

объединенный ИНСТИТУT ядерных исследований дубна

E2 - 12085

D.Yu.Bardin, O.M.Fedorenko

EVALUATION

OF SYSTEMATIC UNCERTAINTIES CAUSED
BY RADIATIVE CORRECTIONS
IN EXPERIMENTS ON DEEP INELASTIC
ν_{ℓ} N-SCATTERING

D.Yu.Bardin, O.M.Fedorenko*

EVALUATIONOF SYSTEMATIC UNCERTAINTIES CAUSEDBY RADIATIVE CORRECTIONSIN EXPERIMENTS ON DEEP INELASTIC:$\boldsymbol{\nu}_{\rho}$ N-SCATTERING
Submitted to $\boldsymbol{Я \Phi}$
*State University of Petrozavodsk.

Бардин Д.Ю., Федоренко О.M.
 раднаиионнимн поправками, в опытах по глубоконеупругому $v_{\boldsymbol{p}} \mathrm{N}=$ рассеяник

В рамках простой кварк-партоиной модели сильного вэаимодейстьия и теории Вайберга-Салама получены компактные формулы для радиаииоиной поправки к проиессам глубоконеупругого $\nu_{R}\left(\nu_{f}\right) N=$ расселния иоитрино на нуклонах, индуцированиым зяряженными гоками. Показано, что радиационная поправка достигает $20-30 \%$ величины, характеркой даи глубоконеупругого PN - рассеяния. Полученнне результаты значительно отличаюгся от имеющихся в лигературе оценок рассматриваемого эффекта.

Работа выполнена в Лаборатории теоретическоп физики ОНЯИ.

Препринт Объеднненного ннститута ядерных нсследований. Дубна 1979

Bardin D., Fedorenko O.
 E2 - 12085

Evaluation of Systematic Uncerlainties Caused by Radiative Correclions in Experiments on Deep Inelastic $v_{\ell} \mathrm{N}$-Scattering

Basing on the simple quark-parton model of strong interaction and on the Weinberg-Salam theory we derive compact formulae for the radiative correction to the charged curmit ind , ad deep inelastic scattering of neutrinos pfrem nucleons, Ihe radialive correction is found to be around $20-30 \%$, i.e., the value typical of deep inelastic N N -scattering. The results obtained are rather different from the prescntly available estimations of the censidered effect.

The investigations has been ierformed at the Laboratory of Theoretical Physles, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

1. INTRODUCTION

It $i s$ well known that experimental data on deep inelastic $e(\mu) N-s c a t t e r i n g$ must be corrected for electronagnetic effects 'h, because of the large magnitude of the electromagnetic corrections (EC) and high precision of measurements 3,4i. provided the EC are taken into account correctly, one can interpret the data in terms of hadron structure functions and diaw some conclusions about the behaviour of strong interactions (e.g., scaling violation).

Until recently the analysis of data on deep inelastic neutrino-nucleon scattering has not yet included the radiative corrections $\%, 6 \%$ This was justified in the early days of neutrino physics when it was specified by poor statistics and.low energy of neutrino beams. At present, however, experiments on deep inelastic $\nu(\nu) N-s c a t t e r i n g$ are specified by rather high statistics (ten thousand of events), and a neutrino beam energy reaches 200 GeV . F, b. Present experiments yield more precise results ($5 \div 10 \%$) for which the radiative corm rections should not be neglected. A priopi there are no grounds at all to consider the corrections to be smaller than the attained precision of measurements. The neglect of these corrections was caused by difficulties in performing a reliable theoretical calculation. Let us discuss this point in more detail: When calculating the EC to deep inelastic scattering of charged leptons, on nucleons one can separate, a gauge-invariant set of diagrams in which an extra real (or virtual) photon couples
to the lepton line (corrections to the lepton current). This part of diagrams may be calculated in a model-independent manner as these contain the known hadron current. Calculations show that the EC to the lepton current are rather larger than those due to diagrams in which the photon couples to the hadron lines. Therefore the calculation of the EC to deep inelastic PN -scattering is reliable. In neutrino charged current induced reactions the electric current flows from leptons to hadrons, and therefore the gauge-invariant set inclunes all possible diagrams in which photons are emitted both from lepton and hadron lines. A model for strong interaction is hence obligatory in the calculations of $E C$ to inclusive neutrino reactions, and no part of the EC can be evaluated in a modelindependent manner. The model calculations of EC, however, cannot be applied to correct the data unless some of other experiments will justify the validity of the corresponding model. (Information of this kind can be gained by measuring the difference of $\ell^{+} N-l^{-} N$ deep inelastic scattering $/{ }^{-}$). Nevertheless, the model calculations of the EC are very important indeed as these represent the only possibility to estimate the systematic uncertainties in extracting the plysical information from data when the EC are not taken into account. These uncertainties should be remembered when interpreting the results of neutrino experiments.

We are aware of two works devoted to the problem we discuss here. In ref. B/ the EC have been calculated in the framework of the parton model of strong interaction and $V-A$ four-fermion theory of weak interaction. Recent paper ${ }^{9 /}$ presents . numerical study of the EC based on the parton model calculation of Kiskis $/ 8 /$, and the computations have been done by a Monte Carlo program for a wide set of kinematic variables and different free parameters.

Calculations within the $V-A$ theory contain divergences, and the finite result has been derived by redefining the Fermi constant

$$
\begin{equation*}
G^{\prime} \equiv G\left(1+\frac{a}{\pi} \ln \frac{\Lambda}{M_{N}}\right) \tag{1}
\end{equation*}
$$

where Λ is a cut-off parameter, M_{N} the nucleon mass, and " the fine structure constant. A procedure of this type is not justified by exact renormalization theory and can produce the result up to a constant. Within gauge theory unifying weak and electromagnetic interactions one can obtain an unambiguous result, and thus this part of calculation 8 should be revised.

In the present paper we calculate the EC to inclusive neutrino reactions induced by weak charged currents using the weinberg-Salam theory 10 . In view of its recent successes 11 the calculations in electroweak sector can be consiuered as reliable. However (see above) when studying neutrino reactions, one cannot dispense with the model of strong interactions. As in ref. ${ }^{8}$, we took a simple quark-parton model. 'lhe limits of applicability of the parton model Eor calculating the EC have been thoroughly discussed in literature 8,11: In recent paper ${ }^{7 \prime}$ we have considered this problem for the EC to the hadron current for deep inelastic l'N scattering. In this paper the calculation is made under the same assumptions as in ref. 7 , for this reason we shall not consider this question here. Let us emphasize once more that the calculation of $E C$ in the parton model should be considered only as a reliable estimate of the magnitude and gross features of the effect.

In Sec. 2 we present a scheme for calculating the contribution to EC from the diagrams with exchange by virtual particles W, Z, χ-bosons, lepش tons and y-quanta (V-contribution). Much attention is paid to define the "semi-weak" interaction constant., f, as to remove the uncertainty of the result of Kiskis . For this purpose we consider the one-loop approximation for total probality of μ-decay. Then we give a scheme for calculating the contributions to the EC from the diagrams with real photon emission (R-contribution).

