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1. INTRODUCTION

The idea of quark structure of hadrons increa-
singly penetrates the modern physics of elemen-
tary particles. A lot of important results have
been obtained within the nonrelativistic quark
model which is essential at the early stage of
consideration of many problems (e.g., charmonium
spectrum) .,

The relativistic quark models describing form
factors, magnetic moments of composite particles
typically make use of four-dimensional covariant
equations of the type of Dirac’l or Bethe-Salpe-
ter equations 72/,

However, the four-dimensional generalization
of the nonrelativistic theory meets with failure

in describing the system of particles. For instance

two-particle wave function of the Bethe~Salpeter
equation (compared to the nonrelativistic one)
contains an extra dependence on relative time
that makes its probabilistic interpretation a bit
trickier.

A consistent elimination of the relative-time
dependence of the wave function (WF) of a two-
relativistic-particle system is achieved in the
Logunov-Tavkhelidze quasipotential approachm/
in which the equations for WF are three-dimensio-
nal (like the Schrddinger equation in momentum
space) .

Our aim is to construct the three-dimensional
formalism for describing form factors of two-
particle bound systems. It should be noted that
in that construction of relativistic theory it
would be desirable to keep close analogy with
nonrelativistic theory. This would allow one to
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"relativize"”" many results obtained in the nonre-
lativistic quark model.

The description of form factors of composite
systems on the basis of the Logunov-Tavkhelidze
relativistic gquasipotential equation was consi-
dered in several papers’45/. In this paper we use
the variant of the three-dimensional approach
based on the covariant Hamiltonian formulation
of quantum field theory proposed by Kadyshevsky
The equations obtained in that approach in momen-
tum space may be transformed to the form of a di-
rect geometrical generalization of the relevant
nonrelativistic equations (see’89/ ),

The paper is organized as follows: In Sec. 2
we discuss the main features of the diagram
technique appearing in the covariant Hamiltonian
formulation of field theory. In Sec. 3 we derive
.the three-dimensional relativistic equation for
the vertex function and find its connection with
that for the quasipotential wave function. In
Sec. 4 we obtain the expressions for the form
factor of the system through equal time two-
particle {(quasipotential) wave functions both
in momentum and relativistic configurational
representation. An explicit expression for the
form factor is found for the case of two-particle
interaction through the Coulomb potential,

/6,77

2. THE DIAGRAM TECHNIQUE
OF THE HAMILTON FORMULATION
OF QUANTUM FIELD THEORY

The main difference of the Kadyshevsky diag-
ram technique/GZfrom Feynman’s technique is as

follows: in Feynman's technique all the momenta of
particles in the intermediate state are off the
mass shell(virtual particles) ,but at each vertex
the conservation law of energy-momenta holds;and

on the contrary,in the Kadyshevsky approach the mo-
menta of all particles are on the mass shell*, but

*Just this circumstance ensures the three-
dimensional character of integrations in the mo-
mentum space.

4

each vertex contains extra incoming and outgoing
lines of quasi-particles-spurious transporting
additional 4-momentaAr and Ar’* (see Fig. 1).

Fig. 1

The 8 -matrix can be represented according
to’6/ as follows

S=1+iR = Texpi{- [H(x)d*x}, (2.1)

where H(x) is the Hamiltonian density in the ex-
pansion

-1
R =D i" JOG g%y 0G5 %0) 6 5% ) (2, 2)

xHex OHxy) . HE da*x dtx, .. dtx

n -

The 0 ~functions in (2.2) can be given the mani-
festly covariant form’® because for time—lige
intervals (where they are important) (x; —%;,{)°>0
the following equality always holds

0(%ip —Xip10 I=0( (x5 =% 41 ), (2.3)

2 /6,7/
*AM is the unit time-like vector,hg—h =1.



with
A >0, A =1,

o

Using the integral representation of 0 -function

1 eiT(/\x)
O(Ax) =
) =g I = > dr (2.4)

and passing to the Fourier transform of the Ha-
miltonian density

Hp) = [ e ™ H(x)a x

we get

n dr dr

R =D [ H(-Ayr )o ST H(A 7 A r )@

n 1 2a (r, —1¢) oy '2)2n(r2_ie)
(2.5)

dfn,__l

“'2”(’n_1 s H " ne1 )

