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Ke4 Decay in the Chiral Quantum Field Theory 

Form factors of Ke4 -decay are described in the framework 
of chirnl quantum field theory. The axial form factors are calcu
lated in the tree approximation -which defines their main contribu
tion. The vector form factor is calculated in the one-loop approxi
ma.tion. The results are in satisfactory agreement with the avai
lable experimental data. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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1. Introduction 

There exists already a large amount of experimental and theo

retical works on the Ke¥ decay/1- 81. This process is interesting 

by itself and due to the fact that one may draw from it informa

tiony on many other important physical quantities (e.g., the scat

tering lengths of the ff-Ttsyetem). This is also the reason why it 

has been discussed eo often in the literature. Among the four form 

factors appearing in the amplitude of the ~ef decay the three axial 

form factors may be treated relatively simply. Information on 

the behaviour of these form factors may be obtained, for instance, 

from the standard current algebra approach/4,7, 8/ or the simplest 

tree approximation of the chiral theory/9/, 

On the other hand, the description of the vector form factor 

is considerably more difficult. The standard soft pion techniques 

of the current algebra are now useless because the vector part of 

the amplitude vanishes for vanishing pion momenta*>. Also the tree 

approximation of the chiral theory does not provide any information 

on the vector form factor. However, the one-loop approximation now 

begins to play a dominant role. We recall that a similar situation 

took place for decays of the type 7i 0
- (( , z __., '(( , if., TrtrO,~+f/, 

and K£. --+'f-tra /10-1 11. Ae in the latter cases th; calcula-

tion of the vector form factor of the Ke~ decay requires the 

consideration of the eo-called anomalous diagram67,12- 131. These 

•J This argumentation does not refer to special models with 
vector meson dominance,etc, 
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diagrams contain the main information on the processes which they 

refer to. They are thus of principal importance even if there were 

no other arguments in favour of a reasonable perturbation theory 

within chiral quantum field theory. 

Therefore, we hope to obtain reasonable results for the vector 

form factor of the fe¥ decay by using the one-loop approximation. 

Other more rough theoretical estimates of this quantity have 

been performed within models with vector meson dominance /5-61. 

The respective results are in complete agreement with the estimates 

of the chiral quantum theory. 

The calculations within the latter model are interesting, 

because they help to complete, from a unique point of view (SU(3)x 

xSU(3) chiral invariant quantum theory), the description of all 

leptonic, semileptonic, and radiative decays of the fundamental 

meson octet/141. 

In the following section we shall quote the different par~of 

the chiral Lagrangians which are needed for the calculation of 

the Ke'r decay. In Sec. 3 the axial form fa~tors are calculated 

in the tree approximation, whereas Sec. 4 contairu1 the one-loop 

calculation of the vector form factor, In Sec. 5 we calculate the 

pro ba bili ty of the Ke'r decay and compare our reaults with the 

experimental data. 

2. Chiral Lagrangians 

A detailed discussion of SU(J)xSU(J) chiral invariant Lagran

gians can be found in refa,/9, 10 •15 •161. In the following we shall 

quote only those part• of these Lagrangians which are needed for 

describing the A(~ deo&J in the tree approxt.ation (axial fora 

factor) and one-loop approximation (Tector form tactor). 

• 

.. 

.. 

The Lagrangians which characterize the strong interactions of 

the mesons and baryons have the form 

:r.J. = iZjA ~[~d~·IC -L'(t-cl)f<Jc]; r: t- r.~ ~ (1) 
J } 

" -
;t_2 ~ zrz: 'li Yr re ~· ?"</=; [rfA1-J)fieHf fl(i ... + 

+ j.'{f~ Yty J., -J;. ~·) r U (<-i)j./M {f. e., _ ..J.,.)j J, <
2 

l 

where ~ and ~. are the fields of the baryon and meson octets. 1 i. • 
f;' is the pion decay constant (P' % 95 MeV), 911 is the renormali-

zation constant of the axial current <jlt ~ 1.25), t1 is an averaged 

mass of the baryon octet and ~ is the mixing parameter of the 

f-d couplings (G(."" 2/3 ). The total Lagrangian contains yet a term 

quadratic in the meson fields without derivative coupling. However, 

this term does not contribute to the vector form factor and has 

therefore been omitted. This is analogoua to the case of the z~rt.-, 

decay. 

The interactions of the pseudoscalar mesons are described by 

the chiral Lagrangian ~ 
p2 rl {"~ if') -I·~ 

~ = 71 }JP ~ e ~ e ) o> 

where f: l_ -!- .i\ A.. ( .i\· - Gell-Mann matrices). The mesons 
/:9 "'- t "'t"', " ,. ,., 

get a finite mass by adding a symmetry breaking term to eq.(3) 

which, in the scheme of Gell-Mann, Oakes and Renner 1211, takes the 

form 

~ Jml(~f'[<;in~Bc(e'9zz + U.2Bc.(e··~s]+lz.c .. <4> 
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0 
t'Yla:oia the mass of the K meson and 19c is the Cabibbo angle. 