Sec. 3 lists and discusses numerical results. The correction: we have found differs essentially in magnitude and behaviour from that one obtained by Kiskis 8.' . In this context we present our results in a form suitable for their chacking and reproducing.
2. INCLUSIVE CROSS SECTION OF THE PROCESS IN ORDER $\mathrm{g}^{4}{ }_{a}$

The calculation of the inclusive cross sections dZ(E, x,y)for reaction

$$
\begin{equation*}
\nu_{p}\left(\bar{\nu}_{p}\right) N \rightarrow P(\bar{p})+\text { hadrons } \tag{2}
\end{equation*}
$$

to order $\mathrm{g}^{4} a$ will be done by the following scheme: Find the one-loop approximation of the amplitude of the process

$$
\begin{equation*}
v_{p}+q_{1} \rightarrow p+q_{2}, \tag{3}
\end{equation*}
$$

where q_{1} and q_{g} are point particles with arbitrary masses and charges $Q_{1}=f_{1} \theta$ and $Q_{g}=f_{2} \theta$ so that $\left|f_{1}-f_{2}\right|=1$. Define the "semi-weak" interaction constant up to one-loop corrections, i.e., calculate the one-loop corrections to the relation

$$
\begin{equation*}
\frac{g^{2}}{8 M_{W}^{2}}=\frac{G_{F}}{\sqrt{2}} \tag{4}
\end{equation*}
$$

with the Fermi constant G_{F} and W-bosonmass M_{W}, and derive the finite expression for the differential cross section d_{V} of process (3) in order $g^{4} a$. Calculate the contribution to the cross section from the diagrams with real photon emission (do $\boldsymbol{R}_{\mathrm{R}}$)

$$
\begin{equation*}
\nu+q_{1} \rightarrow p+q_{2}+\gamma \tag{5}
\end{equation*}
$$

In the sum $d \sigma_{V}+d \sigma_{R}$ replace the initial parton momentum by ξ^{P}, where P is the target nucleon momentum. Multiply the cross section by the distribution function $f_{i}(\xi)$ of $i-t h$ kind of partons over momenta, integrate over ξ and sum over all types of parton involved in reactions. At the final step we average the cross section over proton and neutron since neutrino experiments are typically performed with the heavy targets having almost the same number of neutrons and protons.

The contribution to the amplitude (3) from the virtual particle exchange diagrams in the one-loop approximation has been calculated in our paper ${ }^{\prime 13 /}$ The calculation was done in the unitary gauge by the dimensional regularization method. Renormalization was made through counterterm method ${ }^{19 /}$.

The amplitude has been calculated in the approximation

$$
\begin{equation*}
\mathrm{m}_{t}^{2} \ll \mathrm{I} \ll \mathrm{M}_{\mathrm{W}}^{2}, \tag{6}
\end{equation*}
$$

where I is an invariant of the amplitude, $m_{i}=\left(m_{1}, m_{1} m_{2}\right)$ is a mass of intial or final particles (m, the lepton mass; m_{1} and m_{2}, masses of q_{1} and q_{2} particles). The l.h.s. of the inequality is the necessary condition for validity of the parton model.
The r.h.s. is not necessary, however, it essentially simplifies final formulae. It is equivalent to the inequality

$$
\begin{equation*}
E_{1} \ll \frac{M_{W}^{2}}{2 M_{N}}=3400 \mathrm{GeV} \tag{7}
\end{equation*}
$$

(E_{1}, is the lab. neutrino energy) which holds for energies of current neutrino experiments.

Among diagrams 1 to 12 the most difficult to calculation are those of type ll, i2 with exchange by W and γ quanta. Their contribution $B_{W A}$ to the amplitude (3) in approximation (6) can be obtained from general formulae (5.2i) - (5.30) of paper 14, for the VA-exchange diagrams

$$
\begin{align*}
& B_{W A}=\frac{\mathrm{e}^{2}}{16 \pi^{2}} \mathrm{C}_{\mathrm{m}_{0}^{\mathrm{W}}}(\mathrm{~g}) \cdot 1-2\left(1+a_{W}\right) \mathrm{C}_{a} \otimes O_{a} \cdot \mathrm{P}- \\
& -20_{a} \otimes O_{\beta}\left(\delta_{a \beta^{+}}-\frac{q_{a} q^{q} \beta}{M^{2}} \cdot\left[\left|\mathbf{r}_{1}\right| \cdot X \cdot \mu\left(-k_{2} ; p_{1}\right)-\left|\mathbf{f}_{2}\right| \cdot S^{*} \cdot \mu\left(-k_{R} ; \mathrm{P}_{R}\right)\right] \mathrm{P}_{I R^{+}}\right. \tag{8}\\
& +O_{a \otimes} O_{a} \cdot\left(\left|f_{2}\right| \cdot B{ }_{2}^{F}+\left|f_{1}\right| \cdot B_{1}^{F}\right)+2 \hat{p}_{1}\left(1+\gamma_{5}\right) \otimes \hat{\mathrm{K}}_{1}\left(1+y_{5}\right) \cdot\left|\mathrm{f}_{1}\right| \cdot X^{-1} \mid .
\end{align*}
$$

Here

$$
R-1-\frac{e^{2}}{g^{2}}, a_{W}-\frac{q^{2}}{M_{W}^{2}}, X=-2 p_{1} \cdot k_{2}, S=-2 p_{1} \cdot k_{1}, S^{\prime}-2 p_{2} \cdot k_{2}
$$

with q^{2} transfer momentum squared

$$
\begin{align*}
& \mu\left(k_{1} ; k_{2}\right)-\int_{0}^{1} \frac{d y}{\left[k_{1} y+k_{2}(1-y)\right]^{2}}, \tag{9}\\
& P \because P_{\text {IR }} \quad \frac{1}{n-4}+\frac{1}{2} C, \ln \quad \frac{M}{W}
\end{align*}
$$

are pole terms représenting the ultraviolet and infrared divergences $(\eta$ is an arbitrary parameter with mass dimensionality)
where

$$
b_{1}(X)=\frac{3}{2}+3 \ln -\frac{X}{M_{W}^{2}}, \quad b_{2}=5
$$

In (B) $\mathrm{C}_{\mathrm{m}}^{\mathrm{W}}$ (g) is given by formulae (2.3) of paper ${ }^{13}$ and symbol means direct product of matrices. In this notation, the Born amplitude (diagram I) has the form

$$
\begin{equation*}
M_{0}^{W}(\mathrm{~g})=\mathrm{C}_{M_{0}^{\mathrm{W}}}(\mathrm{~g}) \overline{\mathrm{u}}\left(\mathrm{k}_{2}\right) \mathrm{O}_{a} u\left(\mathrm{k}_{1}\right) \overline{\mathrm{u}}\left(\mathrm{p}_{2}\right) \mathrm{C}_{a} \mathrm{u}\left(\mathrm{p}_{1}\right) \Leftrightarrow \mathrm{C}_{\mathrm{M}_{\mathrm{o}}^{\mathrm{W}}}(\mathrm{~g}) \mathrm{O}_{a} \otimes \mathrm{O}_{a}, \tag{11}
\end{equation*}
$$

with

$$
\mathrm{O}_{a}=\gamma_{\alpha}\left(1+\gamma_{5}\right)
$$

In the approximation (6) the Born amplitude is factorized from all diagrams 2 to 12 except the last term of (8).

