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O CyweCTBOBAHHH CHHI'Y/SPHBIX pEIEHHH B KHpAa/bHBIX TeOpHsX

Paccmatpupaerca SU(2xSU(2) ~camMMeTpHtuHas KupalibHass MoNelb
Ans NHOHHOrO mons, PaclHpeHa COBOKYNMHOCThL pelleHH#d NMO/eBbIX ypaBHEeHHH,
HajineHHas B NpemmecTByolleit pa6oTe, NyTeM BKIOHEHHS pelleHds C oco-
6eHHOCTSMH, COCPENOTOYEHHBIMH HA& MHUPOBEIX JHHHSX. MOXHG paccMaTpHBATH
5TH OCOGEHHOCTH KAk MCTOHYHHKM NHOHHOr'O noig. 3TO NO3BoiAfeT NOJy4uThb
pelleHHe HEOOKOPOOHEBIX MOJeBhbIX ypaBHEHHA C HEKOTOpPLIM THUIIOM HCTOYHHKOB
p npocrpaHcTBe MuHKOBCKOTO.

Pa6ora pomonHena B Jla6oparopunm Teoperhueckoit ¢uauxu OUAU.
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On the Existence of Singular Sclutions
in Chiral Theories

The nonlinear SU(2)xSU(2) symmetric chiral model
for the pion field is discussed. We enlarge the family
of solutions to the field equations previously obtained
by including solutions with world line singularities.,
The last can be regarded as sources of the pion field.
This allows one to write down solutions to the inhomo-
geneous field equations with certain external sources
in the Minkowski space-time.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR,
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1,2/
In a recent work "? we have written expli-

citly a large family of finite-energy solu-
tions to the field equations (in 3+1 dimen-
sional spacg—t}me) in the Schwinger-Weinberg
realization™%’ of the chiral SU(2)xSU(2)
symmetry. Let us recall that the Lagrangian
and the field equations have in this case
the form
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The sign 5 = *1 is introduced to distinguish
the cases of the compact (#=+1) and noncompact
(p- -1 chirality ®. Equation (2) can be writ-
ten in the form
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where @' is the Christoffel symbol.



The solutions we have found in /1'8/ can be
written in a simpler form by choosing the
arbitrary function f(z®) in (3) (which speci-
fies the parametrization of the pion field)
to be

f(ﬂ2)=\/F§—~7)172 . (5)
Then to every solution 7(X) of the wave equa-
tion

ar(x) = 0 (6)

there corresponds a five-parameter family
of solutions

7(X) = F‘77 [Acosr(x) + Bsinz(x)] (7)

to the field equations (2) or (4). Here A and
B are two arbitrary constant isovectors
obeying the constraint

2(8% + B5) - (AxB)® - 1. (8)

In the case n=-1both B and s should be pure
imaginary in (7) and (8).

The solution (7) may naturally be cast
in a four-dimensional form by adding to the
isovectors =(x), A’ and B a zeroth component.,
We define in this way the four-dimensional
vectors 1n(X), a8 and b, respectively.

n(x) = acosr(X)+ bsinr(x) (9)
normalized in the flat four-dimensional-iso-

spin-space metric 7 (n =1, n,.. =08,y » 0, =0,
af 00 ab ab 0a
ab - 1,2,3)

n® -1, a®- 1, b2, (10)
Then (8) becomes
ab = 0 (11)

and appears to be a consistency condition for
(10). The isovectors n(x), A and B are three-
dimensional projections of n(x), a , and b,

(X)) = F n. = = j =

mp ()= Eon(x), Ay=a, Bo=b., j-123. (12)
Any two parametrizations of the pion field

defined by the choice of the two functions

f(z°) and (=% are related by (cf.*)
m, =8O 1) = 1 D) (13)

which implies
s~ o~ b =V
fr @7 1@ " (14)

and allows one to perform reparametrizations

of the pion field,
1,27

As shown in , the energy
1 . A
H= P° == per_om a b 143
5 [ 84l axq axg " Va? Vr?®ld%x (15)

which for the solution (7) is

1 e dr \® 2,43
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can readily be rendered finite by the choice
of r(x).

