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0{1) pasnomxeude Ha CBLTOBOM KOHYCC : 1. Introduction

B pafore pACCMOTPEH MATPHUHLLE ITEMENT KOMMYTATGDa SUCKTPOMAT= !
HHTHBLIX M cnabux Tosop., Ueanw paloTol swlneTCH BoiACHEHHEe CTPYKTYPRE(
pas/iomeHE A2 CBETOBOM KOHYCE B pamxax ofMdX NIPUHUHAIOE KBaNTOBOH
roopun hong, [TpuveonseTcs mpencrapiemie Hocra-Jlemana u pannoxende

emexTpaubHol byHKiME B pPAA Mo Muorowenau [eresfayepa. [okannipaeTou The dynamical treatment of deep inelastic lepton hadron
CXOOUMOCTE PAJNOMeHud 1o rpyle {0(4), upu »Tom HeT OrpavudeHMA 03 3 . N 3

n
CHPYHHOCTE CHeTOROrO KOHYCAa. Qfcyknaerca CBudb Memay KoaddpuimesrTamd scatterj‘ng on the basis of quantum Ch'romOdyHEEics relies 1
ABNOMENUH U MOMEHTAMH CTRYKTYPHBIX HKUME TiUySoKOEeynpyrora paccesd— .
Euﬂ PEE o Y e ? an essential way on light-cone expansions of current proaucts.

! Por scalar currents it is assumed that the following ex-—

Pafora ewimonuena B JlaGopatopun TeopeTnueckoll Pusuxx OHAM, pansion of this operator product is valid near the light-

cone /1/
e , M
‘i““ "‘llﬁj = 2 C“ ] 0,.\‘..-/&‘ £} XJM',-- w/ l‘\.")
¥'eo W=D

CooBuenne OfbenHHeHHOTO HHCTUTYTA I K WCCRenoBaAHAH, 6 ] . f ) . :
" Ty nepanx dccaenosanuf, HyGua 1978 The 1ight-cone coefficients Cyuy are generalized functions

Rohaschik D, Tridger (n., Wieczorek [, E2 - £20:45 which have singularities at x2=0 in general. The local

0{1) Expansion on the Lighl-Cone operators Qﬂnyu“ are characterized by Lorentz spin n

We investigaled the structure of the light-cone expansion of
matriz elements of current commutators for clectromagnetic or weak
currenls on the basis of general Quantum Field Theory, For this
aim, the DJL representalion and thc expansion of the speciral
function in terms of Gegenbauer polynomials are used, The convor-
gence of the 0(4) expansion is proved, The connection between the
expansion coefficionts and the moments of the structure functions
of deep-inelastic scatlering is discussed.

and scaie dimension dy.Without further assumpbions such an
expansion cannot be proven in the framework of general QFT.
Also in perturbation theory only recently serious results
have been obtained /2/.

Here we investigate the existence of the corresponding
The investigation has been performed at the Laboralory .

of Thearctical Physics, JINR, expansion for the matrix elements itself on the basis of

general Quantum Fleld Theory

Zeil4omdiolie) = Lo % Can (x9 CC,, (%\(“X‘J" (1.0

Communication of the Joint Institute for Nuclear Research. Dubna 1978 as well as connections between the light-cone coefficlenta

and the experimentally cbserveble moments. The main reault
© of this work is the proof that the light-cone expansion
1878 O # it
GLeAnHeHRDIE HHCTHTYT afepHeix HecAegopakuh dybHa (1.2) converges for all values of x. ihe main 1ines of

these investigations are presented in the second pection.
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One important point of this proof are the expansions of DJL
gpectral functions and test functions in terms of Gegenbauer
polynomials, details of which are given in am Appendix. In
the following section the relations between lipghit-~cone
coefficients and moments are studied. Bere a chain of for-
mulas 1s derived which is very similar to a set of equations
given in & previous paper /3/.