Fig.1. Diagrams for the reaction (3) in order $\mathbb{E}_{\mathbf{F}^{\alpha}}^{4}$.

Calculating the interierence of this term with the Born amplitude

$$
\begin{equation*}
\operatorname{Re}\left\{\left[\hat{p}_{1}\left(1+\gamma_{5}\right) \otimes \hat{\mathrm{k}}_{1}\left(1+\gamma_{5}\right)\right] \cdot\left(\mathrm{O}_{a} \otimes \mathrm{O}_{a}\right)^{*}\right\}=-\frac{1}{2} \times \cdot\left|O_{a^{*}} \otimes \mathrm{O}_{a}\right|^{2} \tag{12}
\end{equation*}
$$

we can factorize the amplitude $M_{0}^{W}(g)$ from the sum of all diagrams 1 to 12 . In the approximation (6) we get

$$
\begin{equation*}
M_{1-12}=M_{0}^{W}(g) \cdot\left(1+\frac{a}{4 \pi} F+\frac{a}{2 \pi} \cdot \delta \cdot P_{I R}\right) \cdot \tag{13}
\end{equation*}
$$

with

$$
\begin{align*}
& \delta=1+f_{1}^{2}+f_{2}^{2}-2 p_{1} \cdot k_{R}\left|f_{1}\right| \mu\left(-k_{2} ;-p_{1}\right)+2 p_{2} \cdot k_{2}\left|f_{2}\right| \mu\left(-k_{2} ; p_{2}\right)- \tag{14}\\
& -2 p_{1} \cdot p_{2}\left|f_{1}\right| \cdot\left|f_{2}\right| \mu\left(-p_{1} ; p_{2}\right) .
\end{align*}
$$

Thi $=$ term represents the genuine infrared divergences which cancel out by the contribution of real photon emission

$$
\begin{equation*}
F \quad F_{V_{\lambda^{\prime}}} \cdot 2 G_{I R}, F_{0} \tag{15}
\end{equation*}
$$

Notatjon in (15) is as follows: F_{y} is a constant originating Erom the diagrams withexchange by $W^{\text {th }}$ Z, and X-bosons; paper 1: provides the Eollowing expression

$$
\begin{gathered}
(1-R) W_{V_{X}} W(0)-W(-1)+2 G \cdots \frac{3}{4 R} \cdot \frac{36}{4} \cdot \pi R \cdot 2 R V_{a}(0) \\
\cdot\left(-\frac{1}{2} \cdot R-3 R^{2}\right) \frac{\ln R}{1-R}
\end{gathered}
$$

Gin is a pole conteibution reprosonting infrared divergonces which result Erom rorommalization on the mass shell of W-boson, the oxplicit form of $G_{i r}$ being given by Eormula (3.15) of ref. 15.; $\mathrm{F}_{\mathrm{t}} \quad$ is a contribution of the diagrams with virtual y-quantum exchange; usjng (7) Lo (9) and (1l) we obtain

$$
\begin{aligned}
& \cdot 2\left(1-\frac{1}{4} \ln \frac{m_{2}^{2}}{M_{W}^{2}}\right) \ln _{2}^{2} \frac{m_{2}^{2}}{M_{W}^{2}}-3 \ln n_{W} \cdot \ln { }^{2} u_{W} 1 . \\
& 1 f_{1}^{2} \cdot\left(\frac{3}{4 R}-\frac{11}{4} \cdot \frac{3}{2} \ln \frac{m_{1}^{2}}{M_{W}^{2}}\right)+f_{2}^{2} \cdot\left(\frac{3}{4 R}-\frac{11}{4} \cdot \frac{3}{2} \ln \frac{m_{2}^{2}}{M \frac{2}{W}}\right) \\
& +\frac{3}{2} \ln \frac{m^{2}}{M_{W}^{2}}+\left|f_{1}\right| \cdot\left(B{ }_{1}^{F}-1\right)+\left|f_{2}\right| \cdot B \frac{F}{2} .
\end{aligned}
$$

Now we will show how to remove the remaining divergences, $G_{I R}$. In the amplitude (I3) to (17) the semi-weak interaction constant i.s not yet fixed. The relation (4) holds only. in the tree approximation, while the constant g should be defined
up to one-loop corrections. For this aim it is necessary to calculate some observable dependent on g up to one-loop corrections and to constrain it by comparing with the measured value.

This procedure is easily realized applying to μ-decay. Indeed, only two modes of μ-decay, $\mu \rightarrow \theta \prime \prime$ and $\mu \rightarrow \theta \mu y$, are observed, i.e., the measured inverse total lifetime should be equated to the calculated sum of probabilities

$$
\begin{equation*}
\frac{1}{{ }^{T} \mu}=W_{1}(\mu * e, \mu)+W(\mu \cdot \mathrm{e} \rho 1 \gamma) \tag{18}
\end{equation*}
$$

where W_{1} contains the one-loop corrections to μ-decay.. For the sum (18) we got

$$
\begin{equation*}
\frac{\mathrm{g}^{4} \cdot \mathrm{~m}_{\mu}^{5}}{3 \cdot 2^{11} \cdot \pi^{3} \mathrm{M}_{\mathrm{W}}^{4}} \cdot\left[1+\frac{a}{2 \pi}\left(\mathrm{~F}_{\mathrm{v}_{X}}-2 \mathrm{G}_{\mathrm{IR}}+\mathrm{F}_{\mathrm{e} \mu}\right)\right] \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{e \mu}-\frac{3}{4 R}+9-\pi^{2} \tag{20}
\end{equation*}
$$

and ma muon mass.
Defining the physical constant, f_{F} by the aquatron

$$
\begin{equation*}
\frac{\mathrm{g}_{\mathrm{F}}^{2} \cdot \mathrm{~m}_{\underline{\mu}}^{5}}{3 \cdot 2^{11} \cdot \pi^{3} M_{W}^{4}} \frac{1}{r_{i}} \tag{21}
\end{equation*}
$$

and inserting the recent data ${ }^{16 /}$ on m_{μ}, τ_{μ} and proton mass M_{p}, we obtain

$$
\begin{equation*}
G_{F} \quad \sqrt{2} \cdot \frac{g_{F}^{2}}{8 M_{W}^{2}}=10^{-5} \cdot \frac{1.0245}{M_{p}^{2}} \tag{22}
\end{equation*}
$$

It seems convenient to use just this value of the constant in Born amplitudes since the relations (19) and (21). (22) represent the simplest way to constrain the product of two infinite unobservable, g and $G_{I R}$, by the observable, $g_{F}\left(r_{\mu}\right)$. one, of
course, may use another definition of H_{F} in terms of ${ }^{r}{ }_{\mu}$, e.g., involving the corrections calculated within the four-fermion theory ${ }^{17}$ which differs Erom (22) by 0.2%. This would shift the numerical results listed below by o.4z. Therefore, one should clearly realize what is the constant used in Born amplitudes*.