. 4 )
Like in 64 formula (2.5) can be obtained by itera-

tion of the integral equation

RO ==HAr) - [ K(ar-a r)—82" _ rr )

7 {r'-ie) (2.6
provided that
- SR -
R = .;;1Rn_R(0)‘ (2.7)

Based on eq. (2.6) one can formulate the diagram

technique rules following the Prescription of
/6/
ef. .
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3. EQUATIONS FOR THE VERTEX FUNCTION
Consider the R -matrix element obeying eq.
(2.6) ,<ky, kg |[R(A7)||? ,M5,J=0>. Define the vertex
function F@(krkz;Ar) by
<Ky kg [ROA| P M 7205 = @n) 6@ (Pak —k. <Ar) x
172 > BrY T - 1 2
(3.1)

x x I'p (k .k, ;A7)

V 2Kk giRKkyg - 2 9

- Then, using the operator equation (2.6) with fixed

A and making calculations in analogy with those
in/? in deriving the two-particle equation for
the scattering amplitude, one may derive the
equation for the vertex function (an analog of

eg. (3.27) in’" ) which is equivalent to the
Edwards equation in the Feynman-Dayson formula-
tion of quantum field theory (we consider spin-
less particles):

1 L 4., .4, ), , .,
F?(kl,kz;)\r)=(37s3fdr d kydky-A (kym o)Ak, my)x

X o V(R kAT TRk A7) < (kg kg AT ) x (3.2)

~1¢€

x 8@ (P_xy-ky A1),

AP (km)=0(k ) 6KE-m? ),

where m; is the mass of an i-th particle. In what
follows we shall take the 4-vector AF as*

$ 9
A#= K =%-y—; (3.3)
\/3)2 M )

* The choice of the 4-velocity vector Ay= QL/M
of a composite particle as A# is for the

reasons of convenience and simplicity of

. /10 /
subsequent calculations. In ref. 10,11 ve;to; A#
was taken belonging to the light cone: A =X, -

X% -0,



With the help of the spurious diagram technique
eq. (3.2) is represented in Fig. 2. The composite
particle has the momentum ?ﬂ, spin J=0, solid
lines are the constituents of the composite

Fig. 2

particle, transferring the momenta ki .,k (k7.kg),
dotted lines are quasiparticles-spurions. The
trapeziform block of diagrams in Fig. 3 corres-
ponds, by construction of eq. (3.2) (also (3.27)
and (4.14) in ref./7/ ), to the sum of diagrams
irreducible in the sense of one—spur}%n and two-
particle cuttings. According to ref, »a block
of this type will be considered as a quasipoten-
tial.

Putting the masses of constituents equal
m, =my,=m, We rewrite (3.2) in the form (Aﬂ=fn/m

- 3~
a3k a“k;
Fg,(kl,kz;xr)=__lr_.fdr'.____1___. 2 .7,1' X
2r)°.4 2,22 2.2 ~ie
< ' Vm2+k’® VmPik 0 (3.4)
. P PR ) r’ , ,
xV (ki Mk kg ar )T (kG kg 5Ar7). 8 [(1— _“’r)?-k1 -k 1.

Next we use the property of the invariance under
the Lorentz transformation |, of the integration
measure dQ, on the mass hyperboloid

2_pe 2
kO k =M (3.5)

K a3k

dQ = =
S = : (3.6)
V1+k2/m® V1:k’2/m?

where k’=Lk.

The group of motion of surface (3.5), which is
a model of the Lobachevsky space’/89/, is the Lo-
rentz group. Consequently, vector k’=Lk,resulting
from k by a certain Lorentz transformation L,
also belongs to the Lobachevsky space * If the
L is taken to be the pure Lorentz transformation
(boost)A;l, corresponging to the 4-vector of
velocity A,: A;15%=(M,0),then we get

dQ, =dQ , ' .7
k=9, (3.7)

where Ay 1\ is a vector of the Lobachevsky
758,912/

~1 K
space k'm)‘)“=(A/\k).
> - - T KX
k™ Aa K =KEImA -k~ Ak 14 A a (3.8)

-~1 M >
A= (AN =k, A" = kA, - kA

The invariance of & -function in (3.4) allows
the following its representation:

