.., u-) -sa., a.= 1,2. 
0.. 

Using the Poisson bracket relations 

{s:~., u,J = [ ui. ,s2 } = ~}2 , { S1 , v} = u;l., fv; s
1
.}= u,_, 

{uJ.,v-J == 21,..= {v,u:>.}, ju1.,u,.}= u;~.+U2 , 

we obtain 

0 { ] ( ofi IJF..) ()F, df;, "-= 'f 'f = - - + - b p - - u - - U;z_ I 
1 ' 2 3 ui o Uz r 1 :>.. o V J. ~ // 

+oF; or=._ (u +-'U ) + 2 v(JF,_ IJfi + JF; JF..). 
~ui ~u, 1 :z. ~ u, {)// oi/ Ju~ 

"'So .. 

(2.21) 

(2.22) 

(2.23) 

Since the variablc~P2 only appears in the first term, its coefficient 
oF ~F. should vanish so that --2 = _ ~; here the left-hand side is 
a~ B~ 

independent of u& while the right-hand side is independent 

of uJ. hence 

F = C (v) -u. Bczr> t .1. ~ F;t. = C7-{zr-> +- -u .. BC1FJ. (2.24) 
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Inserting in (2.23), we find 

(' I • ~I 2. / , i t ,1 
- '-L 1<, - cl.. u. - (tt, rU,) 13 +- 2 v B [CJ. -c;l.- B (u,rUJ.)j = o, 
which leads to 

I I 2. J 

Ct.= C:l. =-B -2v-BB 

and we can set 

C 1 1.. -n2 
1 

= 2 m1. - v-v , C ( 2 -r>"-). = ;r»>,_ -vo (2.25) 

in accord with (2.10). 

This completes the proof of Lemma 2 and hence of our theorem. 

We conjecture that the theorem is true for 

any N ~ 2. • (The validity of this conjecture was verified for 

N=J.) 

The negative result thus established is the counterpart of 

the no-interaction theorem of Currie, Jordan, Sudarshan and 

Leutwyler 12 ,3• 7 • 101 in the constraint formulation of relati-

vistic classical dynamics. 

c. Gauge invariance of the relative motion and of the 

scattering matrix 

The result of the preceding section looks at first sight 

rather distressing. In the presence of a non-trivial interaction, 

particle world lines can only be defined if we fix an initial 

data surface (of type (1.17)) and then they depend on the choice 

of the vector 11 • It turns out, however, that (at least for 

constraints satisfying (1.15)) the gauge dependence is confined 

to the time evolution of the centre of mass variable and can be 

taken explicitly into account. The physically relevant relative 
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coordinate trajectory and the 2-particle scattering matrix are 

gauge invariant. 

In order to see this, we first write the Hamiltonian that 

leaves the gauge condition (1.17) invariant, in the form 

H'""
1

== "'
1

p {(nP,_-t-n;:)'f?1 +('1'!.~- n;;)'fz] 

= H -r ~p (n;; -np) 'f ( =0), 
( 2. 26) 

where H is given by (1.21).(It is obtained from the expres-

sion ( 1.18) for </>J. =4>._ = <fo and A.= 1 • We observe that 

{XL, ~} = Q = { p, «€}, (2.27) 

so that the time evolution of xL and p is indeed independent 

of the choice of 11 

{
• (?!) 1 
x.L,H };:::{x.J.,l-1 • {P, H("'lJ~{P,H} · 
The gauge dependence of the centre of mass variable (1.6) can 

be found explicitly by solving the equation 

oX= {X If}= b ~ = o. (2.28) oo- ' r, q():J. 

If we denote the variable conjugate to H by 't: , so that 

~ ~ = {X, 1-J}, < 2. 29 > 
then the Cf -dependence of X (-r:,rr) is given by 

X (-r:, cr) = Xt-r, 0) +- pcr:Jo'. (2.JO) 

The evolution of X with respect to the time parameter T , .... 1 

conjugate to the Hamiltonian H~1 (2.26} can then be expressed 

in te:nns of X {r, :r): 
XL 'L'..,>J == X c r< .. ,. 1 ( () cb ) 

-nP -n Jf> - np t::i"l) • (2.31) 
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Similarly, for the individual particle coordinates we have 

