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EHHKOBa M.M., KapnyKaBCKH B.H. E2- 12257 
0 cymeCTBOBBHHH CHHrynS!pHbiX pemeHHH B KHpanbHbiX TeopHSIX 

PaccMa TpHBaeTCSI SU(2)xSU(2) -cHMMeTpH"!HaSI KHpanhHaSI MOAenb 

AnSI IIHOHHOro rrong, PacmapeHa COBOKYIIHOCTb pemeHHH noneBbiX ypaBHeHHH, 

H8HileHH8SI B rrpeA!UeCTBYJO!Ueli pa6oTe, nyTeM BKnJO"leHHSI pemeHHSI C OCD-

6eHHOCTSIMH, cocpeAOTO'IeHHbiMH Ha MHpOBbiX nHHHSIX. Mo>KHO paccMaTpHB8Tb 

3TH OC06eHHOCTH KBK HCTO'IHHKH IIHOHHOr'O nang. 3TO II03BOnHeT IIOny'IHTb 

pemeHHe HeOilHOpOilHbiX rroneBblX ypaBHeHHH C HeKOTOpb!M THIIOM HCTO'IHHKOB 

B npOCTp8HCTBe MHHKOBCKOr'O. 

Pa6oTa BbiiiOnHeHa B Jla6opaTapHH TeopeTH'!ecKoli <\>H3HKH OH.HH. 

Coo6meHHe 06'bellHHe~HHOr'O HHCTHTyTa SlllepHblX HCCneAOBBHHll, Lly6Ha 1979 

Enikova M.M., Karloukovski V.I. E2- 12257 
On the Existence of Singular Solutions 
in Chiral Theories 

The nonlinear SU(2)xSU(2) symmetric chiral model 
for the pion field is discussed. We enlarge the family 
of solutions to the field equations previously obtained 
by including solutions with world line singularities. 
The last can be regarded as sources of the pion field. 
This allows one to write down solutions to the inhomo
geneous field equations with certain external sources 
in the Minkowski space-time. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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I n a r e c e n t w o r k /l '
2 

/ we have w r i t t en ex p l i -
citly a large family of finite-energy solu
tions to the field equations (in 3,1 dimen
sional space-time) in the Schwinger-Weinberg 
realization

13
•4/ of the chiral SU(2)xSU(2) 

symmetry. Let us recall that 
and the field equations have 
the form 

the Lagrangian 
in this case 

and 
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( l) 
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( 3) 

The sign 7J =, ±1 is introduced to distinguish 
the cases of the compact <r1·= + 1) and noncompact 
(r1 - 1) chirality ,'5/. Equation (2) can be writ
ten in the form 

0 i7 a 1 r a a 7Tllld 1177 ll ~ 0 
lllll IL ' ( 4) 

a 
where ~'mn is the Christoffel symbol. 
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The solutions we have found in /1,2/ can be 
written in a simpler form by choosing the 
arbitrary function f(rr 2 ) in (3) (which speci
fies the parametrization of the pion field) 
to be 

2 2 2 
f(rr ) = vF 

77
- TJ1T ( 5) 

Then to every solution r(X) of the wave equa
tion 

Dr(X) = 0 

there corresponds a five-parameter family 
of solutions 

(6) 

rr(x) = F [Acosr(X)+ Bsinr(x)] (7) 
1T 

to the field equations (2) or (4). Here A and 
B are two arbitrary constant isovectors 
obeying the constraint 

2 2 2 
TJ(A + B ) -(Ax B) = 1. ( 8) 

In the case TJ =-1 both B and r should be pure 
imaginary in (7) and (8). 

The solution (7) may naturally be cast 
in a four-dimensional form by adding to the 
isovectors rr(x), A,' and B a zeroth component. 
We define in this way the four-dimensional 
vectors n(x), a, and b, respectively. 

n(x) = acosr(x) + bsinr(x) ( 9) 

normalized in the flat four-dimensional-iso
spin-space metric Tla(3 <., 00 = 1. 1'/ab = TJOab , 1'/oa = 0, 

a,b = 1,2,3) 

4 

n2 1. a 2 2 1, b ocl, (10) 

Then (8) becomes 

ab ~ 0 ( ll) 

and appears to be a consistency condition for 
(10). The isovectors rr(x), A and B ar.e three
dimensional projections of n(x), a , and b, 

TT (x) ~ F n. (x), A. ~ a , B. = b. , j ~ 1,2,3. 
J TT J J J J J 

( 12) 

Any two parametrizations of the pion field 
defined by the choice of the two functions 

2 - -2 /4/ 
f(TT) and f(TT ) are related by (cf.' ' ) 

- 2 - -2 2 2 TTa =TTac:/>(TT ), f(TT )c f(TT )cf>(TT) ( 13) 

which implies 

- - 2 - 2 -1;2 2 2 -~~ 
f ( 77 )( TT ) co f ( TT )( TT ) ( 14) 

and al~ows one to perform reparametrizations 
of the pion field. 