Simple formulas also exist for the isospin
and axial-vector charges
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The aim of the present note is to enlarge
this family of solutions (regular throughout
the Minkowski space) including certain class
of singular solutions and, in particular,
solutions with a singular (world) linevy

7=n(Xy) (19)

which would play in some sense the role of
classical Green’s functions. We mean by this
such functions (19) which upon inserting in
the left-hand side of the field equation,
would give &-functions, 8%3(x —=¢) in the right-
hand side,

In the nonlinear case, however, one should
be careful in attempting to carry over this
type of singular solutions involving distri-
butions. The distributions are inherent in
the linear analysis and are known to be a con-
cept inconsistent, in general, with nonlinea-
rity and multiplication. So it is not quite
clear what should one understand by "left-
hand side" of a nonlinear field eguation.
Should it be (2) or (4), or (2) multiplied
by f82+d—d%2Vf1(n+2thﬂnw for instance, in
which case it becomes

(2 + 1871 (€5, ~2m m )on" + T 53, n%"n ")=0, (20)

Here we propose to use Eg. (20) in order
to give a precise meaning to the point-source
solution (19).
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On the manifold of the functions o©of the
form (7) or (9), with r(X) arbitrary, the
left-hand side of Eg. (20) takes the form
K.,o07(X). If we now choose 7(X) in (7) or (9)
to be, for instance, the static solution

r(x; €) =41[(x—'-§)2]"1/2 (21)

of the equation

0r(%) = ~Ar(®) = 5°(x~¢) (22)
then
n(x; £) = acosr(x; £) + bsinr(x;¢) (23)

will be a five-parameter family of singular
solutions to equation (20) with f(#?) given by
(5). The singularity of such a solution is on
a line parallel to the time axis. These solu-
tions can be cast in a Lorentz covariant form
recovering the unit time-like vector; let us
denote it by (% =1), in (21)

r(x;f,?):?l—f[[’,(x—~§)]2—(x—-§)2§~1/2. (24)
w

Now the world line of the singularity is vy :
(x°, %) =(t, & +tﬁ/?0L

There exists, further, a whole family of
singular solutions, oscillating with time
about the static singular solution, which
can be obtained merely by applying an addi-
tional oscillating exponential factor to (24)

r(x=-&; L,k)= Ly (x—z;-‘)]2 ~-(x-8) ? i"l/zexp ik[€(x~&)~/( (x_g))z_(x_g)z],

4
(25)
The function (25) satisfies the equation
3
or(x) = & (x_§+_;._(x°_g°)9). (26)
0
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The field energy of all these solutions
with the (world) line singularity is infinite
exactly in the same fashion as the energy
of the Coulomb field of a point charge in
classical electrodynamics. They can play,
however, an impocrtant analogous role in the
classical chiral mesodynamics serving to
introduce external sources. If one smears,
for example, (25) by a suitable function

r(x;s,0,k) = f s(f)r(x—-f;?,k)d3§ (27)

on the space-like surface X (let it be X:£{,-0)
one obtaines a family of solutions

m(x;s8,0 ,k)= Fn[Acosr(x;s, ,k) + Bsinr(x: s,?, k)| (28)

to the inhomogeneous field equations

X
n n 4. by 0
gan[Dn +r‘ab8#n a'n ) =p,s(0, x+ [)—0—[7 ), (29)
where
p, = 85— pat et (e 21N m 1K (30)

To complete the analogy with classical
electrodynamics one should establish the
analogue of the Lorentz force. It would de-
termine the action of the field on the singu-

larities and govern their motion (world lines).

Then one would have a coupled set of equations
for the field and its sources.,
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