Writing $M_{0}^{W}(g)$ in (13) in terms of H_{F} to order $\mathrm{E}_{\mathrm{F}}^{4} \alpha$, , we get

$$
\begin{equation*}
M_{1-12}=M_{0}^{W}\left(E_{F}\right) \cdot\left(\left.1+\frac{n}{4 \pi} \cdot\left(F_{e}-F_{e \mu}\right) \cdot \frac{a}{2 \pi} \cdot \delta \cdot P_{I R} \right\rvert\,\right. \tag{23}
\end{equation*}
$$

Thus, the divergent contribution $G_{I R}$ does not enter into final expressions if all their parameters are written in terms of observables.

Note that in the amplitude (23) contributions of the heavy boson exchar"o diagrams, $\mathrm{F}_{\mathrm{V}^{\prime}}$ also cancel. This results from the approximation (6) (r.h.s. inequality) and from similarity of the process (3) and μ-decay: up to difference in electric charges these are different channels of the same reaction. Because of the cancellation of $F_{V_{X}}$ the resulting correction appears to be independent of some parameters of the Weinberg-salam theory $\left(\sin ^{2} \theta_{W}\right.$ and M_{x} '. And what is more, this cancellation means that the correction to processes (3) does not depend on the gauge model unifying weak and electromagnetic interactions. A similar statement

[^0]is valid for $\mu^{\text {-decay }} \mathbf{\text { - }} 0$, too. Due to the above noted similarity of two processes it is not surprising that it is also valid for the process (3). So, the radiative correction is given just by the electromagnetic sector, therefore in what follows we shall use the notion of the EC.

From the relation (23) we obtain the contribution of diagrams l to 12 to the cross section of process (3)
where

$$
\begin{align*}
& d{ }_{0}^{2} \tilde{0}_{0} \cdot \ddot{d} \quad K \cdot d X d Y \cdot \delta\left(\left(p_{1} \cdot k_{1} \cdot k_{2}\right)^{2}, m_{2}^{2} \mid .\right. \tag{25}\\
& F^{\prime \prime, i^{\prime}}=F_{e}^{r, i^{\prime}}-F_{e \mu} \tag{26}
\end{align*}
$$

with

$$
\begin{aligned}
& \because\left(k_{1} \cdot k_{2}\right)^{2} \cdot \mathrm{~T}_{0}^{\prime \prime} 1, \mathrm{~T}_{0}^{\prime \cdot} \cdot\left(\frac{X_{S}}{)^{2}}, \mathrm{~K} \quad \frac{1}{S_{N}} \sigma_{0}\right. \\
& \sigma_{0} \frac{\mathrm{E}_{\mathrm{F}}^{4} \cdot \mathrm{~S}_{\mathrm{N}}}{2^{5} M_{\mathrm{W}}^{4}} \cdot \mathrm{~S}_{\mathrm{N}} \cdot-2 \mathrm{P} \cdot \mathrm{k}_{1} .
\end{aligned}
$$

and P, the initial nucleon momentum. The form factor F_{θ}^{V} is given by formula (17). To find F^{\prime} one should make the change $b_{2}, b_{1}(S)$ and $b_{1}(X), b_{2}$ in formula (lo).

The V-contribution to the process (2) from the i-th parton scattering is obtained from formulae (24) to (26) by changing p_{1} to ξP, multiplying by the distribution function $f_{i}(\xi)$, and integrating over ξ. In usual scaling variables x and y

$$
x--\frac{Y}{2 M_{N}}{ }^{\prime}, y=-\frac{v}{k_{16}}, v=k_{10}-k_{20} .
$$

we get
with

$$
\begin{equation*}
\left(\frac{d^{2} \Sigma_{0}^{\prime}}{d x} \frac{\left.r_{0},\right)_{i}}{i z} \quad \sigma_{0} \cdot T_{0}^{v, i^{i}} \cdot x \cdot I_{i}(x)\right. \tag{28}
\end{equation*}
$$

2. R-Contribution

To calculate the contribution to EC from the process (j), diagrams 13 to $J G$, one should integrate the cross section of (5), $d_{O_{R}}$ over the whole phase space of photons since in the final state of (5) only lepton characteristics are measured. Following our procedure we separate the infrared-divergent part, $d_{a}{ }_{R}$, out of the cross section ${ }^{1} \sigma_{R}$.

$$
\begin{equation*}
d_{\sigma_{R}} \quad d_{\sigma_{R}}^{I R}, d_{\sigma_{R}}-d_{\sigma_{R}}^{I R} \quad d_{\sigma_{R}}^{I R}, d_{\sigma_{R}} V_{R} \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{d^{2} d R}{d X d Y} \cdot \frac{\theta^{2}}{(2 \pi)^{3}} \frac{d^{3} k}{2 k_{0}} \cdot 4 F_{I R} \frac{d^{2} o{ }_{0}}{d X d Y} \cdot T^{1 \cdot I^{\prime}} . \tag{30}\\
& T^{\prime \prime}=1+\frac{m^{2} 1^{\prime}-m_{2}^{2}-m^{2}}{S} \cdot T^{-} \frac{X\left(X \cdot m^{2} 2^{-m} m_{1}^{2}-m^{2}\right)}{S^{2}},
\end{align*}
$$

and $F_{I R}$ is given by formula (4.8) of paper 13 .
All cumbersome calculations (sparing, subtracttion of $d^{3} k$, reduction of similar terms, and d ${ }^{3} k$ -integration) were performed by the analytic calcuration system SCHOONSCHIP ${ }^{22}$. . Integration was made by substitution of obtained expressions. Table of the substitutions and final formulae for ($d^{2} \mathbb{S}_{R}^{F}$) ${ }_{i}$ are given in the Appendix.

Now we present the scheme for calculating $\left(d^{2} s_{R}^{I R}\right)_{i}^{1, w}$, the infrared part of the contribution to the cross section (2) produced by bremsstrahlung (5) at scattering on the i-th parton. In formula (30) we make the following change of variables

$$
\begin{equation*}
\mathrm{X}, \xi \mathrm{X}_{\mathrm{N}}, \mathrm{~S}, \xi \cdot \mathrm{~S}_{\mathrm{N}} \cdot \mathrm{~m}_{1}, \xi \cdot \mathrm{M}_{\mathrm{N}} \tag{32}
\end{equation*}
$$

where $X_{N} S_{N}(1-y)$, then average (30) over the parton momentum distribution, and obtain

To (32) we add and subtract

$$
\left(\begin{array}{ll}
d^{2}=_{0} \tag{33}\\
d x d y & \theta_{1} \\
n
\end{array},\right.
$$

where

$$
\begin{equation*}
\delta^{1 k} \quad(2 \pi)^{2} \cdot S_{N} \cdot y \cdot \int_{x}^{1} d \xi \delta\left(n_{2}^{2}+m_{2}^{2}\right) \frac{1}{(2 \pi)^{3}}-\int \frac{d^{3} k_{-}}{2 k_{0}} 4 \cdot F_{I R} . \tag{34}
\end{equation*}
$$

In (34) x is a root of the equation

$$
\begin{equation*}
V(\xi) \quad\left(S_{N}-X_{N}\right) \xi-Y+\xi^{2} \cdot m_{1}^{2}-m_{2}^{2}=0 . \tag{35}
\end{equation*}
$$