@) ’ f s @ R T k) )=
8 1A= TP -k ~kg1=8" (A= L)AL P-AY (k4 k) -

(3.9)
“5[M=r'-A°, _A°, 1.6@) (A A, ).
( T kl,m/\ k2,m)\ ( ki JmA kg’m'\
Allowing for (3.7) and (3.9) eq. (3.4) is
transformed to the form
d9A .
Iy (k k_;Ar)=—1 - f ki md
P e ©@r)3.4 A°
)" k7 mA (3.10)
x ! V (ke K]k 3ide) T (kg 3Ar”)
A°, [IM-2A°, _-iel
k{,mA k7 .mA

* For details see refs/®?.



where 7’ according to (3.9) is defined by

T'=M- 2A°1'm)‘ (3.11)

and ki and ké in the r.h.s. of (3.10) are connec-

ted with the parameter of integration Ak, %
"

1 k

k’ =AA -A 'l,m)\ =Ak’1,mA (+)m)\

(3.12)
ké =A)\ .Aklz,m)\zA)\.(_Ak A) ( A )‘)("’)n")‘

At this step, the following note should be made.
The parameter 7’ given by (3.11) is an invariant.
This follows from the invariance of A mAunder
the Lorentz transformations that is seen directly
from (3.8).The invariance of A% ‘mACan also be es-
tablished from the fact that the vector A (k andPp

are some four—vectors,k2=p =m? ) under the Lo-
rentz transformations suffers only the three-
dimensional, Wigner rotation’%/, To see this, let

k'’=Lk ,p’=Lp; consider Ak’p’
2 *—-1 1
A . =(A", = .L. . =
v = k=07 Lk (AL LAy Ay ) 13

=V(L,p').5kp

where V(L,p’) is the Wigner rotation matrix defined
by the relation V(Lp)=UAIJ A-IV The invariance
of 7* can be made more manlfest by rewriting
(3.11) as:

- , . \2
=M-—Vsk, , where SK=(k1+k2)~ (3.14)

Note also that for arbitrary vector A the para-
meter 7° is defined as follows:

rr=A (P -k - VIA(F-k DI +2(P k) -ME . (3.15)
10

The vertex function HP(k Ky AT) is represented
by a four-leg diagram, but with two externalfPo—
menta collinear in virtue of our choice A =

For the bound system of two spinless partlcles
moving with the zero relative orbital momentum,
J=0, (see, (3.1))nﬁklk2;A1) may depend only on
the Lorentz scalars

PZM®, k2-kZ-m? (Ar)2=72 .

(3.16)

k.- k

ki Fry=MQk;), Pky=MQAky), A.7.

However, as all the momenta are on the mass

shells andA, =-£, and AP = VM only four parameters,
T k, -k, , Pk ,?*2are essential® From the col-

,
linearity of A# and ?# and conservation law

P-rr-k -k, =0 one may easily derive three in-
dependent relations for these four parameters:

_r :\/(k1+k2)2 =v2(n® + k;k,)
——— (3.17)
P. k. - Pk, ; S‘.klzm\/_m___;_k_x_iz__

So, the vertex function I'p(k;.ky ;A7) for x|l ®
depends only on one scalar parameter. That is the
main difference (and certain advantage) with
respect to the parametrization of wave functions
of relativistic systems through the light-cone
vector Az_A% X2-0 considered in ref./!%” what re-
sult51n“0/n the dependence of a wave function on
an additional variables.

*We will however keep, for analogy with quan-
tum mechanics, the dependence of the wave func-
tion on parameterV =M , eigenvalues of the Ha-
miltonian in the quasipotential equation (3.10)
(see also (3.22)). In the nonrelativistic limit
WM(r) . WEq (r)/5,8,9/ .
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As an independent variables we choose ?-klz

N o : .
=MA11,mA? =MAk1,Jﬁ-? and introduce the notation
. — C
Ty (k, .k, ')")=FM,J=0(Ak1,mA)' (3.18)
Y A .92 2—1 . y s ey
V(Ak1,m)\ 'Ak{ ,mA %) =(m® Vik kyiAr[kRG0M7) (3,109)

(factor (4m?)"! is taken for the purpose of the more

direct analogy with the nonrelativistic formalism)
so that for J=0 the vertex function Iy 720(4°%) will
obey the following equation '

FM,J=0 (Ai,m)\ )=

o 3.20)
,J=0(Ak’,m)\)(

> > > 2
L BA ey VA A P,
@m°~ m1A° m—iAok',m«\ Tw-2as, ic] .

