COOGUEHHA
0OBELHHEHHOTD
WHCTHTYTA
_ ALEPHbIX
MMMIHMMMF HCCABAOBAHMM

AyoHa
L340 -39

E2 - 12100

P.Exner

(Y7 /a,- +9
BOUNDED ENERGY APPROXIMATION
TO AN UNSTABLE QUANTUM SYSTEM

1979




E2Z - 12100

P.Exner

BOUNDED ENERGY APPROXIMATION
TO AN UNSTABLE QUANTUM SYSTEM



Ixcuep L. ' T E2 - 12100

Dpeprerrieckoe NMpuGRAXKeHEe XPH ONHCAHHYE HecTAGHARRBIX
KBRBHTOBHIX CHCTEM

B pamgax ofmerc KHHeMaTH4YeCKOTO Moaxoaa X ONWCAHAID HecTabullb-
HEIX KBAHTORBIX CHCTEM HCCAedyeTcCs npubiukende Npu NMOMOIHK TaK HA3h~
BAEMbIX COCTOSHHI C OCpaHHYEHHONR 3HeprReil ToryaeHn NPUGIHKEHUT qBHC=
rro $HANUECKOr 0 JHAYEHHS AAd [POCTPAHCTBA cocTORHRT, PeAyHHpOBAHHOTC
FBONIOLYOIHOTC ONepaTopa, 34KOHOB pachnana H APYTHX XAapaKTepHCTHK HecTa-
GUALHOR CHCTeMH, PedylbraTe [NOKA3LIBAWT, HTO H3BECTHLE TPYAHOCTH
€ NORYPpYNnoBblM YCIOBHEM Beiicrkonde— Burdepa fBIRIOTCA HECYUECTREH—

HbIMH.

Pa6Gora pempisensa B JlaGoparopuud TeopeTHHeckol (HIMKH OH AN,

Coofmenne OObelHHEHHATO KHHCTUTYTA SAEPHBIX wccnenosaruit, [yGra 1979

Exner P.. E2 - 12100

Bounded Energy Approximation to an Unstable
Quantum System

) An approximation using the so-called bounded energy
states is studied within the frameworkof general kinemati-
cal concept of unstable quantum systems, Approximations
of a clear physical meaning are obtained for the state
space,reduced eveclution operator,decay laws and other cha-
racteristics of the unstable system.The results show that
the well-known troubles with the Weisskopf-Wigner semi-
graup condition are not essential.
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1. INTRORDUCTION

The guantum kinematical concept of unstable
systems represents itself a matter of interest
for a lonz time, Most attention has been paid to
the time evolution. The usual Weisskopf~Wigner
description gives a simple universal framework in
which the dynamics of decays can be studied. It
impeses, however, the semigroup condition on the
reduced evolution operatorj it is well-known that
such an assumption and some analogous conditions
lead to total llamiltenian I§ contalning the whole
real axis in its spectrum — see, e.g., ‘1764 The
semigroup condition (or WW~condition) may he
thus regarded only as an approximation.

The deviations are probably negligible frow
the practical point of view, Let us mention some
related results. Tt was recognized twenty years
ago that the decay laws corresponding to semi-
beunded H Tave a power-like asymptotiecs for
fw~. In reatistic physical models, however, this
effect takes place at > 10 lifetimes and thus
it cannot be tested experimentally - ef., e.g.,” %
On the other hand, the initial decay rate was
shown to be zero for finite encrgy states /10,11
This quantity is not directly measurable, but
a behaviour of the decay law for swall t  1is
interesting, especially 1f one assumes an unstable
system suffering from frequently repeated measu-
rements 1216/ Deviations from the exponential



"decay law can be "amplified" in sueh specific
¥y P

experimental conditions, but the model calcula-
tion together with discussion of a typical ex-
periment given in ref, 17/ show that they are
still too small.