X.t.l rc'"'>J =X (-r<~> o) t- ..L (-n. (Jq,- np) P. (t:'~') t:'~> 
l • -.,p 'df i , 

X,_ [ t'"'>J = X2 ('1:''"'>, O) - ""'~ ( ?1. ~ -"'-f) P._ (t: '"') -c '"'1. 
(2.)2) 

Assume now, that we have an elastic scattering problem, 

for which the following limits exist: 

[..,._ P""C't) = p~ = fi .. ~n J_ Xa_('t,O) 
1:"""?!'~ 'C-+too T 

where 

P; + P; == P,- ~o P; = p ; 

IA.wv [xJ..('t:)- (P,_±-P,.r-)n-c]=o...t:. 
""t~~oo 

then for -r'""l ~teo we have 

J. X~ 
........J!
J_rt"'l Lt + fl)Q-i _L (~o<P- np)]r,.± 

-n:P Q p 

Obviously, the corresponding 4-velocities ur. 
0. 

(2.33a) 

(2.)3b) 

(2.34) 

o.:U! 

(normalized by 

(u~ r'-= i ') are independent of n • Since the scattering matrix 

transforms (by definition) the vectors u;, u;, ~- into 

u;, u.t, a.*" (all of which are gauge invariant), it is gauge inva-

riant as well. 

). Summary and discussion 

The results of this paper may be summarized in the following -

simplified manner. 

Define the generalized mass shell vU and the equal time 

surface by 
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J{: H:o-t(£'c•J+-p~) +- <!:> (x_._,p,s)zO, 

'i' = ~ ( -~-m;- P._'" t P,_"") = - p P ~ 0; 

X'")= n:x: ~ 0 ( "'._ >o)_ 

(3.1) 

(3.2) 

where we use the kinematical notation of Sec. 1A. Every linear 

combination of the constraints ().1) (with variable coefficients) 

which has zero Poisson bracket with ~'"'' is proportional to 

the "Hamiltonian" 

H'-n) = f.J t J_ ('~'~ "JcP - nt) Cf { ~ 0) 
~P of · 

{3.)) 

The time evolution generated by this Hamiltonian leads to indi

vidual particle trajectories [given by (2.)2)] which depend 

explicitly on the time-like vector n • In the free particle case 

the time '1:"'"1 dependence of x
0 

still includes the vector 'l'l , 

however the (straight) world lines of the two particles do not; 

this can be made manifest by introducing the proper time variables 

1:' = (i- ~) -<::" ('h) 
L np , --c 2. = ( i+· __!!.L) -c (»I 

YIP , 
(3.4) 

in terms of which we can write 

Xu_ ('"Ca_) - Xa_(O) = Po. --c;,_ • a== 1,2. 
(3.5) 

The theorem proven in Sec. 2B asserts that the free motion 

is the only one for which particle trajectories are "gauge" (i.e., 

n-) independent. 

In the general case, the relative coordinate still has a 

non-invariant evolution law 

x [-<'~']-= )\l--r'"'J -x.._[-c'"'.J = .X('t''"', o) + ~P ("' ~~- "'-P) P-c<~> (3.6) 
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but the ~ -dependence is only present in the term proportional 

to P and hence disappears in the orthogonal relative variable 

><.L (0.1 ). Thus the relative motion is gauge independent. An 

elementary analysis carried out in Sec. 2C shows that the same 

is true for the 2-particle scattering matrix. 

It is only in the centre of mass motion (which is commonly 

regarded as physically uninteresting) that the gauge dependence 

of particle trajectories (in the presence of interaction) mani

fests itself. This result seems to indicate that centre of mass 

motion should not be regarded as a strict observable. It should 

be noted however, that such a conclusion would imply non-obser

vability of some relative variables in the N-particle case (for 

N ~ 3). \Ve would like to point out that the constraint dynamical 

approach to the case N ~ 3 is not yet fully understood *). 

It is a pleasure to thank F.Rohrlich and S.N.Sokolov as well 

as the participants of the quantum field theory seminar of the 

Steklov ~futhematical Institute for useful discussions. 

*) Note that in the recent work by H.Creter/1/ on the )-particle 
case the compatibility condition {~~.~~~o is not satisfied. 
Concerning the complications inherent to the many particle case 

see h3/ and /16/. 
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APPENDIX A. 