We calculate the infrared-free difference (32)-(33) straightforward in the approximation (G) and get
where

$$
\begin{align*}
& \left.R\left(f_{i}\right) \quad \frac{\xi f_{i}(\xi)-x f_{i}(x)}{\xi-x} \cdot \| \xi\right) d \xi, \\
& I(\xi) \quad-1+\left|f_{1}\right| \ln -\frac{\xi^{2} X_{N}^{2}}{m^{2} m_{1}^{2}},\left|f_{2}\right| \frac{S_{N} \xi}{X_{N} \xi}, Y \ln \frac{\left(X_{N} \xi \cdot Y\right)^{2}}{m^{2} r} \tag{38}\\
& -f_{1}^{2}-\frac{m_{2}^{2}}{r} \cdot \mathrm{i}_{2}^{2}-\left|\mathrm{f}_{1}\right| \cdot\left|\mathrm{f}_{2}\right| \frac{\mathrm{Y}}{\xi \mathrm{~S}} \mathrm{X} \quad \ln \frac{\left(\xi \mathrm{~S}_{\mathrm{X}}^{\mathrm{N}}\right)^{2}}{\mathrm{~m}_{1}^{2}},
\end{align*}
$$

with

$$
S_{X}^{N} \cdot S_{N}-X_{N}, r=v+m_{2}^{2}, m_{1}=\xi M_{N}, v-S_{X}^{N} \cdot \xi-Y .
$$

To calculate the integral (34), we split it into two parts. The first part is integrated over k_{0} from 0 to \bar{k}, where \bar{k} is an infinitesimal, the second from \bar{k} to the kinematic maximum $k_{0}^{\max }(\xi)$. The first integral will be denoted by δ_{1}^{IR}, the second by δ_{2}. In δ_{2} integration over $d^{3} k$ is carried out with the use of Table Al, thereby we obtain

$$
\begin{equation*}
\delta_{2}=\int_{\mathrm{x}}^{1} \frac{\mathrm{~S}_{\mathrm{N}} \mathrm{y}}{\mathrm{~V}} \cdot \mathrm{I}(\xi) \mathrm{d} \xi \tag{39}
\end{equation*}
$$

The integral (39) is calculated by making the identity transformation

$$
\begin{equation*}
\mathrm{I}(\xi)=\mathrm{I}(\xi)-\mathrm{I}(\mathrm{x})+\mathrm{I}(\mathrm{x}), \tag{40}
\end{equation*}
$$

Eollowed by straightforward calculations

$$
\begin{aligned}
& \left.\cdot \frac{1}{r_{y}} \underset{y}{ } \ln \left(\frac{1}{x}-y \cdot r_{x}\right) \ln \left({\underset{N i n}{2}}^{S_{N}} y r_{y}\left(r_{y}+x\right)\right)-\Phi(1)+\Phi\left(\frac{1}{x}-y r_{x}\right)\right] \mid+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Phi(x) \cdot \frac{1}{2} \ln ^{2} x \right\rvert\, .
\end{aligned}
$$

where $v_{\text {max }} v_{s} 1, r_{x} 1 x-1, r_{y}-1 y-1$ and $\varphi(x)$ is the Spence function.

To calculate $\delta \mathbb{1}_{1}^{(R}$ we integrate it over ξ with the δ-Function in that system in which the photon emission is isotropic ($\dot{Q}^{\prime} \dot{k}_{1}+\mathrm{p}_{1}^{\prime}-\mathrm{k}_{2}-0$). With k^{\prime} infinitesimal, we arrive at the integral
and calculate this divergence by the method of dimensional reqularization in a manner of paper 20 . . After rather cumbersome calculations we Eind

$$
\begin{aligned}
& \delta_{1}^{I R}=-\delta \cdot \mathrm{P}_{\mathrm{IR}}+\delta_{1}^{\mathrm{F}} . \\
& \delta_{1}^{F}-I(x) \ln \frac{2 k}{M_{W}} \cdot \ln \frac{S_{0}}{m \cdot m_{2}}-\left|i_{2}\right| \cdot\left|\Phi(1)+\ln ^{2} \frac{S_{0}}{m \cdot m_{2}}\right|
\end{aligned}
$$

$$
\begin{align*}
& {\left[f_{1} \left\lvert\, \cdot\left[\ln \frac{S_{0}}{m_{2}^{2}} \ln \frac{m \cdot m_{1}}{X_{0}}+\frac{1}{2} \ln ^{2}-\frac{X_{0}}{Y}-\frac{1}{4} \ln ^{2} \frac{m^{2}}{S_{0}}-\frac{1}{4} \ln ^{2} \frac{m_{1}^{2} S_{0}}{Y^{2}}-\Psi_{(1)}\right]+\right.\right.} \\
& \tag{43}\\
& f_{1}^{2} \cdot \ln -\frac{Y}{m_{1} \cdot m_{2}}+f_{2}^{2}+\left|f_{1}\right| \cdot\left|f_{2}\right| \cdot\left[\Phi(1)+\ln ^{2} \frac{Y}{m_{1} \cdot m_{2}}\right]
\end{align*}
$$

with

$$
S_{1}=x S_{N}, X_{0}-x \cdot X_{N}, m_{1}=x M_{N}
$$

3. Derivation of Final Formulae for EC

The $H_{F}^{4} a$-order contribution to the cross section of reaction (2) from the scattering processes (3) and (5) on the i-th parton is as follows

$$
\begin{equation*}
\left.\left(\frac{d^{2} \Sigma}{d x d y}\right)_{i}^{v, i} \frac{d^{2} \Sigma_{0}}{d x d y}\right)_{i}^{\nu, \bar{v}} \cdot \frac{a}{\pi} \cdot \dot{\delta}_{F}^{v^{\prime}, v^{-}}+\left(\frac{d^{2} \Sigma_{R}^{T} R}{d x d y}\right)_{i}^{v}+\left(\frac{d^{2} \Sigma_{R}^{F}}{d x d y}\right)_{i}^{\nu, \bar{i}} \tag{44}
\end{equation*}
$$

where $\delta_{F}: \delta_{1}^{F}, \delta_{2}+\frac{1}{2} F$ and $\left(d^{2} \Sigma_{R}^{F}\right)_{i}^{w}$ are given in the Appendix.