It is, of course, possiblec to treat this
problem from the more general point of view. One
can be, for example, interested in the state
space or in the reduced evolutiocn operator. The
latter is interesting especially In connection
with the inverse decay problem 2 (One can take
as a starting information for it either the
continubus semigroup of contractions {(WW-condi-
tion) or some coentinucus positive definite opera-
tor-valued function, which is in a some¢ sensec
near to this semigroup, but corresponds to semi-
bounded total Hamiltonian., A relation between
the minimal unitary dilations referring to these
two cases in not apriori clear. Let us mention
that Williams /1Y has formulated in essential
the same problem discussing unitary dilation of
the Zwanziger representation.

After preliminaries we shall introduce (in
Section 3) the notion of bounded energy state. '
Using it we shall be able to deduce (in Section
4) statements concerning approximation of the
reduced evolution opérator and decay laws, mostly
for the case when the state Hilbert space 1
of the unstable system is finite-dimensional,

[n the caseé dimH ;== we shall obtain an interest-
ing mathematical problem (validity of the as-
sumption ($ - see below), which up to our
knowledge is not solved. Further we shall show

the form of minimal unitary dilation correspond-
ing to the approximative reduced evolution opera-
tor. In the last section we discuss the physical
interpretation of the approximation, especially
from the point of view of WW-condition.

2. PRELIMINARLES

Discussion of the kinematical concept of
unstable guantum system usually starts with the
following assumptions 1-4. :

(1) the state Hilbert space ]’(u
SFStem is a proper subspace of some Hilbert space

of an unstahle

(ii) a strongly continuous unitary represen—
tation U(.) of one-parameter group ol time trans-
lations is realized on H, U@t)- exp(-illy), H being
the toral Hamiltonian, and H, is not an- Lovari-
ant subspace of Ul for any t=0, '

latf us further menticn briefly some important
notions (for details see again /1-47). Time
cvolution on the space H; itself is governed
by the operator-valued function ViV BUME .
where E, 1s a projection, EH=H,. Assuming the
system to be prepared at t=0 in a state descri-
bed by a density matrix p, Ranp(‘ﬂu' we def lne
the decay Llaw ﬂ, as ’

P, 0 THY (Vi | TelU (DB Utph. : (ta)

The dénsity matrix p is a positive trace class
operator so Ehat there exlsts an orthonormal basis

: - y v e ‘ ey
ﬁdkL_Hu Cpdy W Xy 1. The decay
Taw can be then expressed®in the form

2
N I 3 Y -,
Pp([) > w (1, P (1) = \|V(L)¢k[\ . {1b)
het B, Q) denote the spectral measure of

the Hamiltonian and E, = E,(-=, AD. A density
matrix p is said to describe a Einite cnergy
state if the 1ntegral :

{2)

"-[I\‘p = Aa\d[}!p(.ﬂ\), ft p(:\) - rl[l(ﬂh"\)r

converges. The set of all Eiﬁite energy states
H) wil! be dencted as MH). The
following assertion holds 11

(for given



Proposition | If p eMH), then PPUD:O

Tf the reduced evolution ocperator V{) is
known, one can try to find a tripple tH, ), B
such that V(©-E U®D] L this 1s the so-
called inverse decay problem 24 It can be sclved
by means of the theory of unitary dilations 718/

a solution exists 1if and only if V() is a weak-
ly continuous p051t1ve definite operator-valued
function, V{O) =E Moreover, under the minima-

lity condition

(I U(t)}( ] = K . - (3)
1< R
this solution {(called minimal unitary dilation)
is unique up to an isometric isomorphism.
[t is further known that any reduced evolu-
tion operaLor N() can be expressed as

w,ww@=£e*“ Ay, ¥y )

for any ¢, ¢ €K, where 1F, | is one-parameter
non-decreasing family of Hermitean aperators,
which is bounded and weakly continuous on the
right, FA:EuEArHu (see 4/, Theorem 3.b), The
energy support of V() is the set olVi=ircR: FA+‘
-Fy, £ 0 for any ¢ > 01 This set ecoin-
c1des with spectrum of #amiltonian 4

Proposition 2: Tt holds a(H) = ol V].

