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CneKTpOCKOHHH Me30HOB, CMewdBaHue KBaApKoB H KBaHTORa§
XPOMOIHHAMEKA

lis1oxena nolydenoMeHonoruyeckasa TeOpHs CIHeKTpa MacC Me30HOB,
COCTOAIIUX #3 KBapka ¥ a{THKBAapka, y‘iHTblBB}OTCﬂ PenaTHBHCTCKHE KHHeMa-
THueckue 3dhbeKThl HEPABHBIX MAaCC KBADKOB, #Hapymwenue SUg —cummerpuu
B HakaoHax TpaexTopufl Peaxe u B paddanbHo BO3GYRIEHHBIX COCTOSHHAX,
Hapyuieuue npasuna OUM yureno ¢ nomousio Marpylbl CMEUHBAHKS KBApPKO—
BEIX BOMHOBLIX $VHKLUHA, BHA KOTOPOH MOACKA3BIBAETCH KBAHTOBOH XpoMoad~
nasuroit. Jns onucadus 3aBHCHMOCTH MAPAMETDOB CMEUHBAHHS OT MAcC Me—
30HOB npeanoxexa npocras SKCTP&IONALN 8 Bblpa)KeHH]‘;i, AaBaeMbIX KBAHTOBOI
XPOMOAMHAMUKOI, U3 06NacTd “aCHMITOTHYECKOH CBOGOAB” B 061acThb "uHbpa
KpacHoro paﬁcrsa”. ,.1-715{ BEIYHCISHUSH MacC " YTJIOB CMEUIMBAHUS TICEBAOCKA=
JAPHEIX MEe30HOB IpellioxKeHo yC/oBde MHHAMAILHOCTH MaCChl 7 -Me30Ha, l'lpu
3TOM Macca 7 -ME30HA OKAa3BIBAETCH OMU3KOH K MAKCHMAaNbHOIM. lMpeackasa-

HUH Toopuu 79 MacC u YrCNOoB CMelHBAHUS Me30HOB Xopouwo Cornacynrcs
C PKCA2PUMEHTOM,

PaBora Buinonsera s JlaGoparopuu TeopeTuueckoit ¢usuka OU AU,

Mpenpunr O6veanHeHHOr O HHCTHTYTA SOEDHBIX KCCNENoBaHHI. Oy6ua 1978

FilippoviA. T, 0 . - T E2 - 11997

Meson Spectroscopy, Mixing of Quark
Configurations and QCD

A semi-phenomenological theory of the quark-antiquark meson
mass spectrum is presented in which relativistic kinematic effects
of unequal quark masses as well as SUg~-breaking in Regge trajec-
tories and in radial excitations are properly taken into account.
OZI breaking cffects, suggested by S-channel gluon exchange
or by t -channel meson exchange, are introduced by means of an
SUy; -symmetric mixing matrix for the quark wave functions.

A simple gereralization and extrapolation of the QCD expressions
for mixing parameters from the domain of "asymptotic freedom" into
the domain of "infrared slavery" is proposed to describe a depen-
dence of the mixing parameters on meson masses, A condition of
& minimum of the pion mass is used for calculating the pseudo-
scalar masses and mixing angles, which prove to be somewhat
different for 5 and 7’ : Oty = =17.5 8,(n7) = -20,5 . The 7 meson
is obsemed to be maximum possible, The prediction for
nomasses and mixing angles are in good agreement with
experimerit,

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

1. Introduction

The discovery of the charmed particles requires to make some
more precise concepts of the "old" particle physics, such as SU3
breaking, chiral symmetry breaking, the quark line rule (or the
0ZI rule), and mixing of quark configurations in isoscalar states
n-n', aJ~4f,§-—§ﬂetc. (which is the phenomenological manifestation
of the 0ZI rule breaking). The necessity of a revision of these
and some other phenomene is dictated by the fact that in "new"
particle physics they define priﬁcipal effects rather than give
small corrections, For example, SU4 symmetry breaking is much
larger than SU3 breaking, and the slope of the J/W Regge trajec-
tory is two or three times smaller than the average slope of the
"01d" perticle trajectories., The OZI rule results in extremely
small widths of the J/¢ and Y’ and a very good theory of O0ZI
breaking is necessary to understand the decays of these particles.
Our ideas of "radial™ excitations (such as §'(1.6), ¥'(3.7)),
and of "exotic" many~quark systems (which probably spoil the ge-
nerelly simple picture of the charmonium levels) should also be
clarified and made more quantitative.