A general coordinate free formulation of results 

The objective of this appendix is two-fold. First, in Sec. A1, 

we summarize for the benefit of the physicist reader some of the 

terminology concerned with symplectic forms and vector fields. 

Then, we present a general and precise differential geometric 

formulation of the results of the present paper, including a 

coordinate free recapitulation of the relevant part of the phase 

space approach to relativistic point particle dynamics of ref./ 181. 

A1. Symplectic forms, vector fields, Poisson brackets -a synopsis*) 

Let [ be a differentiable manifold with local coordinates 

o=(("') • A?~ w on r is given in local coordinates by 

w = -k w"'fl dt"" Jt" ( t. ~a, (3 ~ J.;m.l) (A.1) 

where w .. l'(t) is a skew symmetric tensor and J("'>,df'\=- d(~"d(''"_ 
A vector field X= X(~) on r is given in local coordinates by 

an expression of the form 

x = xo! ;."' (A.2) 

which determines (for each point 0 ) a contravariant vector )({~. 

To each vector field X and 2-form w we make correspond a 1-form 

X (A) = X"' W,._r; JX!l (A. 3) 

which is obtained formally from (A.1), (A.2) if we consider ~0~ 

as a differentiation with respect to do" (regarded as indepen

dent variable) keeping in mind the antisymmetry of the wedge 

product. Similarly, for any 1-form ()== 9"' Jt"' and vector field X 
~, In writing this synopsis the authors were influenced by the 

lucid exposition of the Appendix to ref. /5/. 
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we make correspond a scalar function Xe ~x"'~.,.=ti(X). 
For a palr of vector fields X and Y we shall write 

w (X, YJ ?- ){ (Yw) ~- y~ wO(f3X
13

; (A.4) 

clearly, w (X 1 Y) =- w(Y, X). 'rhe form w is called non-degenerate. 

if the equality w(X, YJ=O for any choice of X and fixed Y 
implies Y = 0 • For the non-degeneracy of a 2-form w on r it 

is necessary that r is even dimensional: J;m r =2n ; a neces-

sary and sufficient condition for w to be non-degenerate is 

then provided by the requireme'lt that the 2n-form w" does not 

vanish. In the special case of the form ( 1.1b), we ha'e w:to, since i_t 

is the volume form on J: . The form w is called -~ if 

d w = ~ {}9 w"'-P cl t ~ dtoc" d (fl = 0 ( 'I_:;L_)· dr - "J69 , (A.?) 

that is equivalent to the Jacobi condition IJpw .. 11 .-- ~"'wp? +0/lwP"' == 0 

A closed, non-degenerate 2-form w is called symplectic. 

To each (smooth) function [(() and symplectic form w 
on r we make correspond a vector field X defined by 

- f 

w (X{ .Y) =-(X~ w)CY) "" d t (Y) ~ Y"'do( ~-
(A.6) 

For each pair of functions f and J we define the Poisson 

bracket 

{ f, /} = w (X~, X,)= d}'(XJ) = -dJ (Xf), (A. 7) 

It is easily verified that in local coordinates 

X _ { vo( rJ 1-. _ cJ"'f! ~H- -~ 
r- 0 ,t "("'- o'(!lg("' (A.8a) 
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{ f <t}='li_(<)~fl~ (A.8b) 
' (J ()'(" ) (8 • 

where w"'fJ is the inverse matrix of w~11 (which is also skew

symmetric): 

o<CT" r-oe. 
w w""(l = 0 (l. (A.8c) 

Eq. ( 1. 2) is then derived oy noticing that 

if"', ( 11 J ==- w"' 11 • (A.9) 
N 

Note that according to (1.1b) > o."71 
is the I.Jo. ' w= where c<J_, 

canonical symplectic form on the cotangent vector bundle *) 

r: =T,. M: (A.10) 

on Minkowski space 

wa. = J ea. = J x:::" d Po.. r- · (A. 11) 

'rM over a differentiable manifold 

M is a ~ ®ndk with base 11 and fibre the tangent 

vector spacP. ~ /Vf at each point "' (regarding M as the confi-

guration space of a dynamical syetem we can identify Txf\-1 with 

the velocity space at X ). The ~~!"~':!E::!~.E:. T""M 
is defined in a similar fashion by replacing T y.. M 

by its dual T; 1.1 (which is the space of linear forms on Tx M; 

in the above mechanical picture the vectors in T;M play the role 

of momenta). 
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A2. Gener;;l constrained formulation of relativistic 