To obtain the final expressions for total cross sections of processes (2) in order $g_{\mathrm{F}}^{4} a$, one should sum (44) over all partons and antipartons in the nucleon. In this summation, we take into account that the formilae for scattering of neutrino on quarks are the same as for $\bar{v} \bar{Q}$-scattering. and those for $\nu \vec{Q}-s c a t t e r i n g$ are the same as for
 numerical result, we use the three-quark model and ignore the s-quark contribution, i.e.. terms with $\sin ^{2} \theta_{C}$. Based on the general formula (44), the EC can be estimated within the model with arbitrary number of quarks, however, it is evident that the contribution to radiative processes from heavy quarks is suppressed due to the large mass. In this approximation, the contribution co (2) comes only from u, $d-, \vec{u}-\quad$ and \bar{d}-quarks, therefore it is natural to assume the equal masses of all final quarks.

$$
\begin{equation*}
\delta^{\prime \prime, \cdots}(E, x, y) \quad \frac{c^{2} \sum^{v, 1}}{c \times d y} \frac{d^{2} \sum_{0}^{w, ~}}{d x d y} \tag{45}
\end{equation*}
$$

 cosses (2), resp., in older $\mu \hat{F}$ and $\boldsymbol{f}_{\mathrm{F}}^{\boldsymbol{A}}$, summed over all parton involved in the reaction and avon raged over the proton and neutron. Inserting (if) into (45) we get
where (notation of raf. 23),

$$
Q(x) \quad u_{v}(x) \cdots d_{v}(x) \cdot \ln (x), Q(x) \quad 2 s(x)
$$

functions $s^{\prime \cdot \bar{T}}$ are given in the Appendix and
III. DISCUSSION

In Figure 2 we show the $\delta-f a c t o r$ for deep ineslastic scattering of the muon and electron neutrino and antineutrino on the isoscalar target at energy loo Gev. When drawing the figures, we did not approach the kinematic boundaries where the l.h.s. inequality (6) may be violated.

As follows from formulae of sec. II, the δ-factor depends not only on kinematic variables (E, x, y) but also on the masses of interacting particles, the W-boson mass, and the shape of the parton distribution.

Fig. 2. Electromagnetic corrections, δ, at a neutrino energy of 100 GeV calculated with parton distributions from paper $/$ R5/ (solid lines) and $/ 83 /(d o t-$ ted lines) for processes a) ν_{μ}, b) $\bar{\nu}_{\mu}$, c) v_{e}, d) $\bar{v}_{\theta}-s c a t t e r i n g$.

Let us discuss the choice of the latter parameters. The masses of charged leptons were taken from experiment 'li', the neutrino masses were put zero. The W-bosor mass was calculated within the Weinberg-Salam theory from the experimental value of $\sin ^{2} \theta_{W}$. For definiteness, we took the interval

$$
\begin{equation*}
0.15 \therefore \sin ^{2} 11_{w} \simeq 0.40 \tag{48}
\end{equation*}
$$

which covers the rectnt experimental data on $\sin ^{2} \theta_{W}$. The interval (48) constrains the M_{W} by

$$
\begin{equation*}
100 \mathrm{GeV}=M_{W} \div 60 \mathrm{GeV} \tag{49}
\end{equation*}
$$

For the inikial quark mass, requiring the kinematic relations for processes (2) and (3) to be equal, we derive $m_{1}=x M_{N},\left(\xi M_{N}\right)$, lhe final quark mass was considered as a constant free parameter varied within the limits

$$
\begin{equation*}
0.1 \mathrm{GeV}_{\leq} \mathrm{m}_{2} \leq 1.0 \mathrm{GeV} \tag{50}
\end{equation*}
$$

For parton spectra we used the parametrizations of papers 233^{\prime} and $125 /$.

The mass variation in the limits (49), (50), and the dependence of δ on the parton distributions give rise to a spectrum of δ values at fixed E, x and y. It appears that the spectrum due to the mass variation does not drop out of the width of solid lines (see Figures 2). The sensitivity to the choice of distrıbution functions is much more manifest, especially at small x. So, for $0.1 \leq x \leq 0.9$ and $0.1 \leq y \leq 0.9$ the model we consider provides rather definite predictions for the correction, beyond these limits either the model is not valid or the correction is very sensitive to the parameters. We studied also the E-dependence of δ at fixed x and y. It appears to be weak ($\Delta \delta<5 \%$) within the total width of neutrino spectra for beams produced at $F N A L$ and $S P S$ accelerators, i.e., the correction can be considered as a constant for the
whole neutrino spectrum and calculated, e.g., for the energy of intensity peak.

As is seen from Figures 2 the EC is large (especially in $\nu_{e} N$-scattering), consequently, it may give rise to the observed effects, for instance, to some deviations of x and y distributions from parton model predictions, to simulation of the violation of Bjorken scaling, and so on. These large values of the EC are not surprising; the correcti~ on to $P N$-scattering at an energy of 100 GeV also appears to be 20-30\%. For both $\frac{1}{} N$ - and \mathcal{N}-scattering there is observed the similar behaviour of the correction (growth with increasing y and decreasing $x)^{1 / 2 /}$. As in PN -scattering 126 , an approximate ratio 2 : 1 also is valid for tile corrections to neutrino reactions with final electrons and muons. It is interesting to note that for $y \rightarrow 0$ the EC for all the four processes, \quad p $\left(\bar{\nu}_{p}\right) N-, f(\bar{\ell}) N-$ -scattering, coincide within high accuracy. It is just that region whexe the difference in mechanisms of these reactions is small. With increasing y the EC to \mathbb{N}-scattering are growing rapidly due to the one-photon exchange; the EC to $\nu \mathrm{N}$ - and $\bar{\nu} \mathrm{N}-\mathrm{scatter}-$ ing for $y \neq 0$ do not coincide because of the different helicities of neutrino and antineutrino. It is noteworthy to mention a somewhat surprising behaviour of the $E C$ to $\bar{v} N-s c a t t e r i n g$ for $x-0$ and $y-1$. The decrease of the EC in this region for other processes is not observed. According to (47), in the region $y \rightarrow 1$ only the antiquarks contribute (function $\bar{Q}(x)$). From comparison of (46) and (47) it follows that for $y \rightarrow 1 \delta^{\nu}$ differs from $\delta^{\bar{\nu}}$ only by the shape of parton spectrum. An additional calculation has shown that δ^{ν} computed for two functions $Q(x)$ and $\bar{Q}(x)$ differ from each other, especially at small x, where maximal contribution comes from $R(Q)$ and $S(Q)$ from which the parton distribution functions cannot be factorized. As follows from calculations, $\delta[\bar{Q}(x)]$ is smaller than $\delta[Q(\bar{x})]$, consequently for $y \rightarrow 1 \delta^{\bar{\nu}}<\delta^{\nu}$, i.e.. the EC do not simulate y-anomalies in $\bar{p}-r e a c t i o n s$.

In conclusion, we compare our results with those obtained in the four-fermion theory (ref. $8 /$). In the recent paper $9 /$ one can find the graphs for δ calculated with the same parameters and parton distributions as ours (Fig.2). The comparison reveals that the agreement is only in general outline. Numerically, the $E C$ differ in magnitude by an order of the EC itself (for $x<0.3$). For $y \rightarrow 1$ and $x \rightarrow 0$ the behaviour of δ^{ν} is also different.

Unfortunately, we cannot compare the analytic form of final formulae since in papers $8,8 /$ it has not been obtained and numerical calculations have been done using Monte-Carlo integration, while in this paper we have derived compact final expressions which contain one-dimensional integrals of the product of the parton spectrum by the calculated functions that essentially simplifies the programming for somputer.

As was mentioned in the Introduction, the calculation of the EC to the inclusive neutrino reactions seems to be very important for estimating systematic uncertainties in information gained from these reactions on properties of strong interactions. We think the stuly we carried out is of great interest because of an essential difference of our results from the estimate available in literature.