with the help of these results the following conclusion can
be drawn: Whereas in the non asymptotical region a correspolle
dence between moments and light=cone coefficients exiatas

one-to-one relations cannot be proven for these asymptotic

expressions without using positivity of spectral functions.In sec.4

an extensicn of these results to nom forward scattering is
discussed. 1t is interesting, that the representation of
the moments with the help of the absorptive part is more

complicated as expected,

2, Light-Cone lxpansion for Matrix Elements

In this section expansions of tehe matrix elements of

~current commutators C(xdﬂ = LPl[iuhﬁoﬂ1p),j = scalar ocurrent,
are studied, Tt is more convienent tc use the symmetrized

commutator defined by /5/
( Coxppnnr Pox i) = (Cut Yy, ‘#““';’) (z.1)

o= QTET T P T ) -P Rt ¥)

i of this com-
‘th:.,i’;(—. S¢rY) ,‘#(;’;,63 S(eﬁSimple expansions

mutater

C—_(»&, XYy = Z\Q)% Lmh Ln 1y Eﬂ (*.3)
have been investigated in a previous paper /3/. It has been
shown that after an integration of eq.(2.2) with Gest
functions Weas €54 this relation is nothing e&se but =
Taylor expansion of the entire function ‘C‘ﬁztﬁ(ci“;;t),?(%")).
For physical application it is more appropriate to have an
expsnsion in bterms of gpherical harmonics which have a direct
correspondence to the operator product expansion (1.1).
Furthermore for such expansions exist simpler connections
MW%nH@mcmemﬁﬁdm%aﬂewmeﬂﬂywmp
vable moments,
The direct way to get the desired expansion ot the symzetri-
zed commutator Cood, 4 gtarts with an expansion of the
entire snalybical function E-":i“) . Here +the variable ¥
has to be comsidered as a part or an euclidean tour vector

4
Y. with xg X +x% | The parametrization of the space R

B
with spherical coordinates reads

X, = | Xgh M B Wiav nim xg = |Xgl M Blny, 2w

. = 1% | ez B
K;s\*s\"w\;g"w“ M, X.‘—‘ el '

The spherical harmonics are /ef .
Ate - e ™ b
Vem (0,v,p) = Yuem Cy.e (nB) 2 @ Py temw © (1.5

L]
LEm {(:T:U-FLQJ =)t (el e-mt Mihem

Ylewm * (et 1eam)
R n

snd the corresponding harmonicel polynomials ard



Heem (0 = % Yaem (8,7, 1) (2.4) . In the special case
off Torward scatbering C depends on x* and %" only,so
that the spherical harmonics with k even, l=m=0 are

sufticient to expand Ev\i“) » Because of the orthogonality

relation of the remaining (Gegenbauer polynomials

n
. 1 A
Shd‘a %8 Cuiwd) Cricony = 273 (M
it is easy to Show the tollowing expansion:
-, ¥ A
(_*V = S_'. Cow Uty (XD " . :
(<Y - e | &) g C?—h l“;:;,} . (232

. T -
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Af'Ger dropping the test runctiorn the following series is
obtained

Eul-, Ry o= }; Cim Oy W) (xlE)" C?_L [F;I;t} , (2.‘2\1)

+1 —_

C—h\\x‘;:{é)z Q(‘E]'h 1.% §Idw8 Fom ) C’L“‘, KLEWLB). (1.‘3&)
This would be the desired expansion it we could identity
Xg ==X, xF e~ JBach term in eg. (2.9a3) is an soalybical
function with respect to the variables kIE and x.‘r s S0
that an snalytical cuntinuation to values wé’ &0 can he
done gnd the identiticabion xé'-:*\(")\(:’z— o is possible,
In this way 1t is however impossible to prove the convergence
of this expansion in the Minkowaiki space, l,e.,in that region
where it shoula be applied,
For this resson we justiiy this expansion in ansther way.
The starting point is the DJL representation ror the

symmetrized commutator

o
- I ~
Cony ;1,:&_;_’?8 A D, Y (% (119
] °
f)u",h“) z {;%;I(B[\L)jp(LR?’) (.1
e oz
L3 Lya = gﬂl“u e t U JUNCIN @

In the cese of forward scattering there exlsts always a
Jost—Lehmann spectral function Yeuay = 3 Wy Yy iy

L
with the support restriction [Q)s1, N x (1= =)

The function (¥ reads now

- L w ™ - -
C?(i") = Hi?ﬂ \d“LSd%L ?(%L) Du,»,,}; q’t,L:,r\") (2.3}
0 . .= P e
i x Lux
= f-—;%dl: ¢ (WJL!I,_.\"}, ?I'&U*T'))z gu e xux),
where R
Yoo = {%Jﬁw)fh(a-ﬁf),‘f’(x‘)) 2y

is again o test function of the space 5 . #ith regard to the
0(4) expansion we interpret the variable 3 as the first
three components of a variable WUg acting in an euclidean
space. Then the euclidean function Xgtug = 8 (i K
leads to the same result for C‘P(\?‘) if we ‘vake as Fourler

transform
L e 1
L{wx +u.‘x.‘)

E_?L"L) = \du.‘dd e XFU“E) (1.\5)

x
The next step consists im a O(4) expansion of the function
Kglue) which is a geperalized function over the space 5.