A consistent approach to spectroscopy of new and old par-
ticles should be based on QCD (see,e.g.,1/'/6/). However, to
construct a complete theory, we should first understand the struc-
ture of QCD at large distances, where the coupling is large, and
to solve the notorious quark confinement problem, In first attempts
to employ QCD in constructing hadron spectroscopy the quark confi-
rement was used as a fundamental hypothesis. The simplest idea is
to write down some equation for quark bound-states with a binding
potential, which is ~//t for 7 >0 and is indefinitely rising



for T > ©° (see,e.g.{B/’/S/). A more consistent approach was
realized in the MIT and SLAC "bag" models and in some other
similar models/4/. The spectrum of low-lying hadrons in these
modele is approximately the same as in earlier approaches based
on some sort of confinement (e.g,, "Dubna bag", oscillator poten-—
tial,etc., for a comparative review see )1

A serious attempt to develop the hadron spectroscopy starting
from the QCD Lagrangian with built-in confinement hypothesis has
recently been enterprised in refs./1°/'/11/. While the results
are very promising, much more remains to be done, In fact, the
problems mentioned above were not considered up to now (see,
however, a very interesting deacuassion of the V-q'problem in
ref./"/).

The aim of the present paper is to give a general and simple
enough treatment of the meson spectrum, based on a relativistic
dynamic qQuark model, but using minimum detailed information on
interactions of the quarks, The following discussion will in ge-
neral be restricted to considering the old mesons, consisting of
the quark v, o/, s and of the antiquarks 1, d,§ . Charmed,
exotic and radially excited states will be treated in subsequ-
ent publications., In the next paper a phenomenological conside-
ration of the radiative decays of the vector and pseudoscalar
mesons, using the results of the present paper, will be given,

Our approach to meson spectroscopy is frankly phenomenolo-
gical and as close as possible to standard treatments (see,
e.g./12/‘/13/) 2) though, when necessary, we shall use some ba-
sic concepts of QCD, dual models, etc., Our principal aim is to
obtain a phenomenology of all quark-antiquark meson states
which is free of shortcomings of the standard phenomenological
models., This phenomenology should not be a substitute for po-
tential models, bag theories, or QCD, it is rather aimed at
elucidating which of the results are independent of detailed
dynamical considerations, and at finding esimple empirical rela-
tions to be explained by a future consimtent theory.

Some of the ideas employed in what follows were first
formulated in refs./17'21/’/7/, they are briefly summarigzed in

) Some new ideas in bag theories ocan be found in refs.
/4/,/8/,/9/.

An extensive review may be found in refs./7/'/14/'/16/.

the next section. The main new result of this paper is the
good deseription of the quark configuration mixing in the pseu-
doscalar nonet, In the standard treatments the - q' mixing
angle is calculated by using all the pseudoscalar massea as an
imput., Here we not only calculate the angle but also successfully
predict one or two of the pseudoscalar masses, thus verifying
our ideas of mixing mechanisms,

Let us introduce the notation used below

1> = {ludx + 1400 +1s5>5 ],

Q> = \fié"{ lul>q +1ddDg ~21s5D4 ) .
Here @ 1is the set of the quantim numbers (J,L, S,N) defining
the astate of the quarks, For the pseudoscalar (P) , vector (V) ,
tensor (T), axial (A) , and scalar ($) multiplets, resp. Q@ =
=PV, T, A,S . The states IM/Q> and |Mg) describing the
heavy (p1&) and the light (A4Q) isoscalar mesons of the multi-
plet @ are some superpositions of |@.> and [Q;)> . One usual-
ly defines the pseudoscalar states as

' >= R @3 Bp(y') +IP> vmBe(1'),
In> = =[Py sin Bely) + [R> 03Be(y)

Our result for the angles O,(y’) and ©Gp(y) 1s the following
Bply) = —17.2° | ©p(y) = —20.65

i.e., the states {p’> and (n)> are slightly non-orthogonal, To

obtain this result, we have used the value of

M =45, =3"~uf (1.3)

(1.1)

(1.2)

derived from the vector meson masses, and the values of masses
e, 0 (the masses of the mesons and quarks are denoted by
their respective symbola, with the exception of the pion mass),
The masses of K and 1?' are predicted to be K=, 49, 7/%’,96
(all masses in 1 GeV units) ~—10°

In the standard mixing mode153) 9?"‘99(7)=ep(‘q’) for quad-
ratic (Q) mase formulae, and 9{,"’% —24° for linear (L) mass
formulae, Remark that our angle epbpis intermediate between the-
se extremes;

0.0 = £(08 +65V) -
3) For a fresh review of different mixing models and of

their comparison with experiment see /22/, for further references
see also /7/.



