ОБЪЕАИНЕННЫЙ
 ИНСТИТУт
 ЯАЕРНЫX
 ИССАЕАОВАНИЙ

AYБHA

$$
\begin{array}{l|l}
E-14 & \text { E2 - } 12071 \\
878 / 2-79 & \\
\text { D.Ebert, D.V.Kreopalov, M.K.Volkov } &
\end{array}
$$

19/111-79

$$
\mathbf{K}_{e_{4}} \text { DECAY IN THE CHIRAL }
$$

QUANTUM FIELD THEORY

E2 - 12071

D.Ebert, D.V.Kreopalov, M.K.Volkov

$K_{p_{4}}$ DECAY IN THE CHIRAL QUANTUM FIELD THEORY

Submitted to ЯФ

Эберт Д., Креопалов Д.В., Волков М.К.
Распад K_{4} в квантовой киральной теории
В рамках квантовой киральной теории поля описаны формфакторы распада K_{4}. Аксиальные формфакторы вычислены в древесном приближении, определяюшем основные вклады в эти величины. Векторный формфактор вычислен в однопетлевом приближении. Найденные значения формфакторов находятся в удовлегворительном согласии с известными эксперименгальными данными.

Работа выполнена в Лаборятории теоретической физики ОИЯи

Препринт Объединенного института ядерных исследований. Дубна 1978

Ebert D., Kreopalov D.V., Volkov M.K. E2-12071
$\mathrm{K}_{\ell_{4}}$ Decay in the Chiral Quantum Field Theory
Form factors of $\mathrm{K}_{\ell_{4}}$-decay are described in the framework of chiral quantum field theory. The axial form factors are calculated in the tree approximalion which dector form factor is calculated in the one-loop mation. The results are in satisfactory asreement with the avai lable experimental data.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR,

Preprint of the Joint Institute for Nuclear Research

1. Introduction

There exiata already a large amount of experimental and theoretical works on the Ke_{4} decay/1-8/. This process is interesting by itaelf and due to the fact that one may draw from it informationy on many other important physical quantities (e.g., the scattering lengths of the $\pi-\pi$ system). This ia also the reason why it has been discussed so often in the literature. Among the four form factors appearing in the amplitude of the $K \varepsilon_{4}$ decay the three axial form factors may be treated relatively simply. Information on the behaviour of these form factors may be obtained, for instance, from the atandard current algebra approach $/ 4,7,8 /$ or the aimpleat tree approximation of the chiral theory $/ 9 /$.

Or the other hand, the deacription of the vector form factor is considerably more difficult. The standard soft pion techniques of the current algebra are now useless because the vector part of the amplitude vanishes for vanishing pion momenta*). Also the tree approximation of the chiral theory does not provide any information on the vector form factor. However, the one-ioop approximation now begins to play a dominant role. We recall that a similar situation took place for decays of the type $\pi^{\circ} \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma \quad, \eta \rightarrow \pi^{+} \pi^{-} \gamma, K_{L} \rightarrow \gamma \gamma$, and $K_{L} \rightarrow \Gamma^{+} \Pi^{-\gamma} / 10-11 /$. As in the latter cases the calculation of the vector form factor of the $K e_{4}$ decay requires the consideration of the so-called anomalous diagram6,12-13/. These

[^0]diagrams contain the main information on the processea which they refer to. They are thus of principal importance even if there were no other arguments in favour of a reasonable perturbation theory within chiral quantum field theory.

Therefore, we hope to obtain reasonable regults for the vector form factor of the $K e_{4}$ decay by uaing the one-loop approximation.

Other more rough theoretical estimates of this quantity have been performed within models with vector meson dominance /5-6/. The respective results are in complete agreement with the estimates of the chiral quantum theory.

The calculations within the latter model are interesting, because they help to complete, from a unique point of view (SU(3)x xSU(3) chiral invariant quantum theory), the deacription of all leptonic, semileptonic, and radiative decays of the fundamental meson octet $/ 14 /$.

In the following aection we shall quote the different parta of the chiral Lagrangians which are needed for the calculation of the $K e_{4}$ decay. In Sec. 3 the axial form factors are calculated in the tree approximation, whereas Sec. 4 contains the one-loop calculation of the vector form factor. In Sec. 5 we calculate the probability of the $K e_{4}$ decay and compare our reaulte with the experimental data.