For this purpose the O(4) expansion of test functions from
the space S{rz") must be considered first ( Appendix)

(ng) = 2 Puam (uty Ruem Gg) (tlba)



% { :
Puem (uk) = lua) S AL Y cem (uliuery P :
A L, gt ) (Me) (Luw
This series converges in the topology of the space 5 (RY)
(see Appendix), Now 1t is easy to set up
= A
Y g tugy ?Q\ X wem (ub) W om (ug) i {11}

) & }

where the expanslon coefficients Xyqmw (ug) are defined by

(Xuem (uzy i) = (Xswug, Huem (ug) Pru) (2.0%)
L]

The series (2.17a) is convergent in 5 and has to be under-

stood in the sense

(’IENE),?(uQﬂ = %mLIEWs), Hmm Lug)qxem(“'ﬁ_l)

Eh ( Xxem(4B) Puemtue) (2w

= “Z( (x““"‘[‘*’é)Lu;)-KHKEMLHE},\fme))
-

»
In our special case the function xﬁma) depends on l-\.r,trﬂil
only so that the special harmonical polynomials Huewm

with ka=2n , 1=m=0 appear in the expansion

w
Yetwe = 2 Ity G )
mlUg) Loy (Bu M =

} ol Con tmd)L =) ,?m'?%%i.(l'w}
Contributions lecalized at n=0 have to be considered separately.
Having the expansion of the funection XE it is possible
to prove the existence of the Gegenbauer expansion of its
Fourier transform C'f(}‘) in the complex x-plane. We start

with ¥ L 4 "
Tetug) = Ketugy ~ :2_.-'"%1“{“5) G (5 V)™ (2an)
-

which converges G0 ZeTro Um Ty ug) =0 in 8'(ry; .
Because of the finite ra,n;e-)zf the variable w  also
rr"ms,é"a“s converges to zerc in S‘(R‘*)fcr all finite values
of y. PFor this resson the Fourier transform of W(ue) o e

exists and has the same property
(24)

Lug (xg*iyg) ol 4
gdquQ_ c (IE(HE)_Z. ‘am';“l‘e) Clntlﬂ" \“:L)*?D
M, = gy (TR

this means that an expansion of cf exists and converges for

all finite values of g, %e<{y.r’he following calculations

show thet this series is the desired Gegenbauer expansion

k2¢8a) - N L]
- - Lug X A
Clezy = S"“ue e 7 %) Gy (28 YT
"M = \gl 7,

o .
LUHe ¥ 4

- dMuge T F 1 Y ¥

421:-0& = Naulie) Cl“‘ffei "e

H

S N there (.
z Hm oc k-‘%}) SD\ e © ‘BMME) R
nw

#

=X ERLY 4 in

Xg C) (m (21 K
'Eu & Vo { 'IxE\) Vg Y2l Xg)
Hereby formula

Hik m'\m( %’;) {’(1") = ch “mk%%"ﬂ,)v‘tfot‘) Qay
nas been applied, The continuaticn to the Minkowskl apace
contains ne further difficulties. kg. (2.22) has to be
compared with eg. (2.8a) which however converges now for
all tinite complex values of x.If the test functions P
are omitted whereby the coefficlents Cth‘; xg) appear

instead of C.'r then the expansion (1.2) is obtained by

XD
setting C,. O Xa=-%) = Guxy,



Finally one remark concerning the character of the light-
cone coefticients is added., We will show that £, (v

LY
are not generalized Functions of the space S:_. At first we

digcuss the expansion ccerficlents E.L given by eq.{2.8b)

hdl
\ -n -~
Co = 3 (,‘uu A=y Q‘P( ©E (A-Y) (1.3b)
From the Jost Lehmann representatlon ror Co<¥" it follows
. Tt -
that L' is an entire analybical Ffunction with order and

type smaller than one, s¢ that the estimate

- ) am TRT
1(.‘\,9{:‘)‘ ¢ Ci,\o (\+R;T?'")"gm )| m T

Coy Lk, §30, p integer
is fulfilled, Because of the 1rinite range of the integration
in eq.(2,6b) the coefticients have the same analytical

properties and allow a similar estimate
o Yy =i
‘ Ct:“ (K;j\ ’:; (_.,‘l““f (\ + Rz]’*“e )" Q, )| v_‘i )