3. BOUNDED ENERGY STATES

A density matrix p 1is said to describe a
bounded emner state if the Lebesgue-Stieltjes
measure generated by the function #p() (see
(?)) has a bounded support., Im other words, there
exists a positive b such that
A<—b

(Fio
N A2b

The set of all bounded energy states will be deno-
ted as B(:

Proposition ¥ To any state p there exists a one-

parameter family lp,§ < B(H) such that
Him Trlp —-ph& =0
b woe

Proof: Let us assume the projections E M B, (A L

ﬁbf b~ (-b, b), for all b>90, Te any state p we
-define

p, =0, EPpE® | ntaTipr®), (4)
for those b for which ng »0; clearly ph(Bﬂﬂ

Ac¢ording to the definition 1t holds s—lim k("=

M )

so that lmun, = L Using further properties
(Eaad] .

of the trace norm:

t{BC| < [{BI{TeiCl, TeiC'} = Tr|C| (5)

for all bounded B and any C of the trace class,
we can make the following estimate

. . 1
Tefp = p |2 2Tel0 - B Mgt on, — 1,

According te the polar decomposition theorem
there exists a partial isometry Z such that

. (b . t 5
- 2a-R™y, Clearly s_gunz+a-daw5 -0
_ sl o

which gives the desired relation. QED

Every bounded energy state belongs to M(H)

For finite energy states Proposition ! holds; the
most substantial point is the existence of the
derivative P, (0} (notice that the continuous
function P () i1s maximal at t=0 ). One can

prove a much stronger assertion for hounded

energy states:

"Proposition 4: 1f , = B, then the decay law

PP is a restriction to positive real axis of a
function analytic in the whole plane.



Proof: If , < BH), there exists b> (0 such that
p = E(mpE(m.
pressed. as

The decay law can be then ex-

N
P (®)= TrU; OF, U, ®pl, (6a)
where
b (b
v, = Eum - exp iy 0, H, - EVH. ~ (6b)
The operator H, 1is bounded, |H,|| < b, and

therefore all derivatives of the function Uy ()
are also bounded, By a simple induction one can
find the derivatives

(n) I n. . 2k-n k n—k +
Pp (c)zkio(k)x TriHE Hy Uy ()pU (0l (7
the first one of the relations {5) implies

(n) LI k -k noom_ g n
POos B O s 2 oot aent

Let us further define the function
° _qn),.. T .
=32 PMeE-, zec (8)
n=4_0 n!

The last inequality gives [f(z}] < exp(2blzl),
thus the series has an infinite radius convergen-—
ce and the funection f is amalytic in € due to

theorems of Abel and Weierstrass 719/.

It remains to prove that (8) is the Taylor
series of Pp for real t, A short calculation
shows that

P (t ;_!, P(nd) tn ¢ N
p (0= % B O 0= THE, U, (0~ U,, y)pU, O +

-+

ST R S L Cino' put ut ol
Sy oo pY P (UL - b,N-T (91,

where

N

1, . T
Uh_N (t)_t:ED o —(—IHbt) .

This can be further estimated as

P s Pt U m -0, ol
V P( )4ﬂ1=0 ( );ﬁﬁ': b() - b, N M+

+ + 1 . T
(U - Ub,N*r (t))Eu—r—!---(ﬂH NOR I

. N o'
U, @V, @ - 3 10,0 = Uy, o

It holds
_ Nnrl j
NUNCER I OR IS +j§0 —j!—HHth < 1+ exp (b},

and therefore the second term in the last estima-
te can be majorized by the convergent series

; {1+ exp(bt));@'i)—r_
r=0 1!

uniformly with respect to N. Boundedness of Hy

and converges

implies U, (1) - u-lim U, (1) for allt,
N o '
so that finally we get
: N ; n '
lim [P () - X P(n) (0)-'2-—1 < lim U, (©)-U W +
: Now P n-p ¥ Bl T Now D b N
LS CIR U O T

Nox
which means Py(t) = MU.