As shown in '1,2 
' 

the energy 

a b 
H = po =__!_ fgab[-(!rr___i}!! __ t VTTa VTTb]d3x 

2 dxo axo 
( 15) 

which for the solution (7) is 

1 2 ar 2 2 3 
H =-TJF ([(---) t-(Vr) ]d X 

2 TT ax0 
( 16) 

can readily be rendered finite by the choice 
of r(x). 

Simple formulas also exist for the isospin 
and axial-vector charges 
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3 
V ar_d X, 

Qa =Jar axo 
A ar 3 

Q = K f --d X, 
a a axo ( l 7) 

where 

K = (a 1\ b) c oc' 
1 J =-f (aAb) , 

c 2 cmn mn 
(18) 

The aim of the present note is to enlarge 
this family of solutions (regular throughout 
the Minkowski space) including certain class 
of singular solutions and, in particular, 
so 1 utions with a singular (world) 1 ine y 

"= "(x; y) ( 19) 

which would play in some sense the role of 
classical Green's functions. We mean by this 
such functions (19) which upon inserting in 
the left-hand side of the field equation, 
would give o-functions, o3 (x -~) in the right
hand side. 

In the nonlinear case, however, one should 
be careful in attempting to carry over this 
type of singular solutions involving distri
butions. The distributions are inherent in 
the linear analysis and are known to be a con
cept inconsistent, in general, with nonlinea
rity and multiplication. So it is not quite 
clear what should one understand by "left
hand side" of a nonlinear field equation. 
Should it be (2) or (4), or (2) multiplied 
by fo~+(f-2"2 f')- 1 (7]+2ff')"a"c• for instance, in 
which case it becomes 

(r1rr
2 +f 2)- 1 (fo -2f'rr rr )[D77n+I'anba "aaiL"b]=O, (20) 

en n c JL 

Here we propose to use Eq, (20) in order 
to give a precise meaning to the point-source 
solution (19). 
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On the manifold of the functions of the 
form (7) or (9), with r(x) arbitrary, the 
left-hand side of Eq. (20) takes the form 
Kcor(x). If we now choose r(x) in (7) or (9) 
to be, for instance, the static solution 

1 2 -112 
r (x; ~) = - [(x- ~) ] ( 21) 

477 

of the equation 

Dr(X) = -flr(X) = o3 (x- ~) ( 2 2) 

then 

n(x; ~) = acosr(x; 0 + bsinr(x;~) ( 2 3) 

will be a five-parameter family of singular 
solutions to equation (20) with f(" 2 ) given by 
(5). The singularity of such a solution is on 
a line parallel to the time axis. These solu
tions can be cast in a Lorentz covariant form 
recovering the unit time-like vector; let us 
denote it by P(P 2 =1), in (21) 

1 2 21-% r(x;t,r>=--l[f,(x--~)] -(x-~) . ( 24) 
- 477 

Now the world line of the singularity is y: 
(X0

, x) ~(t, ~ + tC/P 
0

). 

There exists, further, a whole family of 
singular solutions, oscillating with time 
about the static singular solution, which 
can be obtained merely by applying an addi
tional oscillating exponential factor to (24) 

1l 2 2-lh 2 2 
r(x-~; P,k)=-- [P (x-eJ -(x-.;1 ! exp ik[f(x-~)-y(P(x-~)) -(x-~) ]. 

~ (25) 
The function (25) satisfies the equation 

Dr(X) = o3 
(x- ~ + _!._ (x 0 - C>P ). ( 2 6) 

fo 
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The field energy of all these solutions 
with the (world) line singularity is infinite 
exactly in the same fashion as the energy 
of the Coulomb field of a point charge in 
classical electrodynamics. They can play, 
however, an important analogous role in the 
classical chiral mesodynamics serving to 
introduce external sources. If one smears, 
for example, (25) by a suitable function 

3 
r(x;s,f,k) = ( s(,;:)r(x-e;P,k)d e ( 2 7) 

l 
on the space-like surface 2 (let it be l:,;:-

0
c0) 

one obtaines a family of solutions 

IT(x;s,P ,k)= F [Acosr(x; s, ,k) 1- Bsinr(x; s,r, k)] 
IT 

to the inhomogeneous field equations 

n n a 1 b Xo 
g [ 0 IT + r b J IT cJ I IT j ~ p S ( 0, X t -- f ) , 

an a 11 a p 
0 

where 

-1 c 2 2-1 c 
Pa = f [oa- (ryiT d ) (rp 2ff')IT ITa] K c. 

( 28) 

( 29) 

(30) 

To complete the analogy with classical 
electrodynamics one should establish the 
analogue of the Lorentz force. It would de
termine the action of the field on the singu
larities and govern their motion (world lines) 
Then one would have a coupled set of equations 
for the field and its sources. 
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