In the quark model another definition of mixing angles is
obviously more natural

M) = Qs> ws By, + 1Q,)4wn BM; )

. (1.4)
IMg> =—[{Qsy4n Omg * |Qu) o Ova,

where

(@) = 14504 , l@~>=v'—_2{lui>a+\old->a} (1.5)

are the wave functions of quarks with zero isospin (I =O) .
Note thaet the standard definition of the mixing angles for QP
is different from Eq.(1.2):

Ma) = (@) ces 8q(M) —1Qs)sth Ba (M)
M) = [Qg) stn Ba (M) +1Q,>® B4 (M)

which 1is rather incomvenient. The relation between our angles and
the standard ones is given by

Bp(v))=@n+eo—% 5 GQ(M)=9M+901 Q=V,T,AS
t 6, = 1/yz , 6. % 35,26°

(the same for n' end Mé ). The angle &, is usually called
the "ideal" mixing angle.

(1.6)

(1.7)

Our excuse for a somewhat lengthy discussion of the trivial
matter of defining the mixing angles is in that the inconvenient
standard definitions formerly led some authors to wrong conclu-
sions. Besides that, the equation (1.,6) for Qg =6, gives
lMé) = _[5§)Q , and the minus sign is easy to lose. The more
important advantage of Eq.(1.4) over Egs. (1.2), (1.6) is a
somewhat more clear relation of the mngles QMQ, QM‘; to OZI
breaking, For the exact 02I rule O, =04 =0 , lMé>=[QQ
(M) =(Q,), and |By|, 1Dy are growing with growing 021
violating amplitudes,

2, Mass Formulae Without Mixing

As in refa./w"zol, let us suppose that the wave function

‘PEJ-Q of the quarks li/[ and % in the state Q] satisfy the
following equations Q
;i

A
{ Xiq ~k(MEg mt m Vg = 2 My Wt » &

where the right-hand side describes the quark mixing. The wave
i_’}mction ‘{f('ja depends on the relative coordinates of ¢,; and
% and on Q=(’J,L,S,N) , where ‘} is the total angular mo~
mentum, [, is the relative orbital momentum, S is the total
spin angular momentum, and ¥=0,1,2,.. i the radial quag‘gum
number, We do not use any explicit form of the operator JCQQ
making, instead, some simple assumptions on the dependence of
its eigenvalues J{SQ on 'L,j and @ .Finally, k2 1is the centrum-
of-mass momentum squared of quarks ‘%FJ H 2 2

K (ME mE mp) = %MZ—-z‘-(mf+mf) “+ —__L(m;;’i ) (a.2)
where m; is the mass of the i -th quark, (=u,d,3, M is
the mass of the bound state to be determined by solving the
equations, Even if X* 1is independent of ( and j , some
symmetry breaking is implicit in eq.(2.1) due to the dependence
of k% on quark masses, As will be shown below, some symmetry
breaking, effective for the states with [+0 or N#(Q ,must be
present in K% .

For the sake of completeness let us mention two simple dy-

ramical realizations of our phenomenological scheme. For example,

we may sssume that
A2 d? -2

Hija = —fa +LLDT™ +Vije2), (2.3)
where 'L=(:L’L5’LJ[ is the distance between the quarks. Then eq. (2.1)
essentially coincides with the Schroedinger equation,up to a dif-
fe}'ent energy momentum relation, Equations of the form (2.1) with

X* given by eq. (2,3) can be derived in some relativistic
quasipotential models, In some cases the Bethe-Salpeter eguation
can be approximately reduced to similar equations., For example,
the tightly bound pseudoscalar (q,@) wave function approximately
satisfies the equation (2.1) with