2. Chiral Lagrangians

A detailed discussion of $\operatorname{SU}(3) \times S U(3)$ chiral invariant Lagrangians can be found in refe. $19,10,15,16 /$. In the following we ahall quote only those parte of these Lagrangians which are needed for describing the Ke, deoay in the tree approximation (axial form factor) and one-loop approximation (vector form factor).

The Lagrangians which characterize the atrong interactions of the mesons and baryons have the form

$$
\begin{align*}
& \mathcal{L}_{1}=i 2 g_{A} \frac{M}{F}\left[\alpha d_{i j k}-i(1-\alpha) f_{i j<}\right]: \overline{\psi_{i}} \gamma_{s} \psi_{j} \phi_{k}: \tag{1}\\
& \mathcal{L}_{2}=\frac{i^{\prime}}{2 \hbar^{2}}: \bar{Y}_{i} \gamma_{\mu} \psi_{e} \phi_{j} \partial^{\mu} \phi_{\kappa}\left\{\left(g_{A}^{2}-1\right) f_{i e m} f_{k j m}+\right. \\
&\left.+g_{A}^{2}\left[\frac{2}{3} \alpha^{2}\left(\delta_{i j} \delta_{x e}-\delta_{i<} \delta_{j e}\right)+2 \alpha(\alpha-1) f_{k j m}\left(f_{i e m}-i d_{i e m}\right)\right]\right\}_{,}(2)
\end{align*}
$$

where Y_{i} and ϕ_{i} are the fields of the baryon and meson octets. F is the pion decay constant $(F \approx 95 \mathrm{MeV}), g_{A}$ is the renormalization constant of the axial current $\left(g_{A} \approx 1.25\right), M$ is an averaged mass of the baryon octet and d is the mixing parameter of the $f-d$ couplings $(\alpha x 2 / 3)$. The total Lagrangian contains yet a term quadratic in the meson fields without derivative coupling. However, this term does not contribute to the vector form factor and has therefore been omitted. This is analogous to the case of the $\eta \rightarrow \Pi^{+} \pi^{-\gamma}$ decay.

The interactions of the pseudoscalar mesons are described by the chiral Lagrangian \mathcal{L}_{3}

$$
\begin{equation*}
\mathcal{L}_{3}=\frac{\pi^{2}}{4} S_{\rho}\left\{\partial_{\mu} e^{i \xi} \partial_{\mu} e^{-i \xi}\right\} \tag{3}
\end{equation*}
$$

where $\xi=\frac{1}{F} \sum_{i=1}^{2} \lambda_{i} \phi_{i} \quad\left(\lambda_{i}-\right.$ Gell-Mann matrices $)$. The mesons get a finite mass by adding a symmetry breaking term to eq.(3) which, in the scheme of Gell-liann, Oakes and Renner /27/, takes the form

$$
\mathcal{L}_{4}=\frac{1}{2} m_{k^{0}}^{2} \Gamma^{2}\left[\sin ^{2} \theta_{c}\left(e^{i \xi}\right)_{22}+\cos ^{2} \theta_{c}\left(e^{i \xi}\right)_{s 3}\right]+h . c .(4)
$$

M_{k} ois the mass of the K° meson and θ_{C} is the Cabibbo angle. Finally, the weak interactions of the hadrons and leptona are described by the product of two charged currente

$$
\begin{equation*}
\mathcal{L}_{5}=\frac{G}{\sqrt{2}}\left[J_{\mu, l}^{+} J_{h}^{\mu}+h \cdot c \cdot\right] \tag{5}
\end{equation*}
$$

where $G=10^{-5} / M^{2}$ is the Fermi constant. The lepton current reads

$$
\begin{equation*}
J_{e}^{\mu}(x)=: \bar{\nu}_{(\mu)}\left(1-\gamma_{s}\right) \gamma^{\mu} \mu:+: \bar{\nu}_{(e)}\left(1-\gamma_{s}\right) \gamma^{\mu} e^{\mu} \tag{6}
\end{equation*}
$$

where $\mu, e, \mathcal{V}(\mu, e)$ are the flelde of the muon, electron and neutrinos, respectively. The hadronic current is given in the usual Cabibbo form

$$
\begin{equation*}
J_{h}^{\mu}=\cos \theta_{c}(V-A)_{1+i 2}^{\mu}+\sin \theta_{c}(V-A)_{4+i 5}^{\mu} \tag{7}
\end{equation*}
$$