. =0

for all real t  QED



4, APPROXIMATIVE DESCRIPTION OF AN UNSTABLE
SYSTEM

According to Propositioen 3 any state can be
approximated by bounded energy states. Now we
shall study the information this approximation
could bring for description of unstable systems,

Let be a state of such a system, RanpC

¢ H,. Notice firstly that the states py given
by (4) generally do not fulfill Ranp,cH . It
means that we cannot hold Hu as a state Hilbert
space, otherwise we shouldbe faced to serious
interpretative difficulties (P hﬁn{1 ete.). Thus
we choose (for given b) the mmmmmmmesmw
Hilbert ‘space 'Hp (b)]{ = Ran BV E, ¢ the
correspond1ng prOJECtlon will be denoted as
E%). This choice of H% has a clear physical
motivation; we postpone a discussion of this
peint to the last sectlon..It holds obviously
leph(:RMIE(mE C H b We introduce further the

approxim;itive réduced evolumcm operator by

. b (b) .
Vo V0 - Eu)U(t)Eu .t &R, | o (9)
b .
The subspaces H, .} in H are generally

different, since the prOJectlonS E®™ E  need
not commute., The main problem is in what sense
the one-parameter: family {HE} approximates H
Let us accept for a whlle the f0110w1ng asaump—
tions )

s-limE® - B _, (s5)
1 -rex )
u --lm 8™ _ g ;

Hose ! S ; P )

10

validity of them we shall discuss.a little later.
The corresponding approximations to the reduced
evolution operator and the decay.laws are glven
by the following assertion;

Theorem . 1: (i) If the: assumption {(S) holds, then
s-lim V (t) = V{t) and limP_ () = P (t)for all teR; '
b—u)a h—)ou pb N p '

(ii) If the ascsumption (U) holds, then

u-lmV (1) = V() and Lm Ppb(DDI?(U uniformly in R.

b -»ea, b e -
Proof: (i) The relation s-lim V () =" V() fol-
. b oea .
lows directly from (5), It further implies
s-lim By, (t) = P(1), . where we have denoted
Tovoo . .
P~ V0V, @ P() = V'(©VE. . Thig

relation together with the simple estimate

B, © =P @] = Telp, =l + [TE(P, () - PO)p)

and Proposition 3 prove the remaining part of (i),

(ii) The statement follows from the estimates

(h) ,
vy - VoIl < 2B -E ]

s

‘ _ wy 7
By (0B, (0] < Telpy = pl + B -8, . QED

Let us turn now to the questlon of validity of
the above assumptions. We shall start with the
auxiliary statement :

. b - :
Lemma: The inequality dimH, < dimH, ~ holds for
all b>0  Moreover, %f dimH < o, then for aany
b large enough dimK ::MmH

Proof: Linear dependence of vectors y P",xn{_ﬂ
implies llnear dependence of E(mxiﬁu,Ew>x

by negation we obtain mm}{u:thmE()Hug'mm}hp
Let further 3¢1"n,¢ni denote an orthonormal

11



basis in H,.and let us assume that for all b0
the Gram determinant f‘(E(b) By oreens EM™ bg )= 0
According to the definition of EM™ this deter-—
minant is a continuous function of EM;thus we
obtain [(g s &) - ETMF(E“’) R e
which contradicts the assumed linear independence
of ('{’1"""?511‘ QED

' We shall now solve the problem for H, <=
In this case the following statement holds:

Theorem 2: If dimH, 6 <, then both the assumpti-
ons (U) and (8) are valid,

Proof; Let tédy é oyt be an orthonormal basis

in Hy- According to the proved lemma for allb
large enough the vectors E () ¢IUN,E(b)¢N

are linearly independent and span therefore the
N -dimensional subspace Ran EG”EU= Hg in H. We

denote by 1¢f"",¢;i the basis obtained by
Cram-Schmidt orthogonalization from Hﬂb)¢V"”E(m¢Nt

) i ~ (b) a-1l b (b b
S V!’ = E qf’ - X ((/J s E S{J )lf’ ,
n 1 n oLy L ] k
. : . My, b
n =12 .. N With the help of relations E" =
:¢E and orthonormality of &,,..d¢y we obtain
- ) -1 p b '
¥ = B @n -kzl(“bk%qsk"-bn)u}k' _ (%)
Then the following estimate is possible s

N LA ~ ™, 5 "ol
IE® gy 1l — 2 =Sl < Ml BTS00 3 110 -yl
(% %)