The authors thank S.Bilenky for stimulating discussions and N.Shumeiko for useful remarks.

APPENDIX

FORMULAE FOR FINITE PART OF BREMSSTRAHLUNG CROSS SECTION

J. Table of Integrals

$$
\begin{equation*}
J[\kappa]=\frac{1}{\pi} \int \delta\left(p_{R}^{2}+m_{R}^{2}\right) \frac{d^{3} k}{k_{0}} \cdot \kappa \tag{A,1}
\end{equation*}
$$

$$
\begin{aligned}
& J[1] \frac{V}{T}, A-\left(X+Y-m^{2}\right)^{2} \cdots 4 m^{2} \cdot T, \quad \lambda_{Y} S_{X}^{2} \quad 4 m_{1}^{2} \cdot Y, \\
& \text { (A. } 2 \text {) } \\
& \lambda_{X}-X^{2}-4 m^{2} \cdot m_{1}^{2}, \quad T \quad S_{x}-Y \quad m_{1}^{2} \quad V, m_{2}^{2} . \\
& u-2 p_{1} \cdot k, \quad z=-2 k_{R} \cdot k .
\end{aligned}
$$

Integrals (A.2) are defined by exact formulae, the subsequent ones (A.3) are given in the approximation (6).

$$
\begin{aligned}
& J\left[\frac{Z}{u}\right]=\frac{V}{S_{X}^{2}}\left(X \cdot \overrightarrow{\rho_{u}}-\frac{e}{r}\right), \tilde{p_{u}}-\frac{S_{X}^{2}}{m_{1}^{2} r}, \quad e=X v-Y S, \\
& J\left[\frac{z^{2}}{u}\right]=\frac{V^{2}}{S_{X}^{2}} \cdot\left[X^{2} \vec{p}_{u}+\frac{1}{2} \frac{e^{2}}{r^{2}}+\frac{X(Y S-2 \theta)}{r}\right], \\
& J[u]=\frac{V^{2}\left(S_{x}+2 m_{1}^{2}\right)}{2 \tau^{2}}, m^{2} J\left[\frac{u}{z^{2}}\right]=\frac{X}{P_{X}}, m^{2} \cdot J\left[\frac{u^{2}}{z^{2}}\right]=\frac{X^{2} \cdot v}{P_{X}^{2}},
\end{aligned}
$$

$$
\begin{align*}
& J\left[\frac{u}{Z}\right]=-\frac{e V}{P_{X}^{2}}+\frac{X V}{P_{X}^{2}} \cdot \tilde{\ell}_{A}, P_{X}=X+Y, \tilde{\ell}_{A}=\ln -\frac{P_{X}^{2}}{m^{2} \cdot \tau}, \\
& \left.J\left[\frac{u^{2}}{Z}\right]=\frac{V^{2}}{\tau} \cdot\left[\frac{X(Y S}{P_{X}^{3}}-\theta\right)-\frac{\theta \cdot S_{X}}{2 \cdot P_{X}^{2}}\right]+\frac{V^{2} \cdot X^{2}}{P_{X}^{3}-P_{A}} . \tag{A.3}
\end{align*}
$$

2. Formulae for cross Section

Ling the Table of Integrals one can calculate do ${ }_{R} \mathrm{~F}_{\mathrm{R}}$ for processes

$$
\begin{equation*}
\nu \mathbf{q}_{1} \cdot \boldsymbol{l}_{\mathbf{q}_{2}} \gamma, \bar{\nu} \bar{q}_{1} \rightarrow \bar{\tau}_{\bar{q}_{2}} \gamma \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\nu q_{1}} \rightarrow \bar{l}_{\mathbf{q}_{2}} \gamma, \quad \nu \bar{q}_{1} \rightarrow \rho_{q_{2}} \gamma \tag{A.5}
\end{equation*}
$$

We begin by splitting up the $d \boldsymbol{F}$ R into parts according to the powers of charges of particles a_{1} and q_{i}

$$
\begin{equation*}
\mathrm{d} \sigma_{\mathrm{R}}^{\mathrm{F}}=\mathrm{d} \sigma_{12}+\mathrm{d} \sigma_{1}+\mathrm{d} \sigma_{2}+\mathrm{d} \sigma_{0} \tag{A.6}
\end{equation*}
$$

With the use of the system SCHOONSCHIP ${ }^{2 R}$ we obtain for processes (A.4)

$$
\begin{align*}
& \frac{d^{2} \sigma_{12}}{d X d Y}=K \cdot \frac{1}{S^{2}} \cdot \frac{a}{\pi} f \mathrm{C}_{2}^{2} \cdot \frac{S P_{X}}{4 r}+f_{1}^{2} \cdot\left[-\frac{Y-S}{4}+\frac{5 S^{2}+2 S Y-Y^{2}}{4 S_{X}}-\frac{Y S(S+Y)}{2 S}+\right. \\
& \left.\left.+\frac{3}{2} \cdot \frac{S^{\ell} Y^{2}}{S_{X}^{3}}+\frac{S^{2} Y v}{2 S_{X}^{3}}-\tilde{\ell}_{u}\right]+\left|\mathfrak{q}_{1}\right| \cdot\left|f_{\mathrm{Z}}\right| \frac{S}{S_{X}^{8}} \cdot\left(S Y \tilde{\ell}_{u}+\frac{\theta-X Y}{2}+\frac{S Y^{2}}{r}\right)\right\}, \tag{A.7}
\end{align*}
$$

$$
\begin{equation*}
\frac{d^{2} r_{2}}{d X d Y} \cdot K \cdot \frac{1}{s^{2}} \cdot \frac{a}{\pi}\left|\left|\tilde{r}_{2}\right| \cdot\left(-\frac{S P_{X}}{\tau}-\frac{s^{2}}{P_{X}} \cdot \vec{f}_{A}\right)\right\} \tag{A.8}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d^{2} \sigma_{1}}{d X d Y}=K \cdot \frac{1}{S^{2}} \cdot \frac{a}{\pi}| | f_{1} \left\lvert\, \cdot\left[-\frac{S X(V-Y)_{+}}{S_{X}^{2}}+\frac{S+P_{X}}{2}-\ln \frac{P_{X}^{2} \cdot m_{1}^{2}}{X_{T}^{2}}+\frac{S+P_{X}}{2}-\frac{S^{2}}{S_{X}}-\frac{Y S^{2}}{S_{X}^{2}} \tilde{P}_{u} \| l,\right.\right. \\
& \frac{(A \cdot g)}{d X d Y}=K \cdot \frac{1}{S^{2}} \cdot \frac{a}{\pi}\left\{\left.\frac{1}{2} \cdot \frac{S v}{P_{X}} \cdot \vec{P}_{\Lambda} \right\rvert\, .\right. \\
& \text { (A.lO) } \tag{A.10}
\end{align*}
$$