Finally, the weak interactions of the hadrons and leptons are 

described by the product of two charged currents 

d5 :: ~ [J,.:e J: + h.c.J > (5) 

where G" 10-fM ~ is the Fermi constant. The lepton current reads 

J;(x)=':Vrr) (1-¥r)'t'"f!: + : lte)(l-rr)d're: > (6) 

where J1 J e J V(J',e) are the fields of the muon, electron and neut

rinos, respectively. The hadronic current is given in the usual 

Cabibbo form 

J: =C£J.~fYc(V-A):,2 +s~ec(v-A)t+,s (7) 

where V. ~ ., \/.)' ·,,I' " ... e ,.?lYe A,. Ar . Ar 
• 1:1;e = ~: -t t e are the vector or 

axial vector currents, respectively. The hadronic current contains 

J"'J,.Jr baryonic and mesonic parts, J.. ~ e, + ..,.. • The baryonic currents 

read 

(v,); = -1. :riC yrfl(e 't: ' (8) 

{As)~ =-9A: 'rl(rs-~r[c(d,"e -t(r-c!.)fi-=e] r-e > (9) 

whereas the mesonic currents are defined by the formula /9,14/ 

i fJ ) ,. 8 ( ) J1 • 1:"'2 i~ }'l -if 
~~;~~ ;=f;~• v~-A ... ~::=-tr· e~o e . ( 10) 

Using the Lagrangians (1-5) we are now able to calculate the form 

factors of the I(~ -decay. 

3. Axial form factors of the K6t -decay (tree approximation) 

K·f 1- - - .1 Let us consider the process - 71 ~ 71 + e t" v • The corres-

ponding decay amplitude is usually written in the form 

6 

.. 

r = 1. {f (p.,.-rp-)"' + 91p+-p)" -t 't. 1rtc.- p-- p.,.) .... + 
Ke+ mK (I [I 

7 c-£: crvf()(Ptc.f(p~.,.rY)(p~-p-/-1 e;-\ ( 11 ) 

where p "tJ p- and pIC are the momenta of the 1ft J if- and I(+ 

(-) • 2::. - ;' f mesons, respectively, and er - SIM6c.rz U~(r-r•.~~rue. • 8 
and 't are the axial form factors, 11 is the vector form factor. 

The calculation of the latter is the main purpose of this paper. 

As the axial form factors get their main contributions from 

the tree approximation we shall consider here tree graphs only. 

The relevant diagrams are shown in fig. 1. 

I 
11"+ 

I -K+ 1 e 
. ----<.v -- ' 

'\. 1(-

a 

Fig. 1 

1!+ 
~ 

+ //-<e K / 
~· )J ', ,,c 

b 

Diagram 1a can be calculated by taking into account the 

following part of the Lagrangian ~~ 

-t>(')= IJ2 {7r-(K+J 7Tr Jit-J ~r) -2/(rl{l-~ lf]L (-} 
o(s 3P (I /' + 1 

"/" I' r ' 
where L(-) . G- - ) /"' = ~1.¥ t9e iJ2 II {1-~r rre 

This diagram determines nearly the whola probability of the 

(12) 

decay and the magnitude of the form factors ~ and jr • It gives 

nee to the amplitude 

r(tJ.=]} (3pt- r-9 ) 14 e;-J) (13) 
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where q = p;c- p-t- p- • In order to get also a reasonable expres

sion for the third form factor ~ one has further to investigate 

the important diagram 1b. It can be calculated by using the Lag-

rangiane 

..p(~)- -'{2 F' J K,. L (-) 
ot_s - 2 'I' I' ' (14) 

.k_ rj',: _.-L z(lT.,.TT-'J K.,. 1 Kr () TT.,.I ·rK+Kt-
3 I, {F'l' '/' Vr ~/' Vr .,.. 

-{litr.Ti -)A (f"+t;. KJ- 7i .,.~ JT_k",.~ f,.- ;;-~ 7!+ j(r~ K r-

{iltJCz." mf)lirn-K'rx,.}.. (15) 

which are parte of the Lagrangiane _, and ~ , ~ • This diag-~S ~~ ~ 
ram contributes the following expression to the amplitude 

T 11
)= ~ fJ-. 6 f.cP-)ore_t-) (16) 

6 ,.. ( • tjZ- 111,f 7 I' 

By adding the contri butione T ~~, T fZ) we o btein the following exp

ressions for the axial form factors 

j ' nit( ' 
"-g= 1)2~) t .,. {2 ~" ~ = f 0 J PT: 0 

J;"' 1\t~-Ol ~ -
t Vir 1 p -=-0 

( 17) 

The results (17) are in complete agreement with earlier calcula

tions using current algebra (see ref./7,S/). 