Continuing €Y, to Minkowski space x*= -xg¢e it is obvious

that &F, may exponentlally grow ror x— & , Consegquently
atter omitting the Yest runctions and identifying the
variables Cr;..t-x‘) -3 Ch(x‘,_x‘) = (. xy the light-
cone coefricients C,. are not generalized tfunctions over
the space 3'.a satistactory definition of these tunctionals
needs test functions which are exponenetially falling at

infinity, ¢.q,

4 Ix.z.
PPyl = max g \(\+X"}fé+£' e\ l
LEP R, 'DX'-) Yoy {Qou

851, .4 wheger,

%. Connections between Light-cone Coefficients and Moments

Phe relations between light—cone coefricients and moments
consitute a conmection between guantum field theoretical
quantities and observable structure tunctions, In the case
of O(4) expansions these relations have been given 1n/4/
.at first. Here they are obiained without restriction to OPE,
With similar arguments as in the foregoing section the
light-cons expansion of matrix elements of Twproducts of

currents cen be esbablished!

Tones = <P Td0a 30> = 5.:" ey (e Tan gt 0G0

The differences are: in formula (2.13) Bw‘.u‘p must be Te-
placed by D¢ (y,») «The analogously defined function

Pointy = wint {ay Dogiay is not & test function, 'There-
fore for rlsing spectral functions subtractions have to be
taken into account and one has to be careful ino omitting
of test functions. In the followlng we aasune that subtrac~

tions are not needed and consider the T-product at

euclidean values
Yy

i net _
Tixg,p = 2! Cn-(}‘;“gl)Tz.. (%) , Ton (x5 ™ Tantnd, %)

The moments have to be primarily defined as expansion

coefficlents of the T-preduct at euclidean moienta q’é:-q‘:&}

T Yy = A ...(_.il:l 1 .
Qe) = % z(q'a" C‘*(%?‘l) P (%) (3.3



M) "=1:43“\‘11P“8Aw Co (2 3T
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Substituting the Fourier transform

~ <
Tag = Mxe Mo 1 (1Y)

into e€q.{3.3) and applying eq. (2.23) we get

Manee) = ® 2“(‘11)1“(};“\“ [FRCHN

o~ Claxe 3.3

Tocdr s fAxe €77, ()
It is remarkable, that all contributions to the n-th
moment come from the n-th light-cone coefficient only.
For each finite q’é exists a correspondence hetween the
moments and the light-cone coefficients. It 1s however not
clear what happens in the limit q::’m . In a previocus
paper /3/ we have shown that in this limit the light-cone
singularities determine the asymptotical behaviour of the
moments whereas the asymptotical behaviour of the moments
must not determine the light-cone singularities if only
spectrality and causality are taken into account, Despite
of the simpler structure of the 0(4) expamnsion the same
conclusions as in /3/ must be drawn here,
To see this ,we apply representations with euclidean

spectral tunctions, so that

. — P
(_,(:4.’- Xty = - \*L" Doy Mo 3y (3.0
in b

gk

'
Y = Sdlue @ Weue, o

2

T(qe = LS"“‘“E ax

Simple calculation give:

L‘i y " qh“el"l’ (B33
E” E\ - N

A .
Coayey = L™ Gy Gee,

Go
Cornot,-xy = —":“1\1\ m}“_}@w“" pS (”‘r:‘?))] %‘"L*t )
]
4
R 008 -k = 20w g ugy™ ™ Jen (e 1) Mutug 2
o (“E ‘——1“‘1’ )‘Lb\'H.

N 'l,a,‘ 1 Tatl - 1.-_ .
2‘% o ey s *(—u Sdu Lu Wlut“e AT
1h+\ » (41’W )U\"'L
(@4 A4
w0 A
= 1 Cpb ot
Jn gy = LT Ron (0,9 1)

(am & L\.)‘LM— i

Y@, = 2 c;..( e )(“g) M (uE N
Here the continuation to Minkowski values x'«-%; and 4z =8
has already been done. As it is expected ,the connecticuns
are valid for each n separately, The resulting chain (3.8)
is very similar to eqs. (3.2),(2.6) in ret. /3/. In
distinction to /3/ the functions Cv.-.(x‘,-x‘}‘, 9\,_“,:'_\{‘,]'»“(3‘, by
depend er a secona variable in a very special manner however.
For the investigation of asymptotical comnections these
limits in the second varisbles cen be performed independent-

ly, so that we have to discuss the relations with C'u\(*", 0)
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N
R 007 5 b 08 @) ,the additional variables fixed

to 0 ores, regpectively.