For processes (A.5) the contribution $d^{2} \sigma_{12}$ can be obtained from (A.7) by changing $S \mapsto-X$, and the remaining contributions are

$$
\begin{align*}
& \frac{d^{2} \sigma_{1}}{d X d Y}=K \cdot \frac{1}{S^{2}} \cdot \frac{a}{\pi} \|\left|f_{1}\right| \cdot\left[X^{2}\left(1+\frac{S}{P_{X}}\right) \frac{1}{P_{X}} \stackrel{\rightharpoonup}{q}_{A^{-}} X^{2}\left(1+\frac{Y}{S_{X}}\right) \frac{1}{S_{X}} \tilde{\mathcal{P}}_{u^{+}}\right. \tag{A.11}\\
& +\frac{Y-S}{2}-2 X-X e\left(\frac{1}{S_{X}^{2}}+\frac{1}{P_{X}^{2}}\right)!1 . \\
& \frac{d^{2} g_{2}}{d X d Y} K \cdot \frac{1}{S^{2}} \cdot \frac{a}{\pi} \cdot\left\{\left|f_{2}\right| \cdot\left(\frac{X^{2} S^{2}}{P_{X}^{2} p^{-}}-\frac{X^{2}}{T}-\frac{5 X^{2} S}{2 P_{X}^{2}}+\frac{2 X \cdot S \cdot X^{2}}{2 P_{X}}-\frac{X}{2}\right)\right\}(A .12) \tag{A.12}\\
& \frac{d^{2} o_{0}}{d X d Y}=K \cdot \frac{1}{S^{2}} \frac{a}{\pi}\left\{\frac{S v X^{2}}{2 P_{X}^{3}} \bar{Q}_{A}-\frac{3}{2} \cdot \frac{X^{2} S^{2}}{P_{X}^{3}}+\frac{S X(S+X)}{2 P_{X}^{2}}, \frac{S_{X}^{2}-6 X^{2}}{4 P_{X}}-\frac{S_{X}}{4}(\text { (A.13) }\right.
\end{align*}
$$

To calculate the contribution to process (2) from bremsstrahlung (5) on i-th parton scattering $\left(d^{2} \Sigma_{R}\right)_{i}^{\nu, \bar{\nu}}$, we follow the usual scheme (see (31)) and obtain

$$
\begin{equation*}
\left(-\frac{d^{2} \Sigma_{R}^{\mathrm{F}}}{\mathrm{dxdy}}\right)_{1}^{1, \bar{v}}=\sigma_{0}=\frac{a}{r} \cdot \mathrm{~S}^{\nu, \bar{v}}\left(\mathrm{f}_{i}\right) \tag{A.14}
\end{equation*}
$$

with

$$
S^{\prime^{\prime \cdot} \cdot \bar{u}}\left(f_{i}\right)=\frac{y}{S_{N}} \int_{x}^{1}-\frac{d \xi}{\xi} \cdot f_{i}(\xi) \cdot E^{v / \bar{v}}(\xi),
$$

where $E^{1, \bar{N}}(\xi)$ is a sum of terms which result from the terms in braces oí (A.7) to (A.10) or (A.7) and (A.11) with the change (31).

REFERENCES

1. Mo L.W., Tsai Y.S. Rev. Aod.Phys., 1969,41, 205. Tsai Y.S. SLAC-PUB-849, 1971.
2. Ахундов А.А., Бардин Д.Ю., Шумейк Н, М., Яф, 1977,26,с.1251.
3. Stein S. et al. Phys.Rev., 1975, Dl2, 1884. Atwood W.B. SLAC-PUB-185, 1975.
Riordan E.M. et al. SLAC-PUB-1634, 1975.
4. Anderson H.L et al.Phys.Rev.Lett., 1977,38,1450; Phys.Rev.Lett., l973.41,615; Gabathuler E. Rapporteur talk at XIX Intern.Conf.on High Energy Physics, Tokyo, August, 1973.
5. Barich B.C. Phys.Reports, 1973,30,278.
6. Kleinknecht. K. Proc. 1977 Intern. Symposium on Lepton and Photon Interactions at High Energies, Hamburg, 1977, p. 271.
Tittel K. Rapporteur talk at XIX Intern.Conf. on High Energy Physics, Tokyo, August, 1978.
7. Бардин Д.Ю., Шумейко Н.М., ОИЯИ, Р2-10872, Р2-10873, Дубна, 1977; ЯФ, 1978, вып.4.
8. Kiskis J. Phys.Rev., 1973, D8, 2129.
9. Barlow R., Wolfram. Preprint of University of oxford 24 78, 1978.
10. Weinberg S. Phys.Rev.Lett., 1967, 19,1264; Rev.Mod.Phys., 1974, 46, 255.
Salam A. In Elementary particle theory. Ed. Svartholm W. p.367, Stockholm, 1969.
ll.prescott C.Y. et al. Phys.Lett., 1978,77,347. Барков Л.М., Золоторев М.С. Письма в ЖЭТф,1978,28,544. Weinberg S. Rapporteur talk at XIX Intern.Conf. on High Energy Physics, Tokyo, August, 1978.
11. Bartels J. Nucl.Phys., 1974, B82, 1972.

Bodwin G.T., Stockham C.D. Phys.Rev.,1975,Dll, 3324.
13. Бардин Д.Ю., Федоренко О.М. ОИЯИ, Р2-11461, Дубна,1978.
14. Бардин Д.Ю.. Федоренко О.М. ОИЯИ, Р2-11414, Дубна, 1978.
15. Бардин Д.Ю., Федоренко О.М. ОИЯИ, Р2-11413, Дубна, 1978.
16. Particle Data Group. Phys.Lett., 1978, 75B.
17. Kinoshita T., Sirlin A. Phys.Rev., 1959, 113, 1652.
18. Bollini C.G., Giambiagi J.J., Silin A. Nuovo Cimento, 1973, 16A, 423.
Marciano W.J., Sirlin A. Phys.Rev., 1973,D\&, 3612.
19. Salomonson P., Ueda Y. Phys.Rev., 1975, DJ.1,2606. 20. Appelquist T.W., Pritmack J.R., Quinn H.R. Phys.Rev.. 1973, $\mathbf{D 7}, 2998$.
21. Bardin D.Yu., Shumeiko N.M. Nucl.Phys.. 1977. Bl27, 242.
22. Strubbe H.S. Comp.Phys.Com., 1974, 8., 1.
23. Barger V.. Phillips R.J.N. Nucl. Phys.. 1974, B73, 268.
24. Bosetti P.S. et al. Phys.Lett., 1973, 76B,505. Faissner H. Neutrino 77. M.: 1978, p.142,p.164. Baltay C. Rapporteur talk at XIX Intern. Conf. on High Energy Physics, Tokyo, August, 1978.
25. Okada J., Pakvasa S., Tuan S.F. Lett. Nuovo Cim., 1976. 16. 555.
26. Drees J. Preprint of University of wuppertal, WU-B78-16, 1978.

Received by Publishing Department on December 14, 1978

[^0]: $x^{\text {Relations }}$ like (19) were derived also in papers 18^{\prime}. We repeated those calculations within our scheme. Paper '19' suggests another method for Eixing g through considering the total probability $W_{1}\left(W \cdot \mu \nu \nu_{\mu}\right)+W\left(W \cdot \mu v_{\mu} y\right)$, however, there are no experimental data on those decays, therefore we have fixed g via the relation (18).