4. Vector form factor of the Kelt decay (one-loop 

approximation). 

The calculation of the vector form factor h may be done in 

complete analogy with the calculation of the decay amplitudes for 

the processes I[ ~lftR'-4 and !(L_ _.JrtJT-({ /10,11/. 

These amplitudes are contributed by the box diagrams with strong 

8 

I 
J 

:J 

vertices given by ~i and triangle diagrams with one vertex of 

the type LJ. and one vertex of the type .;tz (comp. fig. 2a, b,c ,d). 

K~ 

a 

1C 

K"" ,I 
-·~ n• '\::.e ---

j) 

c 
Fig. 2 

/ 
1[+ 

K+ / 

-~---·-

b 

n+ 
/ 

/ Tl-

K+ ~~ ---- 8 

d" 

e 
v 

Fig. 2a represents schematically three types of box diagrams where 

the lepton pairs are emitted from a baryon propagator between the 

K + and 7ft me eons, the K -r and lT- mesons, and two neighbouring 

pions. The Lagrangians associated to the vertices of this diagram 

are given by 

LjJ.)::. tT2 JA ~ JTt [ p·n + (l-2ol) ·;::~ z-~{id(X·z-.,zt!l) ~1£?) 
+ f2 (1-J..) (L o.z-- IYI 0)] + h.(;. J 

-P fl) • r: M K"'[ ,\- -
d..., i.. ~ t 12 9A -;:;:- (U-1/ h ·[ -t U-1 -z..O h?o{- -.,. " fip· -vp·Atz. 2 _ 

~~ '-"-
'-

- 1-
~ 

~ /i·D-J '6 £..,. ) 

(19) 
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.r;3)=[rz--.zt-z~ 11 -# (r 'Xp• ~"L'J-.JJ(K·p~ 2~~-"D'L;) (20) 

We have used the notation: • -=. ¥s ,.. -( ~ ~) and ,. ;: '({ JA • 

Retaining in the integrals only those terms which do not depend 

on momenta we get from fig. 2a the following contribution to the 

amplitude 

T n= ~ ~~;f'3 tr~f("(p~y'(p-)P(p~)r et-) ,. ) 
(21) 

where 
C

0
.: -2J,JA';).. (1-2.o{+ fo(t) ~ -b.5 . 

The diagrams 2b-d contain vertices of the type ~ • The corres-
2 

ponding Lagrangians read - -

;i (''== i r~ 7r'fra,.~-t)(pxp -hxn) +[i- jA2 (1- lf.J.(I-J.))j{Z; :;.--
z (z ;;;z l "d 

- z:·- Z:')+-z[9:(!-u.+!f-<1-.i](L+"L+-z--,.z--) + 

+ * .{('-~) 9A7. (A~~[or t-;A)j, 
oL. == i ,.. -n 9A (i+4.t.(t.(-j -i f-,.z.,. + 

2. f2 (21")-z 

(22) 

-f(l) Jl~/(+{ [ z )~ ] 

+ 'fi[9:(i- fot.")-1] r-)1 E~- [9: r~T lt.t.(J.-j)-J] h )C2°t~:-1)f~ zo-
- " [ 5,' (1 + f.<-r•-•>)-J]A ·?' ~ r. Csl (i ·tot. r•-11-JJ;;;, 11] t 
~~ - ( • t -+ - - -+ L K ~ J' r X \.1 + pxJ: ) .3 rz. r L.. • 

(23) 

We again retain only constant terms in the integrals for the baryon 

triangle diagrams. As a result, we obtain the following expression 
for the coefficients C 

10 

i 

t 
j 

c: = c:= c~[-1 + 9:(~-b;/..'T 3~.x~)J.i 

C A- _!J. 9z oll. J- 3 A ) 
A 

C:crc+J =d..+ 
(24) 

Summing up all baryon loop diagran~ the total contribution to the 

vector part of the ~e~ decay amplitude reads 

v ;=;=,~(-) j_ c .; (j' r = , -c= -iA .. £I" 'f , D ) 11(p... -Jf /.p+ p-:)Ce(-) (25 > 
.fll fi81("F' ll "" 'tf u - )'•' 

where 
e_ = ,ot._ 9i[it (U-.i)lj :::2.4 ·~ 

Eq. (25) provides the following expression for the vector form 

factor h (comp. eq.(11)) 