It is not difficult to establish, up to a factor,
the connection between the vertex function and
the quasipotential wave function considered

in’/?%8/  Defining
I, g (AS )
M,J=0 ‘2 k,mA
lpM,J=0 (Ai,m)\)= 9372, 1o . 220 ] (3.21)
R M

from (3.20) we derive the equation for the wave
function in terms of invariant variables *:

AO
kmd (M—2ac )W gAc )
m k,mA M,J=6 k,mA ‘"~
(3.22)
_ L _ g VAL A PHY  (as, )
@m? Aima” kmA T md 7T T M =0 Tk mA
. /77
found earlier in ref. with other parametrizing

variables (3.15).

*In a different way this equation was deduced
in/5,12/.
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4, RELATIVISTIC FORM FACTOR OF COMPOSITE SYSTEM

Consider first the simplest case with the fol-
lowing Hamiltonian density:

H(x)==z; - () ()A(X) =250 5 (x)b, (DA(X). (4.1)

All the fields in (4.1) are spinless. Earlier, in
paper/m, following the results of ref./* the form
factor of a composite system was defined as a mat-
rix element of the current local operator between
bound states in terms of the quasi-potential wave

functions satisfying the Kadyhsevsky equation (3.22).

In contrast to the four-dimensional Bethe-Salpeter
approach in which the wave function depends on

two times, in the quasi-potential formalism the
composite system is described in terms of one time
variable, proper time of the system T=T/M(x1+x2y4{
It is clear that before and after the photon ab-
sorption the two-particle system has different mo-
menta ? and ?’ and, correspondingly, different pro-
per times

T=AX, 7’20 X (X=X +X,, A=P/M, A'=9°/M). (4.2)

In the quasi-potential approach, based on equating
proper times, the wave function obeys equation

(3.22), written in the same variables as in °’, and,
hence, for the same quasipotentials it coincides
with (3.21). Then, to the expression for the cur-

rent matrix element found earlier in’%® we may as-
sociate the invariant expression

<P IO P> =z, (91 )gfdrdr’d4p a*k a4k’ . AMp,m) x
T
'xF%?(mkﬁA’ﬂ) -————l——————-Qp(Pk;AT)X (4.3)

(r’+ ie)(r —ie€)

< A ) AP m) 6@ (P —pok—Ar) 8 DD/ _p-k’A 7)1 (1 52)..

which graphically is defined by the diagram in
Fig.3*,

* Let us emphasize that because of the different
proper times of a system before and after interac-
tion the diagram in Fig. 3 differs from those
arising in the Kadyshevsky formalism for S-matrix
with fixed A .
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Fig. 3

Calculations analogous to those of the pre-
vious section yield the following invariant ex-
pression for the current between states with J=0-

3—)
<P130)] P> = —zLa I —4r
an) Vm2+p? (4.4)
rt o (A ) r (A° )
< M, J=0 " p,mA . M, J=0 p,mA + (15 2).
o] — o] Lol _ o
Apymx[M 2Ap’m)‘,] Ap'mA[M 2Ap,m)\]

Due to the scalar nature of the current we can
define (in our case J=0 )

<9 130)9P > = F(q? ), (4.5)
with
Q® = (P -9 . (4.6)

In terms of the quasipotential wave function
given by (3.21) we obtain the following expres-
sion for the invariant form factor

Z +2 da3p +

=]
'WM,J=0 (Aop,m/\')'\PM,J=0 (Ap,m)\)' (4.7)

@2r)3 \/_'m2+52

14

For simplicity we consider the elastic form
factor, i.e.,V?ﬁ?=V?'2=M.

For further transition to the relativistic
configurational representation introduced
in’89/ let us rewrite (4.7) in a somewhat dif-
ferent form. To this end, we write allowing
for (3.14)

> _ _?1 no —:_1_—_—_:’ B , _:-1—_———’
Ap,m)\"AT’ P—/\g), -A? Ap,m)\ —V(A?,? )-AAEP’EPApymA, (4.8)
where
-1
A?,’?sAgyﬁ):?(—)fP, (4.9)

2 2
The 4-momentum transfer squared,g®=t«(P-P), is ex-
pressed in terms of the momentum transfer in the
Lobachevsky space (4.9) as follows’8:9/

t=(P-9P)? =2M2_2M\/M2+S§,,J, =2 M(M-A (4.10)

[}

9.9 ).
Therefore, form factor F(t)=F(g®) can be regarded
as a function of invariant variable& 9. With
(4.8), the form factor (4.,7) may be represented
as a convolution of yave functions in the Lo-
bachevsky space

32

- d A A +
F(A%,p )= 21t 22 — A
TP e Jnnae M0 (4.11)

p.mA

x([Ap,m)\ =) %A?'? ]o).wM,stAoPJ“A ).