To any §, 0 < 8 < 2273  there exists b, such that
for all b>b, the inequalities :

ﬂ|¢n7E{b)¢nii-<8, n-12 ..M, {10a)

12

hcld'(since s~ lim EM™ =1} )..We shall prove that
b oo

this implies
W"?{' o 1l < gd-ls .12 .., N (10b)

The inequalities (10a) give (1-1E® g 1< e ~EMg ji<s;
using further () and®*)we obtain ! !

b 1 - n—1
Hmﬁ¢,IIE5H~£—E=M~H¢"H | lig, B ¢ni\+k§l\1¢1§’ Il <
h n—1
- HE T i 1+8+ 2.3 1y~ I
P kf_lﬁ.__

(b) notooop
HE Gan*kz-l H\ffk“fﬁku

i.e.,

I}—‘l b
) 5'*1‘};1“‘;!11(“961(”
”U’jrf ¢’n“ < 2414'5 nil i v o (10c)
5y -yl

The relation (10b) follows now from (10a) by
induction. For an arbitrary vector g &H the

inequalities

0y N b N
1By~ E gl = 1 2 oo X (8,00, <
S e 1 3 il <
~ a1 n’ i n 0y Vn—qsnv‘f’lﬁ
. N b
SOV DI E [ -,
hold, which give together with (10b)
e -g )] <2 %N+ s,
Thus the assumption (U) {and consequently also
(8)) is valid. ' _ . QED

Th? case mm}(u=m is more complicated. The
assumption (U} needs not hold here: '

LX)




Example: Let us take H - L2 (R, H,- Lz € e, OY) adﬂd

U (D GHX) = p(X - 1), The generator H - _15}?

can be expressed as HoF lgF, where (Qg}xy— xé (%)
and F is the Fourier-Plancherel operator. Let
us assume for example the unlt vecter
camh L aFoxco
yfﬂu(:-: HUZ z[;a(x) = |
0 .. x<-a of x>0
Yo

2:-}-’— Il v~ sinfy dy,

(b}

One easily verifies that B '/’,tﬂ
. L ~¥o .

where ¥, ==-—;-ba'3. A rough estimate then “gives

IEM g 112 Lua? For any yell, we have

k I I - (
g™y 2PE, p e BEVR, ¢ M ie., BUEDY -

u’

.—E(h) i further the relation (x}from the proof of
the [ollowing Theorem 3 gives E(IE’) =Ly Then
2 () 2

. .

(1)) . : 2
HE Y ey, — By iy 3 - HE ba ~l,‘;.‘,|l‘ 1 - --3:—%)&

"Any neon-zero number may be choseun for a, thus for
arbitrary b we have HET)—EHWEi 1.

One can ask whether the weaker assumption
{(s) is generally valid for an infinitedimensional
{separable) llilbert space Hu. Up to our knowledge,
solution of this probhltem is not known. Let us
smotice that this is the interesting mathematical
problem independently of specific cireumstances
of its formulatien, ' .

We shall return uow to the question mentio—
ned in the introducticn, namely what the abhove
described approximation means for the inverse
decay problem. The following statement holds;

Thecrem 3: hLet (W U E ! be. the minimal unita-
ry dilation of V() then the minimal vnitary

dilation of the approximative reduced evolution

b b
operator .V|. () equals K .Uh(_.},f‘iiln I, where }{b N Em)'}(
aud Uy(.y is given by (6b).

Procf: The projection ™ reduces Ugy and there-

fore iTTb([)-{ fs the unitary group on W% It holds

14

E(b)¢:¢ faor any ¢ & RanE(b)Eu, further to
arbitrary ¢ & H, there exists a sequence

i¢kic Ran E (ME o P E (b)qb - 3 1t means- E(b{f;:nﬁ.
On the other hand, if yelt}{.b)l, then E(b)x -0
:E(D)E(E)X, so that togethuer !

Mg ® _p ) g0y ®) ()
u 1 u
Using this relation we obtain
Oy () (b (b)
Vb(t)' ) Eu )U(t)E u - Eu )Uh (HE u

{}{‘J (1) . .