W= + 0+ 27775 + Vi, G

2
where "L":(x;ﬂ -xJ/,) is the squared distance between the quarks in
the four-dimensional Euclidean coordinate space, A more detailed
discussion of theme and other realizations of the general equa-
tion (2.1) as well as numerous references may be found in refs.
117,120/,
Let us temporarily forget about mixing, i.e., assume 'I:Eat

M;?‘,¢= 0 . Then, supposing that the dependence of 'Ji,;“Q is
given by



3(2“(1 = &Z.‘_ %(Juf-f-/u}) Po s (2.5)
it is easy to obtain simple mass formulae. Postponing the dis-
cussion of the @ -dependence of fi and QQ , and using the
igospin invariance relations u=d v My _—,},u we derive the mass
relations from the eigenvalue condition

2 _ g 2
’]-(ga = Kz(Mth‘m;"m;'). (2.6)

To make the derivation more transparent introduce effective quark
masses Mg :

2 2 2 2 1 2 _ 2 2 z — A2
mty = +hg +pily  mig—mie=mi-m; ()G =Agq 1(2.7)

i,e.,
hq = Ay +(WD Ay =mi-mf . (2.8)
Now, a simple calculation gives
Mg = miq + Mjq (2.9)
and consequently
p=d, K=Ky =g(+p) (2.10)
A=5 K=k, =LA, . (2.11)

The observed vector masses (599/23/) are in good agreement with
eq. (2,10) for the tensor mesons the agreement is reasonable,
The corresponding relations for the pseudoscalar mesons are
badly violated. The conclusion is that mixing (or 0ZI violation)
is very small for Q.-_V , somewhat larger for Q=T and very
large for Q=P .

Note that the corresponding equations for the charmed par-
ticles

=9, =5 +§) ) F'=F, =4(#y +9) (2.12)

predict the masses CBV’ FV to be A T0 MeV lower than observed
ones, in spite of the expected smallness of mixing., This effect
is probably related to a larger SU4 breaking as compared to the
SU3 breaking -~ the parameter ‘sz may be different for the char-
med particles and the "old" ones, (see /19/,/20/ where the
intriguing problem of the 70 meson is also discussed). Here we
will not apply our mass formulae to the charmed particles, but

emphasize that the quadratic mass formulae are satisfied signi-
ficantly worse, for example, the ¥ mass is predicted to be

~ 250 MeV larger than the observed one., The obvious conclusion
is that the linear mass formulae obtained in our model without
mixing, are better than the quadratic formulae. Por the old
particles the linear formulae are approximately as good as quad-
ratic, though the former are slightly better.

Note that our mass formulae are linear in spite of the fact
that all the equations depend on squared masses. This is due to
the relativistic kinematic relation (2.2) and to the neglect of
the mixing effects. In the presence of such effects the mass
formulae are neither linear nor quadratic.

Now we introduce a dependence of ‘&Q and PQ (see eq.(2,5))
on the quantum numbers @ which in the non-relativistic limit
corresponds to a simple picture of orbitally and radially exci-
ted quarks with spin-spin(5-S) and spin-orbit (L—S) level split-
ting. We supplement this simple picture by certain relation bet-
ween radial and orbital excitations,

Let us call the radial splitting the quantity

b 2 . _ 2 2
B (Mifa) = Mig(N=1) —Mijq W=0)= Mo =My, (2.13)
and the "orbital splitting” the quantity
2 2
SL(MijQ>= ija(Lﬂ)-—MgQ (L"O) . (2.14)

It is implied in eq.(2.13) that all the quantum numbers Q .
except N , are unchanged. In eq. (2.14) Q=(F=L, L,S=QN):
so as the L-S term vanishes for all L. . PFor all models (e.g.,
eq.(2.3), (2.4)) and for all potentials there existe a certain
relation between & and §, . The reason is very simple: both
quantities are defined by an average "radius™ Rij of the bound
state (4,q;) : , | ) » [
g,z,(MjQ) ~<i‘gz>im ~<—'1‘.'z>‘j&~ Ej- ) SL(ML'J'G!) ~<€Z)U‘Q ~ 70 )

where the brackets denote averaging over the state «\\U‘UQ . For
simple potentials (1inear, oscillator, Coulomb, square well,
etec.) § and §g are proportional to Rz‘f and are approximate-
ly independent of @ .