where $V_{k+i e}^{\mu}=V_{k}^{\mu}+i V_{e}^{\mu}, A_{k+i e}^{\mu}=A_{k}^{\mu}+i A_{e}^{\mu}$ are the vector or axial vector currents, respectively. The hadronic current contains baryonic and mesonic parts, $J_{h}^{\mu}=J_{B}^{\mu}+J_{m}^{\mu}$. The baryonic currente read

$$
\begin{align*}
& \left(V_{B}\right)_{i}^{\mu}=-i: \bar{\Psi}_{k} \gamma^{\mu} f_{i k e} \Psi_{e}: \tag{8}\\
& \left(A_{B}\right)_{i}^{\mu}=-g_{A}: \bar{\Psi}_{k} \gamma^{5} \gamma^{\mu}\left[\alpha d_{i k e}-i(1-\alpha) f_{i k e}\right] \Psi_{e} \tag{9}
\end{align*}
$$

whereas the mesonic currents are defined by the formula /9,14/

$$
\begin{equation*}
\sum_{i=1}^{8} \lambda_{i}\left(J_{m}\right)_{i}^{\mu}=\sum_{i=1}^{8} \lambda_{i}\left(V_{m}-A_{m}\right)_{i}^{\mu}=-i \Gamma^{2} e^{i \xi} \partial^{\mu} e^{-i \xi} \tag{10}
\end{equation*}
$$

Using the Lagrangians (1-5) we are now able to calculate the form factors of the Ke_{4}-decay.
3. Axial form factors of the Keu-decay (tree approximation)

Let us consider the process $K \xrightarrow{t} \pi^{+}+\pi^{+}+\overline{e^{+}} V$. The corresponding decey amplitude is usually written in the form

$$
\begin{align*}
T_{k e_{4}}= & \frac{1}{m_{k}}\left\{f\left(p^{+}+p^{-}\right)^{\mu}+g\left(p^{+}-p^{-}\right)^{\mu}+r\left(p_{k}-p^{-}-p^{+}\right)^{\mu}+\right. \\
& \left.+i \frac{h}{m_{k}^{2}} \varepsilon^{\mu v \rho^{\sigma}}\left(\rho_{k}\right)^{\nu}\left(p^{+}+p^{-}\right)^{\rho}\left(p^{+}-p^{-}\right)^{\sigma}\right\} \rho_{\mu}^{(-)} \tag{11}
\end{align*}
$$

where P^{+}, P^{-}and P_{k} are the momenta of the π^{+}, π^{-}and K^{+} mesons, respectively, and $e_{\mu}^{(-)}=\sin \theta_{c} \frac{G}{\sqrt{2}} \bar{U}_{v}\left(1-\gamma^{5}\right) \gamma^{r} U_{e} \quad f \quad f \quad g$
and r are the axial form factore, h is the vector form factor. The calculation of the latter is the main purpose of this paper.

As the axial form factors get their main contributions from the tree approximation we shall consider here tree graphs only. The relevant diegrams are shown in fig . 1.

0

b

Fig. 1
Diagram 1a can be calculated by taking into account the following part of the Lagrangian \mathcal{L}_{5}

$$
\begin{aligned}
\mathcal{L}_{5}^{(1)}= & \frac{\sqrt{2}}{3 F^{2}}\left[\pi^{-}\left(K^{+} \partial_{\mu} \pi^{+}+\pi^{+} \partial_{\mu} K^{+}\right)-2 K^{+} \pi^{+} \partial_{\mu} \pi^{-}\right] L_{\mu}^{(-)} \\
\text {where } \quad & L_{\mu}^{(-)}=\sin \theta_{c} \frac{G}{\sqrt{2}} \bar{v}\left(1-\gamma^{5}\right) x^{\mu} e .
\end{aligned}
$$