Hamiltonian dynamics 

Me define the extended N-particle phase space us the direct 

product 

I~N- r X. 
. - f x r~-~ (A.12) 

of the ("large") single particle phase spaces (A.10). It is equipped 

with the symplectic form 

N 
w = ;E_ wu (A.13) 

a=1 
(where '~ is given by (J\.11 )), and with the related Poisson 

bracket fltructure (1.2) •. '/e have a natural action of the Poincare 
Q ~ N 

group J Ln I with generators (1.)), (1.4): 

:_a,!\); (x.,rt; _ .. ,x,",P'-~)- (Ax: • .-a, 1\p,, _.;ll•,.r"-,1\p"') (A.14) 

(that is the ~of p Ln rN' ). Ne say that a point 

(t- rN ifl Y -regular if the orbit ']{ has a maximal dimen-

Rion (7 for !J=1, 10 for N~ 2). 

'l'he N:::_partlcle relativ~~nia!l.__~~-mi~ is specified 

by giving a suomanifold .,,{,{ c IN' with the following properties. 

( 1) v.U is a connected Poincare" invariant submanifold of r 
of codimension N (in other words, d;-,J{: 7N). 'l'he J -regular 

pointr; of ,JL form a denr;e open subset of .;U • 

( 2) The set 1<er ( wJJ<,) of all tangent vectors on J.,l., on 

which the restrict ion w C'(. of the 2-f'orm (A. 13) is degenerate, 

is an H-d imensional integratJle vector subbundle of '1'M, such that 

the foliation 

)d - f:_ = Jljl(e v-{ w1JJ 
(A. 15) 
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is a locally trivial fibre bundle (cf. Appendix to ref./5/). 

(Condition (2) ensures, in particular, the compatibility condi-

tion (ii) of Sec. 1B for the constraints 

VU in the neighbourhood of each point). 

'fo.= 0 which define 

(J) Let1i :),{-> M/J-=M,A--•M,.. be the projection of ./11 

on the configuration space (so thatil(x1,p1; ... :><N,P"')=<-',,·-··"NJ). 

Denote by oi'f. the 

vectors of~ Jl1 on 

corresponding tangent map (mapping 
A/ 

vectors of 'fx fVr for x~1Tit) ). Then 

we demand that (a) the rank of the map a~<{ker("-'i.f'Jr) 

is N and,moreover, (b) d7<(1<er(wl_u)r) is spanned by N time-like 

vectors. (This is the counterpart of condition (iii) of Sec. 1B.) 

(4).,-U is maximal in the sense that it is either closed, or, 

if it is not, then its closure J[ contains a non-empty set S 

of points on which some of the conditions (1)-(3) is violated. 

(In particular, S should contain all singular points of Jl and 

all points in which the rank of the map J_r;: ( l<er (wl.ulr) of 

condition (3) is smaller than N, but no other boundary,) More

over, we demand that )}_ = j{ "-. S . 
A man!.fold ).,L. with the above properties is called the 

~ (N-particle) ~· The 6N dimensional factor 

space C (A.15) is called the (proper) phase space of the 

system. The form wJ"" gives rise to a (non-degenerate) symplectic 

form w. on r: Indeed it follows from (A.15) that the values 

w {X, Y) of the 2-form t.J for X, Y E -r;JJ do not change when X 
and Y ~ary in the corresponding equivalence classes so that 

4.l/JA does indeed define a 2-form 4J* on r: . The non-degeneracy 

of vJ,. follows from the definition of /<er- (wJJ-l) • Since J) and 

uJ are both ~ -invariant, r: inherits the action of the Poin-

care/ group and LJ,_ is invariant with respect to this action. 
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de end up this section with a few comments. 

1) Conditions {1)-{4) under which a sulJmanifold M C::. 1-N 

specifies a relativistic N-particle dynamics are a generalization 

of assumptions (i)-(iv) of Sec. 1D. (The main difference is that 

we do not demand that M io defined globally in terms of N 

equations of the type (1.9). On the other hand if assumption {1) 

ls satisfied and (~:.}{ is P -regul<;r then in some sufficiently 

small neighlJourhood of 0 in rlv' there exist N Poincare in-

variant functions Cf?L, . _ _ C£
11 such that vU is given by 

the system of equations ifct=O, a=i, ___ ,N in this neighbourhood.) 