~ =- ~;~ (f~)l 

5. Discussion of the results 

(26) 

(27) 

In order to compare the above results with the experimental 

data (see ref,/1-3/) we shall give first of all a rough estimate 

of the probability of the )(e~ decay. To this end we consider 

only those parte of the amplitude (11) which contain the form fac

tors f and g.. • 
This yields the formula 

~ ~ /0-10- Sh.$c. tt!Ji (28) i. [ . ~ ]~ 
Ke~ 6T miC {lx-)zmK 11/' F' J J 

•] Note that this value of C is equal to the value of an 
analogous coefficient arising in the description of the decay 
~::!'llt'K-( 1101. The amplitudes~; and 'lf.~rt,-4' are connect~d by 

Tt:-= r,,);-:r.,-1 , following from the Lagrangian .;fi. , when /( field is 
replace'a by Z 
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where J is a phase apace integral given by 

~-1)2 7 

} = j dJf -.J(Clz_,y·;. x[~ -2{az+1)] [)( 1- K(x•-1) -~ r/2 x ~X J ~ 355 .> 

J (a-= tlt~c/tM1i) . 
To get eq. (28) we have used the values for f and 8 obtained in 

the tree approximation (eq.(17)). With the value '6e= 0.26, eq.(28) 

yields *) 

Wtl. ,._ 1.. 7 /0, -j 
" - ,T S Lta, (29) 

The experimental value ie (see ref./1/) 

Wt:~p:: (3.2 6:;: 0. iS)· iO" s-1 {JO) 

Keeping in mind that the tree approximation ie rather crude the 

theoretical value (29) may be considered to be quite satisfactory. 

The·numerical estimates for f)~ 
h =- ?>.+ . (31) 

h and give 

f=j= ~ ., 
We recall that the main task of this paper was to estimate 

the vector form factor h of the K'ev decay. In this case, ae 

already mentioned, the one-loop approximation ie of principal 

importance. On the other hand, the form factors f and a get 

already a large contribution from the tree approximation. The one

loop approximation should then only slightly modify this estimate 

(formulae (17), (31)). A similar situation baa been met for the 

case of the ~H $-wave scattering length /9,1 81. There the eeti-

*}We use always the approximate relation Fr•F;: F;wfi'=.95 lleV. 
In this case, with 9~ ~ 0.26, the theoretical estimates fl)r the decay 
rates of the decays Tfi..,. ;II and K':t ..-11 are in good agreement 
with experiment (see ref. /14/). / . 
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mates for a: in the tree a~d one-loop approximation 

follows*) 
- -1 

Q
0

1 ~ 0.1~ Mli 
0 h.u. 

Qcl - 0 3 -• o iouL d-f.o~- .Ia ~. 

are ae 

(32) 

In the case of the axial form factor the number of the baryon 

loops considerably exceeds the number of the baryon loops for the 

vector form factor, and many of the loop diagrams even diverge. 

Usi~g special regularization methods which are characteristic for 

nonpolynomial theories (e.g.,superpropagator methods/19/) we may 

calculate also these diagrams. They will give a more complete infor

mation on the form factors f , ~ and '[ and detennine, in par

ticular, the slope parameter A of the form factor -f • (The expe

rimental value of A can be found in ref./11). 

In the present case our calculations of fJ~ and 't **) have, 

however, been perfonned within the tree approximation. In order to 

compare with the experimental data we consider the ratio h/j 
quoted in many experimental works. Using for f the recent results 

of ref./1/ and for ~ our theoretical value, we get 

h~ [Q -= -3..1 ; fe,.f ~ b.t~!: O.h j 
T 

h --o6 -" . 
fe1p 

03) 

~In ref.l181_the pion mass terms have been introduced by a 
scheme proposed by Gureey. In this case one obtained Cl:ltl<L-:t 0.12,.1'· 
The above value (32) refers, on the other hand, to the mas~ term (4). 

ee) Preliaina caleulatioJl8 taking into account convergent 
box diagram. onl,-1in general the ~~&in contributions) yield an 
inoreue of -f and j of about 3015. 
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The experimental values are 

1) rer/11: h = -2 95!. O}S") ~ :-Q'i8 !Qi'2) Q~"-(OLi'!:OO;)ti-1E'-I 

2) rer.f2/ 1 h/f = -0 "f.l .t o.Bj c ( ) -1 Qc = 0.11±0.1:!. M11 

3) ref .f3/: Vt-=- 0 9~ 1: 0. 'f6 

For completeness, let us also quote the theoretical estimates 

for h obtained in a model with p -dominance /5, 6/ 

1.5~ \h\~5. 
Thus, the above calculated_ value of h is in good agreement with 

both the available experimental data and other theoretical esti-

mates. 
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