This diagram determines nearly the whole probability of the decay and the magnitude of the form factore f and g. It gives fise to the amplitude

$$
\begin{equation*}
T^{(1)}=\frac{\sqrt{2}}{3 F}\left(3 p^{+}+q\right)^{\mu} e_{\mu}^{(-)} \tag{13}
\end{equation*}
$$

where $q=P_{i k}-P^{+}-p^{-}$. In order to get also a reasonable expression for the third form factor τ one has further to investigate the important diagram 1 b. It can be calculated by using the Lag-

$$
\begin{align*}
& \mathcal{L}_{5}^{(2)}=-\sqrt{2} F \partial_{\mu} K^{+} L_{\mu}^{(-)}, \tag{14}\\
& \overline{\mathcal{L}}_{3}+\overline{\mathcal{L}_{4}}=-\frac{1}{6 \Gamma^{2}}\left\{\pi^{+} \pi^{-} \partial_{\mu} \bar{K}^{+} \partial_{\mu} K^{+}+\partial_{\mu} \pi^{+} \partial_{\mu} \pi \cdot \bar{K}^{+} K^{+}+\right. \\
& +\left(\pi+\vec{\partial}_{\mu} \pi^{-}\right) \times\left(\overrightarrow{K^{+}}{\stackrel{S}{D_{\mu}}}^{+}\right)-\pi^{+} \partial_{\mu} \pi^{-} K^{+} \partial_{\mu} \bar{K}^{+}-\pi^{-} \partial_{\mu} \pi^{+} \bar{K}^{+} \partial_{\mu} K^{+}- \\
& \left.-\left(m_{k}^{2}+m_{k}^{2}\right) \pi^{+} \pi^{-} K^{+} K^{+}\right\}, \tag{15}
\end{align*}
$$

which are parts of the Lagrangians \mathcal{L}_{5} and $\mathcal{X}_{3}, \mathcal{L}_{4}$. This diagram contributes the following expression to the amplitude

$$
\begin{equation*}
T^{(2)}=\frac{\sqrt{2}}{6 F}\left(1+6 \frac{p_{k} p^{-}}{q^{2}-m_{k}^{2}}\right) q^{\mu} \mathcal{Q}_{\mu}^{(-)} \tag{16}
\end{equation*}
$$

By adding the contributions $T^{(1)}, T^{(2)}$ we obtein the following expressions for the axial form factors

$$
f=g=\frac{m_{k}}{\sqrt{2} F} ; \quad \tau=\sqrt{2} \frac{m_{k}}{F} \frac{q p^{+}}{m_{k}^{2}-q^{2}}=\left\{\begin{array}{l}
0, p^{+}=0 \tag{17}\\
\frac{m_{k}}{\sqrt{2} F}, p^{-}=0
\end{array}\right.
$$

The results (17) are in complete agreement with earlier calculations using current algebra (see ref. $/ 7,8 /$).
4. Vector form factor of the $K e_{4}$ decay (one-loop approximation).

The calculation of the vector form factor h may be done in complete analogy with the calculation of the decay amplitudes for the proceseses $\quad \eta \rightarrow \pi^{+} \pi^{-} \gamma \quad$ and $K_{L} \rightarrow \pi^{+} \pi^{-\gamma} \quad / 10,11 /$.
These amplitudes are contributed by the box diagrams with atrong
vertices given by \mathcal{L}_{1} and triangle diagrams with one vertex of the type \mathscr{L}_{1} and one vertex of the type \mathscr{L}_{2} (comp. fig. $2 a, b, c, d$).

a

b

C

d

Fig. 2
Fig. 2a represents schematically three types of box diagrams where the lepton pairs are emitted from a baryon propagator between the K^{+}and π^{+}mesons, the K^{+}and π^{-}mesons, and two neighbouring pions. The Lagrangians associated to the vertices of this diagram are given by

$$
\begin{align*}
& \mathcal{L}_{1}^{(1)}=i \sqrt{2} g_{A} \frac{M}{F} \pi^{+}\left[\bar{P} \cdot n+(1-2 \alpha) \bar{\Sigma} \cdot \bar{L}^{-}+\sqrt{\frac{2}{3} d}\left(\bar{\Lambda} \cdot \Sigma+\bar{\Sigma}^{-} \Lambda\right)+\right. \\
& \left.+\sqrt{2}(1-\alpha)\left(\Sigma^{0} \cdot \Sigma^{-\sum^{-}}: \Sigma^{0}\right)\right]+ \text { h. (. , } \\
& \mathcal{L}_{1}^{(2)}=i \sqrt{2} g_{A} \frac{M}{F} K^{+}\left[(2 \alpha-1) \bar{n} \cdot \Sigma^{-}+\frac{2 \alpha-1}{\sqrt{2}} \bar{\rho} \cdot \Sigma^{c}-\frac{3-2 \alpha}{\sqrt{6}} \bar{\rho} \cdot \Lambda+\sum+\Gamma_{\Delta}^{0}\right. \\
& \left.-\frac{\bar{\Sigma}^{0} \cdot \nabla^{-}}{\sqrt{2}}+\frac{4 \alpha-3}{\sqrt{6}} \bar{\square}\right], \tag{19}
\end{align*}
$$