The!'e conditions, however, do not exhaust the physical desi

derata, listed in ref/ 181. Most important, the separalJility re

quirement (v) of Sec. 1B is not included in (1)-{4), since it 

is not used in the present paper. 

2) Following the pattern of Sec. 2A we can say that two sub

manifolds .M and ,/U' of r"' satisfying < 1 )-(4~ define phy-

sically equivalent dynamics. if tLere exists a one to one canoni

cal diffeomorphism of a neighlJourhood of Jl on a neighbourhood 
I I 

of.}{ which maps .)). onto fi , preserves the form w and the 

' generators of the Poincare group, and commutes with the projection 

1r on configuration space (or, in other words, preserves the 

particle coordinates X" ). 

3) The somewhat complicated requirement (4) cannot be replaced 

by the simpler condition that J{ is closed if we want to incor-

porate zero mass particles. 

4) The condition that JA contains a dense open set of ~

regular points csnnot be replaced by the stronger condition that 

~ consists entirely of such regular points, since this is 
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not the case even for the free particles' mass shell (the sinc;ular 

set correspond in£ to collinear or complanur momenta and relative 

coord:Lnates). It ccm be demonstrated that the ·:P-rcc;ular points 

form a dense open set in ,/11 and that there intersection with 

JA is dense and open in J,{ for Nf 2. 

A3. ~on-lnvariance of particle world lines 

Let us now assume the exietence of invariant world lines. 

'J'hif:' means that the projection "C"C6',.) or a fibre 'J,.cfi (or, 

equivalently' of a point r ... (: r: ) on the Q -th copy of j,]j nkowski 

space, M 4 is a one-dimensional submanifold in No... Our ob,jective 

is to find (under this anoumpti on) a canonical form for the local 

equat ;.ono of the 14-d lmensi onal Poincare invariant surface 

j,{c r == rl.. 
Part of the discussion 1s general and will l1e carried out 

in the !!-particle case. For every '(~:jl there exist an (GJpen) 
-N 

neighbourhood U c I of r and 1; smooth functions '1:'
1

, . , 'f"' 

defined in U, such that 

)J () u J{JI );{"'fl._ fl JAN , (A.16a) 

where 

J(()._ = { t (: \] ; if Q_ ( ~) = 0 l a= 1, .- ,N 
(A.16lJ) 

r.:oreovcr, as a consequence of {2), 

' YJ/ :::O l Yo. ' e cU ;) u . C\,£=i, N. (A. 17) 
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ErQPg_s,iti.o.u. For every f.,){ there exist a neic;hbourhood 

ucr of r and lJ functions Y.,_E C 00
( UJ, Q~1, .. ,N satisfying 

(1\..16), (A.17) and such that 

lf7a.l U = if1 a. ("" ' ... ' X,; -t tJ j p o. ) ;<gc. =Xg -....:L.> 

u'f'"') t 0. u Pa-. V o. = L, /\' 
-·J .. 

The proof iR essentially that of Lernma1 (Sec. 21l). 

£o!:o1)~r,y. If, in addition, the point J"" f- )-{ 

lar then the nci ghbourhood U and tiE functions 

(A.18) 

is ~-regu-

<('o. can be 

chosen in mwh a way that <{a. only depend on the scalar pro

ducts of their arg!Wlents: 

tfa = <f" {x,~, ... , "'~-•f.l .x, ... p"' ... , xw-u.J Po., Po. .. ), a. =.l, .. ,t-1 (A. 1Sl) 

We now come to the 2-particle case. 

!h~o,Ee~. In a relativistic two-particle theory with inva-

ri.ant world lines if the point aG JA is P -regular, then there 

exist a neighbourhood u c r (= r') of (( and a (smooth) function 

B ( t x•) j n u such that the constraints eeL and '('.. have the 

form (2.10). Moreover, the particle world lines are (globally) 

straight time like Hnes. 

The proof" of the first statement is actually glven in Sec. 