Now let us find the form factor in the relati-
vistic configurational representation (RCR) (see
discussion in’/1%/ ) expanding, after /897, the
wave functions over the functions which form
complete and orthogonal system on the mass hyper-
boloid:

15



o A g :
7) = (pmAZlpmAct =isim (4.12)
o .

r=rnd ; n2=1; 0<r<o .

These functions have been obtained in’14/ and
realize the principle series of unitary irredu-
cible representations of the Lorentz group/m/

For local quas1potent1alV(Akm)‘()Ak mA’? ) eq.
(3. 22) in RCR takes the form/197;

Ho - (-2 ) ¥ (D =V, 95w (@), (4.13)

where the free Hamiltonian operator satisfying the
condition

Ho€(R.1) <A &R .T) (4.14)

is a finite-difference operator/&g/

- A .
- L.t i _0.¢ i _9a_
H, mch( )+ sh(d ar —) p_— exp ( - Ir ) (4.15)

( A6'¢is the Laplacian on sphere).

Using the "addition" theorem’/8.14/ for the
"plane waves" (4.12) (see footnote on page 18 )
we express the form factor in terms of the guasi-
potential wave functions in RCR:

A, o )= (2,4n) [@REB Ry o DY, DI .16

For the S-state of a composite system, we con-
sider here, (4.16) yields

2
F(A Z. +2 ) —— .47 r2dr Sinrmy M. (4.17
(5,5,)(+)y Of e ¥y po O (4.17)
A2 ¢
where y =Arch At =Arch(l- —) is the so-called
M 2M2

rapidity corresponding to the transfer momentumt.

16

Formulae (4.16) and (4.17) are the relativistic
generalization of the expression for the nonrela-
tivistic form factor in [ -representation. They
were found in a different way in ref,/16/,

Now, let us analyze the vector photon coupling
case. For the electromagnetic current matrix
element we get following (4.2)-(4.7)*

3—)
d +
3 P .y A° R
(2r) y m2+§2 M,J=0 p,mA

(4.18)

g
<[ s 'Ag,m)\' +‘})'Aop,m)\

M =Pl ¥y g0 (A% a )

The invariant form factor F(t) will be defined by

CF(t).
4 (t) (4.19)

In virtue of the relation

"AS A P .A°
(P '+, -« 7N -p) =

* M

.9 o o
= M———(A A'+A;)mh ), (4.20)

2(9.9)=2m%~1 , (5"+?)2‘ ~4M2 -

the current {4.18) yields

2 _ 2(z zZ 37
F(t)- M=t | (1+32) N S
M(4M 2-t ) @n) Vm?4+p2 (4.21)
+
p o . o . A°
* T M,3=0 (Ap.m?\' )(Ap.m)\' +Apjm)\ )-¥ M,J=0 ( p.m A

* For real wave functions the current (4.18)
obeys the condition of transversality

(P=PF <P |3 d¥>=0 17



Then, using the method resulting in (4.11) we
obtain

2 Z . +Z ds/i’ A
F(t)gF‘(Asz,fP )= 4’M 2—2t R ; 32 . f:'m X
MdM2-t)  (27) vm? +A% (4.22)

p,mA

+ - I ° P > o ° o
x‘PM’J=0([Ap.mA(—)%A§,,?] )-[(Ap’mA(—)-%A?,? RV I S G

Now we will transform (4.22) into RCR. To
this end we represent the integral (4.22) in
terms of the quasipotential wave functions in

RCR

->

a3A S as S S R R
f——rt P__’m)‘_7d3r1.d3r2..f(Ap'nﬂ(—)ﬁA?,? ;‘1)"5*(Zp,m)\ iTy ) x

oA (4.23)

e m 2 + - ind
X[(Ap.m(")‘M‘AS"S’)O* Aop,m)\ ! 'lPM,J=0(r 1 ) lPM,J=0 (rz )

With the relation (4.14), (4.23) can be rewritten
in the following form

pmA 43> 482 oy { *
[t a3 aOF, L HH | +HY

(4.24)

> > - = + > =
€A O g Bgugit DEXAL Lyt )Y DY ).