We have used the notation: $\equiv \gamma_{5}=-\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right) \quad$ and $x \equiv \gamma^{\mu}$.
Retaining in the integrals only those terms which do not depend on momenta we get from fig. 2a the following contribution to the amplitude

$$
\begin{equation*}
T^{n}=i \frac{g_{A} C^{\square}}{\sqrt{2} g \hbar^{2} F^{3}} e^{\mu \nu \rho \sigma}\left(P_{k}\right)^{\nu}\left(P^{-}\right)^{\rho}\left(P^{+}\right)^{\sigma} \rho_{\mu}^{(-)} \tag{21}
\end{equation*}
$$

where

$$
C^{\square}=-24 g_{A}^{2} \alpha\left(1-2 \alpha+\frac{4}{3} \alpha^{2}\right) \approx-6.5
$$

The diagrams $2 b-d$ contain vertices of the type \mathcal{L}_{2}. The corresponding Lagrangians read

$\left.-\vec{\Sigma} \times{\underset{L}{c}}_{\dot{c}}^{\dot{L}}\right)+2\left[g_{A}^{2}\left(1-2 \alpha+\frac{4}{3} \alpha^{2}\right)-1\right]\left(\Sigma^{+} \times \Sigma^{+}-\bar{\Sigma} \times \Sigma^{-}\right)+$
$\left.+\frac{4}{\sqrt{3}} \alpha(1-\alpha) g_{A}^{2}\left(\pi \times \sum^{0}+\sum 2 \Lambda\right)\right\}$,
$\mathcal{L}_{2}^{(2)}=i \frac{\pi-\vec{g}_{\mu} K^{+}}{\sqrt{2}(2 F)^{2}}\left\{\sqrt{2}\left[g_{A}^{2}\left(1+4 \alpha\left(\frac{2}{3} \alpha-1\right)\right)-1\right] \bar{p} \times \Sigma^{+}+\right.$
$+\sqrt{2}\left[g_{A}^{2}\left(1-\frac{-\alpha^{2}}{2}\right)-1\right] \bar{\Sigma} \times \Gamma^{-}-\left[g_{A}^{2}(1+4 \alpha(\alpha-1)-1] \bar{n} \times \Sigma^{0}+\left(g_{A}^{2}-1\right) \bar{\Sigma}^{\circ} \times \square^{0}-\right.$
$-\sqrt{3}\left[g_{A}^{2}\left(1+\frac{8}{3} \alpha(\alpha-1)-1\right] \pi \times \nabla^{0}+\sqrt{3}\left[g_{\Lambda}^{2}\left(1+\frac{4}{3} \alpha(\alpha-1)\right)-1\right] \bar{h} \times \Lambda\right\}+$
$+i \frac{g_{A}^{2} \alpha^{2}}{3 F^{2}} \kappa^{+} \vec{\partial}_{\mu} \bar{\nabla}^{+}\left(\bar{\Sigma}^{+} \times \nabla^{-}+\vec{p}_{\times} \Sigma^{-}\right)$.

(23)

We again retain only constant terms in the integrals for the baryon triangle diagrams. As a result, we obtain the following expression for the coefficients C

$$
\begin{align*}
& C_{b}^{\Delta}=C_{c}^{\Delta}=6 \alpha\left[-1+g_{A}^{2}\left(3-6 x+\frac{32}{g} \alpha^{2}\right)\right] ; \\
& C_{d}^{\Delta}=\frac{16}{3} g_{A}^{2} \alpha^{3}, \quad C_{b+c+d}^{\Delta}=1.7 \tag{24}
\end{align*}
$$