For the oscillator potential 3g/5, =2 , for the linear
potential é’oz/é,,_ is slightly less than 2, and for Coulomb poten-
tial §q/5, =1 . If V=R?%z/r)* , then the ratio 8g /8§,



defines the value of ( , and the magnitude of & (or §.)
defines the dimensional parameter R ., Any realistic potential
must be of a more complicated form, and some additional infor-
mation (e.g,,on decays of the vector and pseudoscalar particles)
is required for estimating the form of the potential,

Taking into account all these considerations we finally
suppose that the eigenvalues of \Kfja are of the form

{32 =3 w2 L pN) +RE ) +ATHE Sio HAE(-5.0)83p42.15)

where —S’=—§L‘ +§5 . We have tacitly supplimented the above-
mentioned assumptions by the hypothesis of linearly rising Regge
trajectories and used the simplest possible expressions for the
L-S and $-S5 splittings. For simplicity we neglect the
tensor forces which mix states with different values of @ .
At first sight, the assumption R&Q ~1Cﬁ§13Mf) , used in eq,
(2.15), does not seem to be natural, In fact, the multiplicative
relation between the Regge slopes d;;dﬁ'=fo/§ seems to be more
justified/24/. However, for the "o0ld" mesons the distinction
betwee?lmultiplicative relations for °«j and additive relations
for <¥” is practically negligible, while the latter is more
convenient in the context of mass formulae, In the potential
models the additive relation is easier to obtain (see,e.g.<25/).

Combining the equations (2.1), (2.2) and (2.15), one easily
obta}nﬂ the universal mass formula for the mesons

Miq=ms + AWE U (L+PND +2(mf+mj)~(mf—mJ.‘)z/M‘,/z-z~2 ©)
> .
+4 [}“F'Z SLD+/‘1‘F2(1—8LD)](‘§,§)') +}JZ (ES) - %—E;(Mja).
A new term -% Eé has been added here, the explanation of ite
origin to be given later, For the moment, the reader is advised
to forget about this term4 . This formula is applicable to I==Za
and T=4 states. For I =0 wstates it can be used, provided
mixing ie very small, as,e.g.,in the vector nonet. In that case,
a8 explained above, it gives the simple linear mass relations
(2.9)-(2.11),

By fixing the parameters in eq.(2.16) one can predict the
masses of all I;=£-,1 mesons and, for negligible mixing, the
masses of the isoscalar particles. Taking into account the iso-
spin symmetry, there are 8 independent free parameters in eq.(2.16).

%) e magnitude of 62 is very small (£g[<,0f , for all @
except Q=P)lE:l < .1 .

10

*
To find them, let us first use the masses P, K= Ky, A1.1), A,
K=K, , B (1.231)°), Then

Mm% + 2ul+82) FUEE 814, b5, = AT =108,

a0 p2E.255 , Apb-pd 880, O+ Ul —MF 2,968,

With these values of the parameters the masees of other stgtes
can be predicted., For example, g('}=3,L=2, 5=4) = {690,
KH(1=3L=2,5=0) =180, k*(I=i,L=1,s=4) = {,23,
Kig=1,1=1,5=0) =135, p(3=1,L=2 5=1)*126.

The experimental masses are respectively ¢ = 1.688, K‘=?1.784,

Q=1.28, Q,~ 1.4, Some arguments in favour of the ~particle
with mase f; ~ 1.25 are discussed in ref,

The parameter )ﬂF will be fixed after considering the mi-
xing effects; later on we shall show that /4:' =.{{1 .

With this value of 4. we can fix the parameters U, 6 , Hs
and P . Identifying p'(1,6) with the first radial excitation of
the ¢ -megon (N =1{) , we now find p= 1.98, which is rather
close to the oscillator potentiaml prediction., Knowing this para-
meter one can predict the masses of other radially excited 23—
sons, but any comparison with experiment would be premature- ‘.