4. Generalizations to Non Forward Scattering

Here we consider some obvlous extensions ot the results
of the roregoling secticns to nonforward acattering.The
convergence of light-cone expamsions can be proved similarly

as long as 8 Jost Lehmenn representation is walid .

c : L\

Conyy = 2 CreggYwea tp W) 2 M
ne © )

CKQ("-",!"Elz (}“'-)_% SA“L‘]) (-(M", 8 Y«(o(’]}. (‘1?.]

The amplitude in momentum space has the expaneion

-
= u .
Teaey = %Jﬂs) * Y\(Zv(f‘:’é') Mxecagy 12 \."" (4.3

— 6 ok
) 1 1

Mue (q0) = gA‘Uq) T('\E) \/uco(,'%’e'](qr;] Peog, ()

If a light-cone expansion for the amplitude in x space is

written down :
-3
Ttx;,:l = Z T LD Y Ve, () 102 )

then quite analogously to eq.({(3.5) the Christ Hasslacher

formula follows

P T S
ety = TEAD (Y Torry ) ket (19

Of course chains comnecting light-cone singularities and

momente exist too.

4

One interesting point is the expressicn orf the moments
in terms of structure runctions., The simplest way to derive
such equations exploits dispersion relations, If we consider

the symmetrized amplitade
$ ! L
T £q,p k) = L T, v, 1,50 Y T-a,p 74,00
1= {0t 2 Ry, ke PRy
then the subtracted dispersion relation

* .

1 ¥ . Tl :
Taro=To + g *dﬁsd‘ii W d e (‘%HE } (L«
' q'l4 9 4:-9, 44,
e =]

et
LYY

leads to the expression for the moments

y L (
Mxe = Ce Sd" Ciat=0 MRy o S‘)“ Coctr Wiyl §,0 +dlue

3 (ar.t -
h‘e('ls".‘) l
4, 4, .
R = 2 s
KYTONE X ol 3 & ) Ckgl eh‘,f constgufs ;

which has %o be compared with

M = S‘*I 77 (a4 %) Wiy -

LEL]

only in the case l=o there appsars the Nachtmann variable
4 Kty

" trs
Ly £oa (- oy ) o (e
e A G A

5. Conclusions

The O(4) expansaion of matrix elements correspondstc the
operator product expansion on the light-cone., Therefore

we are more Interested in this expansion then in the group
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4. Generalizations to Non Forward Scattering

Here we consider some obvlous extensions ot the results
of the roregoling secticns to nonforward acattering.The
convergence of light-cone expamsions can be proved similarly

as long as 8 Jost Lehmenn representation is walid .

c : L\

Conyy = 2 CreggYwea tp W) 2 M
ne © )

CKQ("-",!"Elz (}“'-)_% SA“L‘]) (-(M", 8 Y«(o(’]}. (‘1?.]

The amplitude in momentum space has the expaneion

-
= u .
Teaey = %Jﬂs) * Y\(Zv(f‘:’é') Mxecagy 12 \."" (4.3

— 6 ok
) 1 1

Mue (q0) = gA‘Uq) T('\E) \/uco(,'%’e'](qr;] Peog, ()

If a light-cone expansion for the amplitude in x space is

written down :
-3
Ttx;,:l = Z T LD Y Ve, () 102 )

then quite analogously to eq.({(3.5) the Christ Hasslacher

formula follows

P T S
ety = TEAD (Y Torry ) ket (19

Of course chains comnecting light-cone singularities and

momente exist too.

4

One interesting point is the expressicn orf the moments
in terms of structure runctions., The simplest way to derive
such equations exploits dispersion relations, If we consider

the symmetrized amplitade
$ ! L
T £q,p k) = L T, v, 1,50 Y T-a,p 74,00
1= {0t 2 Ry, ke PRy
then the subtracted dispersion relation

* .