Summing up all baryon loop diagrama the total contribution to the vector part of the K_{4} decay amplitude reads

$$
\begin{equation*}
T^{V}=\overline{T^{V}} \frac{p^{(-)}-i}{g_{M} \overline{g_{A}}} \sqrt{\sqrt{2} \delta_{\pi^{2}} F^{3}} \varepsilon^{\mu \nu \rho \sigma}\left(p_{x}\right)^{\nu}\left(p^{+}+p^{-}\right)^{\rho}\left(p^{+}-p^{-}\right)^{\zeta} \rho_{\rho^{4}}^{(-)} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{C}=6 \alpha-g_{A}^{2}\left[1+(2 \alpha-1)^{3}\right]=2,4 \tag{26}
\end{equation*}
$$

Eq. (25) provides the following expression for the vector form factor h (comp. eq.(11))

$$
\begin{equation*}
h=-\frac{g_{A} \bar{c}}{\sqrt{2} \pi^{2}}\left(\frac{m_{k}}{2 F}\right)^{3} \tag{27}
\end{equation*}
$$

5. Discussion of the results

In order to compare the above resulta with the experimental data (see ref, /1-3/) we shall give firgt of all a rough estimate of the probability of the $K_{e_{4}}$ decay. To this end we consider only those parts of the amplitude (11) which contain the form factore f and g.

This yields the formula

$$
\begin{equation*}
W_{K e_{4}} \simeq 10^{-10} \frac{1}{6 \pi m_{k}}\left[\frac{\sin \theta_{c} m_{k}^{5}}{(8 \pi)^{2} m_{k} M_{p}^{2} F}\right]^{2} \mathcal{J} \tag{28}
\end{equation*}
$$

[^1]where \mathcal{F} is a phase space integral given by
$$
J=\int_{1}^{(4-1)^{2}} d x \sqrt{\left(a^{2}-1\right)^{2}+x\left[x-2\left(a^{2}+1\right)\right]}\left[x^{3}-8\left(x^{2}-1\right)-\frac{1}{x}+12 x \ln x\right] \approx 355,
$$
$$
\left(a=m_{k} / m_{k}\right) .
$$

To get eq. (28) we have used the values for f and g obtained in the tree approximation (eq.(17)). With the value $\theta_{c}=0.26$, eq.(28) yielda*)

$$
\begin{equation*}
W_{k_{e_{4}}}^{\text {th }} \simeq 1.7 \cdot 10^{3} \mathrm{~s}^{-1} \tag{29}
\end{equation*}
$$

The experimental value is (see ref./1/)

$$
\begin{equation*}
W_{k_{4}}^{\exp }=(3.26 \pm 0.15) \cdot 10^{3} \mathrm{~s}^{-1} \tag{30}
\end{equation*}
$$

Keeping in mind that the tree approximation is rather crude the theoretical value (29) may be considered to be quite satisfactory. The numerical estimates for f, g and h give

$$
\begin{equation*}
f=g=4, \quad h=-3.7 \tag{31}
\end{equation*}
$$

We recall that the main task of this paper was to estimate the vector form factor h of the $K e_{4}$ decay. In this case, as already mentioned, the one-loop approximation is of principal importance. On the other hand, the form factors f and g get already a large contribution from the tree approximation. The oneloop approximation should then only slightly modify this estimate (formulae (17), (31)). A aimilar situation has been met for the case of the π - π-wave acattering length $/ 9,18 /$. There the esti-

[^2]mates for Q_{*}° in the tree and one-loop approximation are as followa*)
\[

$$
\begin{align*}
& \left.a_{0}^{0}\right|_{\text {tree }} \approx 0.15 \mathrm{~m}^{-1} \\
& \left.a_{0}^{6}\right|_{\text {tee }+1-\operatorname{cosp}} \approx 0.18 \mathrm{~m}^{-1} \tag{32}
\end{align*}
$$
\]

In the case of the axial form factor the number of the baryon loops considerably exceeds the number of the baryon loops for the vector form factor, and many of the loop diagrams even diverge. Using special regularization methods which are characteristic for nonpolynomial theories (e.g., superpropagator methods/19/) we may calculate also these diagrams. They will give a more complete information on the form factors f, g and z and determine, in partioular, the slope parameter λ of the form factor f. (The experimental value of λ can be found in ref./1/).