As the data on the scalar mesons are somewhat controversial
we do not mention our predictions for the scalar multiplet, In
addition,there are good reasons to believe that the simple quark
picture is, in this case, spoi}gs by mixing of the 1?7 sta:e:
with exotic 979G states (see ), similar effects are expecte
fir the charZZE?Zarticles/B/'/7/"qg/’/zo/. Feglecting such a
mixing one can obtain ?yfg 2,0 and predict the radially excited
states of the 9/y particle: ¢'= 3.7, V"= 4.19,etc,

A more detailed comparison of the predictions of eq. (2.16)
with experiment will be given in another communication. Here we
make only some general remarks, It has been shown that these
formulae give a good description of the mass spectrum of the
wusual® mesons and a reasonable first approximation for treat-
ing the charmed particles (see/19/’/2o/ for more detail). The
main symmetry violation is due to mase differences of quarks,

(2.17)

E)As justified in the next section, we use ¢ = 7173,
Kr= 1.421, For K, we take é(KJ*-K3)-

For a discussion of the present status of the data on the
mass spectrum in the interval 1+2 GeV see,e,g. ,the reviews/26,27/.
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and some symmetry breaking is obmerved in the Regge slopea (in
our treatment these are (Z//“f)"’, (2/454—2/15’)",‘(‘{/15’)_: (‘/}lcz)-l). For
the old particles this breaking is < 10%, and for charmed par-
ticles it is << 40%. The same pattern is to be observed in the
spectrum of the radial excitations, Por the S-S and L-S eplit-
tings the symmetry violation is expected to be significantly
smaller as far as the corresponding parameters depend on the
behaviour of the wave function at emall distances. In fact, the
gpectrum of the old mesons exhibits no SU3 symmetry breaking in
the S-S5 and [-G splittings, and the SU, violation is <20%
for the charmed particles, (seelzo/). Above we have tacitly as-
sumed no dependence on (,j and Q@ of the parameter mZ%, Por
the old particles this is justified by good agreement of pre-
dicted masses with experiment, However, some effects not inclu-
ded in our scheme (e.g., tensor forces) may give an effective
dependence of mg‘ on @ . With present data such a possibility
is difficult to exclude for the charmed particles,

We conclude by summarizing the main features of our approach
as distinct from the standard treatments:/12/'/16/: 1) the rela-~
tivistic energy-momentum relations, esp, for unequal messes;

2) a relation between .orbital (. ) and radial (N ) excitations;
3) inclusion of some symmetry breaking in the dependence of the
meson masses on L and N ., Similar formulae can be employed
for describing the diquark (dgj) mass spectrum, the baryon mass
spectrum, and the exotic meson (L{’dl.’.) mass Spectrum/18/. The mass
formulae are always linear,

3. Mixing Effects

As has been pointed out in refs.lza/'/aal, simple QCD argu-
ments give the mixing matrix of the form

Q

Mijxe =—€8 5 6. - (3.1)
This corresponds to annihilation of two or three gluons in the
9 =-channel of the system q,;?{j and to further transition of the
gluons into %K% . The effective Lagrangian for such a transi-
tion may be written as fe.p; ~(3Anq)(3'2n 4), where A, (n=1,..,8)
are the Gell-Mann matrices, A, =\f§ 1 , end if 3’ are referred to
the guarks in the final state. We suppreas here the ¥ -matrices
deecribing a spin dependence of the mixing madbrix and neglect
the colour structure, All these effects are included in the para-—

12

meter E:' . Introducing, for example, & nonet of veeber mesons
V,f' one may interpret &feﬁc in terms of the exchange of these
mesons in the t -channel, with the effective quark-meson Lag-
rangian uf,/(" "ﬁ;\un ‘L) V:_ . The Lagrangians o(oeH. and afy% are
not only Sy; -invariant but also U3z - invariant. Remark that
the assumption of the U; -invariance was first used by Schwin-
ger/31/, who invented the mixing matrix (3.1) and derived on its
basis his well-known mess formula7 . Schwinger's mass formula is
quadratic in meson messes and ie in reasonable agreement with
present data, its prediction for the pf -mass being fw”-: . 760,
The linear version of the formuls is better: ) = ,774.