1 ¥ . Tl :
Taro=To + g *dﬁsd‘ii W d e (‘%HE } (L«
' q'l4 9 4:-9, 44,
e =]

et
LYY

leads to the expression for the moments

y L (
Mxe = Ce Sd" Ciat=0 MRy o S‘)“ Coctr Wiyl §,0 +dlue

3 (ar.t -
h‘e('ls".‘) l
4, 4, .
R = 2 s
KYTONE X ol 3 & ) Ckgl eh‘,f constgufs ;

which has %o be compared with

M = S‘*I 77 (a4 %) Wiy -

LEL]

only in the case l=o there appsars the Nachtmann variable
4 Kty

" trs
Ly £oa (- oy ) o (e
e A G A

5. Conclusions

The O(4) expansaion of matrix elements correspondstc the
operator product expansion on the light-cone., Therefore

we are more Interested in this expansion then in the group



theoretically more ravoured 0(3.1) expsnsicn /7/ which has
nc such counterpart.

It nas been shown that this O(4) expansicn converges inm the
full complex x plane. The light-cone coefficients are
generalized functions which in general do not belong to the
space S;. The moments are primarily defined as expansion
coefficients of the T-product. Because of the group theore-
tical crigin of the 0(4) expansion each moment corresponds
to one light-cone coeffeient only. On the other hand the
0ld result remains true:The g-limit of the light-cone
coefficients determines the emymptotical behaviour eof the
nements whereas the asymptotical behawiour of the moments
must not determine the g-limit of the light-cone
coefficients if only spectrality amd causality are taken
intc account, Generalizations to nonforward scattering
can be obtained if a three dimensicnal Jost-Lehmann

representation is valid,

We would like to thank V.A.Matveev, A.N,Tavkhelidze

and B.I.Zavialov for fruitful discusaions.
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Appendix

Expansion of Functions of the Space S(R4)1n Terms of Harmonical
Polynomials .

Here the expansion of test functions T in terms of harmonical

polynomials
Yoo = leh Prem () Huem (0 (A
-% v
Y“M=(ﬁ)‘gﬁanuuhNu:,T'h (A7)

is investigated, The ilmportant point is to show the conver-
gence of E;r‘?ktm(g,Hugm(x) in S(R,). Then it follows easily
that this sum represents the function Fim in each point .
The proof consists in an egtimate of each term of this series
leading to its majorlzavion /8,9/. et us remember some facts
aboat spherical harmonics in four dimensions. They form a
complete and cloped set of orthogonal functions on a sphere

E§’ Y"nqn w, (M) y“l € m, () d Wy = 8"1 Y s"ae't fj""\."“z.

dw.‘.n =4 'lr':ﬂlb db ‘M;h'dv CVL [A-])

For each k exist Nug =(%+" linear independent harmonical

polynomials whieh are eigenvectors of the spherical part Aq

of the four dimensional Laplace operator & ='|'-1..?|'_“1%_ +¢2 A,'

i

By Uaem 00 = =410 Hygm, 00 (A4

Furthermore they fulfill the integral representabion /6/
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_ 2%k *
Reem (o = ——}r_] S dw(\ﬂ {0 Y&em(q) (A.S)
m 83
and for the spherical harmonics the addition theorem
- k.
Sl Ny UL i .
£ Yaemtn Teemtty =z foum (A.8)
is valid. For g=v this yields | Yuewm | & Wt #'TT (A1)

because of the normallzation property of the Legendre poly-
nomials P&U}=1 . Besides the usual space 5 with the topology

given by

il ?’mllm = )&T (el |pd Yool

,,‘ (A.3)

] 5 '} b _

ﬂ:\Z}"’l; } b rb": Yl A=
the space Sm?) is used, aescribed by the seml norm system

lK-S}
r 1

gl = s 22 a1yt (Res),= mem (R-50),
RIS TR, (A.3)

At Tirst it will pe shown that the expansion coefficients
Yeem O of the function § €${%) are elements of the space
~ -
S(r4) +By construction it is clear that ‘ngm‘”=};‘\“lm7\um‘ﬂ:q
belongs to the space Sug) » To show that the function ¥, ...
~t
is also an element of the space S(g,_) the properties of @y

at r.p must be investigated. For computing the derivativea

{%)‘q\um in eq. (A.10) we apply the chain Tule
Lan ?— . (A4
kr-o‘.. = r'ix ZT‘ n‘s'Tg '3,: \']."; )
g0 that
2 (A1)
Ve E : VR (A
K“?r) Peeme) = SAQ“’PY“"‘ oy &y IWK ')x-,: ! =0

[P,

If additionally the inequality 4w, Kyp  1s Gaken into
account then the orthogonality relaticns (A.3) give the de.
sired result [%—){‘;umlo’ =0 .From this it is obvious
that the even expansion coefticients Yo m (2 = Ki;;‘em(,.;
belong to tne space §(r,) .