In the present case our calculations of f, g and $\tau^{* *}$) have, however, been performed within the tree approximation. In order to compare with the experimental data we consider the ratio h / f, quoted in many experimental works. Using for f the recent resulta of ref. $/ 1 /$ and for h our theoretical value, we get

$$
\begin{equation*}
h^{\top}=-37 ; f_{e x p}^{[1]} \approx 6.15 \pm 0.15 ; \quad \frac{h^{\top}}{f_{\text {exp }}} \approx-0.6 \tag{33}
\end{equation*}
$$

[^3]The experimental values are

1) ref. $/ 1 /: h=-2.95 \pm 0.75 ; h / f=-0.48 \pm 0.12 ; a_{0}^{0}=(0.285000)_{m r^{-1}}$
2) ref. $12 /: h / f=-0.71 \pm 0.23 ; \quad a_{c}^{0}=(0.17 \pm 0.13) \mathrm{m}^{-1}$
3) ref. ${ }^{13 /}: h / f=-0.97 \pm 0.46$.

For completeness, let us also quote the theoretical estimates for h obtained in a miodel with ρ-dominance $15,6 /$

$$
1.5 \leqslant|h| \leqslant 5
$$

Thus, the above calculated value of h is in good agreement with both the available experimental data and other theoretical estimates.

References

1. L. Rosseltt et al. Phys.Rev. D15, (1977) 574.
2. E.W.Beier et al. Phys.Rev.Lett. 30 (1973) 399.
3. P. Aasile et al. Phys.Kev. 36B (1971) 619.
4. L.M.Chounet, J.M. Gaillard and M.K.Gaillard. Phys.Rev. 4C (1972) 199.
5. F.A.Berends, A.Donnachie and G.C.Oades. Phys.Rev. 171 (1968) 1457.
6. A.K.Mohant, R.E.Marshak, Nuovo Cim. 52A (1967) 915.
7. S.B.Treiman, R.Jackiw, D.J.Grose "Lectures on current algebra and its applications", Princeton University Prese, Princeton, New Jersey, 1972.
8. V. De Alfaro, S.Fubini, G.Furlan, C.Rossetti. "Currents in hadron physics"North-Holland Publishing Company, Ameterdam London, 1973.
9. Li.K.Volkov, V.N. Pervushin. "Essentially nonlinear quantum theories dynamic symetries and physics of mesons". Moscow, Atomizdat, 1978.
10. B.K.Volkov. Yader. Fiz., $\underline{27}$ (1978) 758.
11. M. K. Volkov. Yader. Fiz., 28 (1978) 162.
12. S.Adler, W.Bardeen. Phys.Rev. 182 (1969) 1517.
13. M.V.Terentjev. UPN, 112 (1974) 37.
14. M.K.Volkov. Particles and Nuclei (to be published).
15. S.Cheman, C.Wess, B.Zumino, Phys.Rev. 177 (1969) 2239 ; G.C.Callan et al. ibid. 177 (1969) 2447.
16. M.K. Volkov, V.N.Pervushin. UPN, 120 (1976) 363.
17. R.J.Oakes. Phys.Lett. B29 (1969) 683;
W. Gell-Mann, R.I.Oakes and B.Renner. Phys.Rev. 175 (1968) 2195.
18. M. K. Volkov, V.N. Pervushin. Yader. Fiz. 20 (1974) 762. 19. M. K. Volkov. Theor. Math. Phys. 6 (1971) 21.

[^0]: *) This argumentation does not refer to special models with vector meson dominance, etc.

[^1]: *) Note that this value of \bar{C} is equal to the value of an analogous coefficient arising in the description of the decay $\eta \rightarrow \pi^{+} \pi^{-\gamma} / 10 /$. The amplitudes $T_{K_{f}}^{\gamma}$ and $T_{Z \rightarrow r_{r} r_{r} \gamma}$ are connected by $\bar{T}_{k e_{l}}^{\mu}=\Gamma_{k} T_{\mathcal{L} \rightarrow \Gamma_{i} \gamma}^{\mu}$, following from the Lagrangian \mathcal{L}_{1}, when K field is replaced by q.

[^2]: We use always the approrimate relation $F_{r}=F_{R}=F_{y}=F=95 \mathrm{mev}$ In this case, with $\theta_{c} \approx 0.26$, the theoretical estimates for the decay

[^3]: TT In ref. $/ 18 /$ the pion mass terms have been introduced by a acheme proposed by Gürsey. In this case one obtained $a_{i}^{\circ} \|_{\text {ar }} \approx 0.12 \mathrm{mi}^{-1}$
 *) Preliminary calculation teking into account convergent box diegrame only (in general the main contributions) yield an ineroese of f and g of about 30%.