Using the "addition" theorem for "plane waves" *

*The possibility of applying in (4.24) the
addition theorem follows from the dependence
of ¥y j.0@) on the modulus of the "relativistic
coordinate" r.

N > =y > Rl _m_* s
fd&)?l f(Ap,m)\ (_)%A?,? yr)‘fdﬂ)_ﬁ‘f(Ap mA'r)‘f ( M A?/? ,l')

18

their orthogonality and Hermiticity of the opera-

tor of free Hamiltonian, Hy 17 (17) we get
22 4M2—2t
F(t)EF(A?,? ) = (z +2 ) x
mM(4M2 —t ) ro=
(4.25)
2 TER(DA 0.t @ h F:
x2Re [ Pr¢ (WB9-9 - Wy ;0@ Hy ¥ ().

Since in the considered case of § -wave the wave
function depends only on the modulus of the ra-

dius-vector, I, the expression (4.25) takes the
form

N 2
F(A% )= AM” -2t e =Y 8a(z,+z,)
mM(4M2 —t ) shy
(4.20)
x Re °'° rgdr—s-ill”n_y_.‘ll+ .ﬁrad .
J — MJ:O(” 0 WMJ:O(IX
where
AO
y=Arch(1 -t/2M? )=Arch 2P (4.27)
M

124 _penci. 9y, i i g

0 me (m e )+ " sh(n[1 3: ). (4.28)

Consider a particular case when V(r) is the at-
traction Coulomb field

2
e
V() =-—. (4.29)

The ground state wave function which is a solution
to eq. (4.13) with quasipotential (4.29) has the
form/16/

y (0=cmmhe_mm“ ; M=2mcosx, (4.30)
M,J=0

19



where x| is defined by the condition of quanti-
zation

e?

——-;i—n—2;——-=n; ﬂ=1,2,3.... B (4.31)
n

Inserting (4.30) in (4.26) yields the form factor
in the form

> 2 sinx 2x_cos X
GO R A A ki NS PR
l1+chy shy 4x” +y (4x5 +y~)

t
For large transfer momenta ‘|t|> M%, yzlﬂ(%fgl

and the form factor has the following asymptotic
behaviour

I 1
F{t)=F (A )~ . (4.33)
©=FA5.g t-(lt]/ M2)

Note that in the nonrelativistic theory (where

my =A_ = |@-K) | ) with the Coulomb potential
cl.
the fo#m factor falls off by the dipole law:
o9 1 1 /18/ . .
F(A 3~ that contradicts the predic-
Eucli

R o1, -2
tions of g?ﬁénsional quark counting rules
whereas formula (4.33) is consistent with the
predictions of dimensional analysis for two-body
systems/“/

/19/

5. CONCLUSION

In this paper, we have developed the three-
dimensional covariant approach for describing the
form factors of relativistic systems within the
covariant Hamiltonian formulation of quantum
field theory proposed by V.G.Kadyshevsky. Let
us summarize the main steps and the results ob-
tained.

/16/
*In this connection see also paper
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l. For describing the currents of composite

systems on the basis of the Hamiltonian formalism
we have applied the rules of spurion diagram
technique offered in 76/,

2. In the framework of the Hamilton formalism
and spurion diagram technique of Kadyshevsky
we derived the equation for the vertex function
(3.10), (3.20) (an analog of the Edwards equa-
tion) in which momenta of all particles are on
the mass shell. The link between the vertex
function and quasipotential wave function is
established by eq. (3.21).

3. For the Coulomb interaction we have ex-
pressed the form factor of a two-relativistic-
particle system in terms of vertex and qgquasipo-
tential functions, (4.4), (4.25), (4.32).

The difference from the corresponding non-
relativistic expression is that the relativistic
form factor possesses the asymptotic behaviour
consistent with dimensional quark counting ru-
les’/19/ predictions.

The authors are deeply grateful to V.G.Kady-

shevsky, V.A.Karmanov, R.M.Mir-Kasimov and R.N.Fa-
ustov for useful discussions.
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