Both linear and quadratic Schwinger's mass formulae, howe-
ver, fail to describe the pseudoscalar nonet, The predictions
of ?’ with the input masses My, K and 7 are reg%grﬁ.m,
72&_, = 2,34, To avoid this difficulty it was proposed that
gé— is strongly dependent on the bound state mass l‘l4 . This is
very natural in QCD as S:(H‘)"N;(Ml) and &, (MY ~o£;(M’)
(see,e.g.{z/'/B/). However, this dependence for the linear mass
formulae’/2%/ proves to be unreasonably strong - Ealn?)/E :(7"):—7.6,
which is difficult to reconcile with Ev(§)/€j(w*) ~1  mhig aif-
ficulty has not been discussed in refs./zs/’/3o/ treating the
same mixing mechanism in the context of the quadratic mass for-
mulae, Assuming a dependence of E; ?n /“'11 to exist also in
this case, one can find that Epz(n‘)/Ep(7’1).~.3.6, and E;(‘fl)/éf(w’)ﬂrJJ
leading to the same difficulty. In addition, both "linear"™ and
"quadratic" predictions for the pseudoscalar mixing angle are in
poor agreement with present data on radiative decays of the
vector mesons and with data on r)/rl’ production at high energies
(see/22/). For the quadratic formulae Qp(p)E — 5.4°, Op(p) =
-19.8°, for the linear - Gp(n)= -11.1°, B.(m)= -44,7° In
the next paper it will be shown that these angles are inconsis-
tent with the decay data unless 0ZI violating terms not included
in ,7—)2', w— mixing are unreasonably large, The linear angles
badly disagree with the high-energy production data, and the
quadratic angles give the value of G'(7)/(n) which is ~% larger
than the experimental result,

The mixing mechanisms in question share with the standard
mechanisms (see/12/'/16/) the following deficiency. Either none
of the pseudoscalar masses is predicted, or the prediction 1is
very bad, An exterme of this feature is presented in the inte-

7T Phis Tact was overlooked in refg., /28/~/30/ as well as
by the present authqr w’o }ndopendently introduced a similar
mechanism in refs. 77/. 18/. 13



resting paper/32/, where a large SU3 breaking has been intro-
duced into the mixing matrix, As a result, all the pseudoscalar
masses and the mixing angle B,(3)=06-(7)=~{0° should be used
for a description of the pseudoscalar nonet. In addition to poor
agreement of this angle with experiment, there is no way to check
up the consistency of the assumptions within the old particle
family.

We will not discuss other, more exotic mixing schemes as our
approach is a direct generalization of those based on eq. (2.1).
In ref, 7 we have developed a mixing scheme starting from eqs.
(2.1), (2.2), (2.15) with the mixing matrix (3.1). Even assuming
no dependence of 6;’ on M? we have succeeded in describing V
and T multiplets and the masses of the pseudoscaler mesons 7

q’ and K . For the optimum value of 8:' (9:25 .524) the
mixing angle is predicted to be Bp()=8p(y) = -20.1° and the
fitted masses of 7 and 7’ are n =,542, 7’==.963. In spite
of the bad prediction for the pion mass (rn,::.ze) the descrip-
tion seems to be more successful than those discussed above,
as the dependence of €Z on M? ig rather weak and the mixing
angle is in nice agreement with experiment, With «regard for
such a dependence, we have obtained E,nz('z’);-'.OGOS, E;(q’);. 0503,
Bp(m= -17.6°, Bp(7')= -20.9°. This improvement is solely due
to the relativistic kinematic relation (2.2). If we omit the
last term in this equation, we reproduce the quadratic formule
of refs.lze/’/BO/'/31/. Substituting, in addition, masses for
squared masses, we arrive at the linear relations of ref./29/.

To successfully describe also the pion it has been Bugges-
tea’/197,/20/ to generalize the mixing mechanism (3.1) as fol~
lows, As is well known, the U3 symmetry, implied in eq.(3.1),
results in unpleasant consequences for the pseudoscalar mass
spectrum (the so-called [, -problem, aee,e.g./33/). Recently,
a possible solution of the problem has been outlined in the
course of deveioping new ideas on the infrared properties of
QCD/34/. It seems quife probable that the two-gluon anomaly,
along with a rearrangement of the vacuum due to instanton contri-
butions, reduce the undemirable []3 ~symmetry to [f1 ~-symmetry,
One may therefore tentatively assume that the mixing matrix is

SU; symmetric rather than Uy -symmetric,

Apparently different arguments in favour of using S[é-sym-

metr mixing were earlier given in refs./19/'/20/. It is con~
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ceivable that the effect of soft gluon exchanges can be repre-
sented by an exchange of the Regge trajectories ( R) of the
observed mesons in the 1 -channel (see fig. 1). Then the SU; -
flavour-exchange amplitude is decreasing with S while the
amplitude with the exchange of the SU; -singlet "trajectories™®
R 1is approximately "constant™. The latter is the same for all
meson states (feg-(tiﬁaq/')@”)\o%) in the - channel and can
be included in the JQI . The octet- R -exchange can be described
by an effective Lagrangian f,;_;«-g(s)(@}\..ql)(qﬂn q/),n;l._‘glthat
strongly depends on ¢ = hﬂ? and gives the mixing matrix

(R

ML?,KE =-£q(Miq) [ 86 ‘%S;K $el. (3.2)
In the following descussion we consider the mixing mechanism
based on eqs.(2.1), (2.2), (2.15) with the mixing matrix (3.2).