Thus ,Ub(..), E, | is a unitary dilation
of V() it ret}lains to prove its minimality.
Let us assume existence of non-zero vy e}{b -such
- - b s+ l
that for all tcR, ¥ e H?  the equality {(y,Uy(t)) -
-0 holgs. Especially this is true for all
wER?rr)lE( )Eu, i.e., O'f(X,E(h)U(,t}E(b)qb) S

:.(E )x, U(lg)qs) for any ¢ g]{u_ It holds E(b)x =y
since yz X so that finally we get (y, Ut)d) = 0
for all t R, G—Hu, which contradicts the
assumed minimality of the trippte IH, U() E L QED

5. DISCUSSION

Let us turn now to the physical interpreta-
tion of obtained results. The approximation (4)
and the corresponding choice of the approximative
state space can be simply understood in the fol-
lowing way : a system prepared in a state p,

Ranp¢ H ., passes through the energy filter which
is open for values from A ™.

* The choice of A in the proof of Propo-
sition 3 is only a matter of convenience, Obvio-
usly any other family fA of Borel sets may

be used such that s-1lim EI(A }=1.
b o I*"°b

o0

15



The output of such an operation Is the state

)] . .
py, Ran py, L The f£ilter may be placed anythere
between ?he preparatLon cf state p aund Che next
measurement, since E®) commutes with the evo-

lution operdtor. Without Lloss of generality we
can nssume that this operation follows immediate-
ly atter the preparaticn ol p, aund that they
together form the preparaticn of the state p,

{at & given Lnustant).

Now the proved asscrtious show the relacions

hetween deseription of the unstable system pre-
pared in this way and that corresgponding to the
case when the energy filter is absent., Ln a lot
of JppLL cations we have H“ {(and therefore also
Ht) finite-dimensivnal, then all the stateménts
may be used, For dim H =+ we have Propositions
3, 4 and Theorem 3 ; validity of the other counclu-
sions is conditioned by the assumption (s).

We know that the "unphysical™ semigroup
condition for V() is in a very good agrecment
with experimental experience. Hecause of this
fact the previous considerations are not ounly
academical. We can take (at least [or dim H - )
the approximative state space in such a way that
the corresponding reduced evolution operator
hasg not the unpleasant property (since g(H)

|V t A due to Proposition 2 and Fheoram 3)
and at Lne same time it approximates the contl-
nuous contractive semigroup (in the sense of
operator norm and uniformly with respect Eo U
for diml, < =). - Conversely, one can interpret
the WW-condition as a {(very good) apprnximafion
of the true physical description of the time
evolutlon for unstable Systems*

¥ We left alone the question whether
the true physical states of an unstable system
can be expressed as pp (with sharp cut-offs) or
in some more sophisticated way.

16

A little more general point of view could be
also used. Some time ago Haag has noticed 0/
in any real experiment we do not determimne the

state as a point in the state space, but as some

%# ~weak neighbourhood ™ Thus ‘an experiment
does not tell us that the system is in a state
¢, put that it is in a state p such that
for llermitean operators Ay, .., A, and positive
numbexr s ey, ey wé have :

|r'111‘ ((p — pto))[\k)‘ OE k=12,..,n.

The family 3p“ approximates p in the sense of
trace norm topology, which is, of course, strong-
er than Lhe %-weak topclogy on the state
space !t for any Hermitean A we have

T[‘((pha p)A_)} -< HAH T[‘1pbm p‘, i.e.,

lim Tr ((p ~pIA) =
oo

It means that for b large enough one cannot
distiunguish experimentally p, from p. Especially
we are not able to decide experimentally whether
a given state 1s a bounded energy state or not
(cf. the analogous problem for finite energy
states in /G114

From the practical point of view it is dif-
ficult to distinguish p, from p 3t all. Let

us mention the model/l”/ ~ calculation of the charged

“This statement is used in“% to a pur-
pose which is different from ours. The state
space at this place means the Banach space in:
which states are elements of the p051t1ve cone
with the unit norm - cf. e.g./®"

17
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