2l:l. 'rhe fact that the world lines are straight lines globally io 

a consequence of the corresponding local statement and of the 

smoothness of world li.neo. Their timelike character follows from 

condition (3) (b). 

32 

References 

1. Crater, 11 •. 1.: A ceparal1le quasipotential formulation of the 

relativist·c dynamics for three point particles, Phys.Rev., 

Dl8 1 2872-2881 (1978). 

2. Currie, D. G., Jordan, T.F.: Interactions :r, relativistic clacsi-

cal particle mechanics. In: Lectureo in 'l'heoretical Physics, 

ed. by A.O.Barut and :I.E.Bri ttin (Gordon and Breach, ll. Y. 

1968), PP• 91-139. 

3. Currie, D.G., Jordan, T.F., Sudarshan, E.C.G.: Relativistic 

invariance and Hamiltonian theories of interacting particles, 

Rev.Mod.Phys. J2, 350-375 (1963); ibid. 1032. 

4. Dirac, P.A.J,J.: Generalized Hamiltonian dynamics, Proc.Hoy,Soc. 

A246, 326-332 (1958); Lectures on Quantum J,!echanics (Belfer 

Graduate School of Science, Yeshiva Univ., 11. Y., 1964). 

5. Faddeev, L.D.: Feynman integrals for singular Lagrangi.ans, 

Teor.Mat.Fiz. 1• 3-18 (1969). 

6. Hanson, A.J., Hegge, T., Teitelboim, C.: Constraint Hamilto

nian Systems (Academia Nazionale dei Lincei, Roma, 1'!76). 

7. Jordan, T.F.: Nonexistence of kinematic constant for Lorentz-

invariant Newtonian mechanics. Phys.Rev. D15, 3575· 35"1'1 ( I '177) 

8. Kojima, S.: Relativistic two-particle system and spin-mass 

relations of meson, preprint NUP-A-78-13, Nihon University, 

Tokyo (1978). 

9. Komar, A.: Constraint formalism of classical mechanics, 

Phys.Rev. Q!§, 1881-1886 (1978); Interacting relativistic 

particles, Phys.Rev. Ql§, 1887-1893 (1978). 

10. Leutwyler, H.: A no-interaction theorem in classical relati

vistic Hamiltonian particle mechanics, Nuovo Cimento 11. 
556-567 (1965). 

33 



11. Leutwyler, il., Stern, J.: Relativistic dynamics on a null 

plane, Ann.Phys. (H.Y.) J...g, ~4-164 (1~78). 

12. Logunov, A.A., Tavkhelidze, A.K.: Quasi-optical approach in 

quantum field theory, J<uovo Cim., ~. 380-399 (1963). 

13. !:Iut ?:e, U. : A no-go theorem concerning the cluster decompoc .; -

tior; properties of di'rect interacti.on scattering theories, 

,J .l.Iath. Phys., ,1;1,, 231-236 ( 1978). 

14. Ri?:ov, V.A., Todorov, I.T.: Quasipotential approach to the 

bound state problem in quantum electrodynamicn, Elem. Chast. 

; Atom.Yad. £, 669-742 (1975). 

15. Rohrc.ich, F.: Relat1vlntic Hamiltonian dynamics, I.Classi.cal 

mechanics, Syracuse Univ., preprint (1978). 

16. Sokolov, S.JJ.: rheory of relativistic direct interactions, 

preprint IHEP OTF 78-125, Serpukhov ( 1978); 

Relativistic addition of direct interactions in the point 

form of dynamics, Teor.Mat.Fiz. 2§., 193-207 (1978), see 

also earlier work by Sokolov, cited in ~hese two papers. 

17. Takabayasi, T.: Relativistic mechanics of two interacting 

particles and bilocal theory, Prog.Theor.Phys., 2i• 563-

577 (1975); Relativistic mechanics of bilocal and trilocal 

systems, Prog.Theor.Phys. ~. 331-332 (1977). 

18. Todorov, I.T.: Dynamics of relativistic point particles as 

a prolJlem with constraints, Conununicat'on of the JUIR, E2-

10125, Dubna (1976). 

19. Vlaev, s.: 'l'he relativistic Coulomb problem for two classical 

spinless particles as a conntraint dynamical problem, 

Diploma work, University of Sofia (1977). 

Received by Publishing Department 
on February 26 1979. 

34 