As next step the semi norms ‘l‘fﬂmlf:‘:: have to be estimated.

At first they can be relaked to bhe Sry semi norms {A.8)

“ Prem el pqs = S ‘ PO ety (%;%r)q Frem tre

. q K=ty .
£ C e e [ r ?Kem(r’nf"ﬂi,&'.

S;%4
! L P {Aa
and bor 224+
Sy
i 1K) 7 LY T .
| L‘Frt!?.‘rn‘.T)ﬂqu C (Kﬂ)&t"’&(a‘_ “ U,:'?r) Pt (l"'”‘i ;
Bor Relqes (A1

& further estimate with respsct to the $(R) semi norms is
obtained if the bounds ior the gpnerical functions (4,8)
ane the aefiniticn {(A,Z2) of the expansion coelrricients are

used,

. q T
< Clery)’! mary il . £
“ ‘P,H‘m [\-"j“ Fqs oy % 3‘\*: \’p(.‘() Pry dy ln‘\.l«)
As furbther auxiliary step we estimate Lhe derivatives of

the harmonical pelynomials D* szm ) . It 18 obvious
that D‘HKM [65) are alse harmonical polynomials of
degree « - (% because the operators P and A\

conmnute, Therefore

D* Heem (0 = E"‘" q'e|"‘1 Hk-m ¢ my (X -‘ﬁ" i5) £
4



Ds H'“_m g =0 *Dr 19w .
#ith the help of the orthogonality relation {A.3) and the
representation (A.5) for the harmenical polynomnials the

coefficlents Qg m, can be calculated

(A -46)
L Lwany! 2™

T P
e {®-isiea) EB BRI Y“"S'E*““"‘YK““(’]),

4ot o+ T RS
Using eq. {A.7) this implies

5y
(34} Ky \’ 2 LN
| Og ) & (¥ { st & Wil a” Ay

VYT (mergraa ! (R+a~i51)) |

Now it is possible to estimate each term of the series {(A.1)

q-5! 5!
“ Hrem (0 Prem (Y “P‘\ = itﬁl" e ehf \E CS(D H“‘!h"‘?)(o (fxem)i
05s'L1q)

[AL5]

191 +4
£ wut(r,q) (rRen) ? W“-Q 4 ‘PMEMlt)"Fle <) (A
1igi+ \
£ wowth (R M nere W k‘,“““Pflqii-‘; <
= L35 119
s+l

o get a vetter k independent estimate we do not use the

2, )
last expression and study (K+1) Puem (x% using (A.4):

Puem OO '-‘Kﬂ)u= e S"\Wup [(“An\“ ykem(m] fie,m)
%
y o,
= ¥ Sldwt.,” YK%‘mC‘]) [[4-0‘1) ‘f(r_,v])]
: {A.\%)

4 -a
(4'Aq‘d'f(r,q, =[(*‘*'§".‘¢2—*_‘\1'—“Lﬂi P = 0 € S(rY
(A1)

Now eq. (4.8) can be rewritten with the help of the last two

relations, This leads to

& ‘ .
max |l Figresep M
S,< 35 4141

s 20q0
80 that the series {4.1) can be estimated as

-2,
“H wem Ten (\‘)HH 4 Wk (%t PS¢

Y

i HZ Huem Pramll 2 T | Heem oo Yaem ten ll
KL, Kem

a0 R ~1p
£ U3 (key (x4 LYY,
wxp 1S 238 + 11
s 219

LR SPYR wpool Ptiges 3,

(. mex i
T RPRCT LR PrAgLAS S, Q’" 22

LT
This shows that the serles (A.1) converges in SRy}, Eq.(A.1)

5y
is a uniformly converging continous function. For fixed »

and all spherical harmonics Ywem

de“\’ Yme.m. ‘.SHKN\ vofxem iy =P} =0

is true, From the continuity it tollows

Z Huem 030 fuem v ~Pos =0 , ‘-n‘ {Aﬂ‘\(ed‘r,

80 that the series <2 Huemtw fixy converges in each

polnt to the function {4 .
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