The mixing parameter Eé is large only for {=P , an
elegant explanation of this fact in terms of QCD has recently
been advanced by Friedberg and Lee/11/. Owing to the smallness
of Eé for @=V,T,.. and to the approximate degeneracy of
masses in these multiplets, the b4l-dependence of &;’ can be
neglected in the first approximation. To save the space we shall
write the relevant formulae for the general case not making such
an approximation,

With the mixing matrix (3.2) the equations for calculating
the masses of the T=124 mesons belonging to the multiplet Q ,
are

b8 2 2

Mo, =Mmg —248% - ‘é"sé (M), (3.3)
2 z A" 4 2 2

MQ.VZ = Mg _M_L, —geQ(NQ.'IZD, (3.4)

where Mg 1is to be detg'rfnined from eq,(2.15), A2=A24u . As E;(Ml)
is a decreasing function of P1Z the equations have two solutions
at most, Only one of them is stable in each casea). The easiest
way to see this is to draw the picture version of the equations
as presented in fig, 2., The curves correspond to the right
member of the equations, the stable solution is denoted by f; .
the unstable one-~ by A, the dotted lines correspond to iterations
—__—_1rrjrj;;lution is stable if and only if the derivatives of
the right-hand-sides of eqs.(3.3), (3.4) are <1 and >-1 in

the respective points, We shall show that this condition is
fulfilled for the observed masses,
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always giving the stable solutioms, If Sé' is independent of

M2 , the solution is unique (the point S' ). In the case Q=P
the pion masa,ﬁ4ﬁi='"ﬂ , 18 very small, and this requires &;(M9
to be rather large and rather strongly dependent on MZ . By
inspecting fig, 2a one can infer that rn% has a minimum if

the curve representing the right-member of eq.(3.3) is tangent

to the straight line OR at the point Sa . Then

del/dmp = - Z. (3.5)

This hypothesis of the minimum mass of the pion, or of the
maximum mixing will be used later to calculate the magnitude of
the mixing parameter E,% ;E;(m,’}) .

The isoscalar wave functions satisfy the equation

(:Kuuq Kzu)%,a = EQ [ ur“Q _JE‘ %QJ (3.6)
(xi‘da—Ki) Vo= [-2%, - Wu'oj, (3.7)

where (see eq.(2.2)) . 2
2 [ 2 2 41 .2 2 2 _ t
Kl(=-Z{_M -U../ kd-_-Z-M-'S) M‘MQ ot MQ,
4&, 4@ @ are the wave functions in the quark basis (1.5),
and the isospin invariance has been used, Solving this system
we find the equations for F1Q and M,

2

Mg = mg + 4 Ea + 2 \(e2- g2y +8£'4 (3.8)
2 2

Ma = Mg +134‘5:: - 2‘[(:52-8;)2-&- Bel | (3.9)

where £Q=EQ(MZ), fé SQ(MZ). The eigenvectors corresponding
to these eigenvalues are to be determined by eqs. (1.4), and

-4
ty By, = 22 ey [ A —eq +V(P-e? +8ef |, (3.10)

To obtain ts BM; one has simply to substitute here &, by Eg‘
The solutions of eqs.(3.8), (3.9) are stable for all ob-
served particles,
Eqs. (3.3), (3.4), (3,8), (3.9) constitute the solution
of the mixing problem for all multiplets. Now assume é& to be
independent of P4Q and introduce the notation

Mg,0 =2Mg, — Mg, , Sa = Mg~ MQ,,(S —MQ—M RS

17



After simple calculations the following mass formula can be
derived9

sa (1 + M,l ) 25'2@ - ) (3.12)

By substitutlng masses in the first of the definitions (3.11) by
squared masses the Schwinger's formula can be reproduced

If the mixing parameter is small, the 8Q and SQ are
very small due to the approximate equalities P4Q M (e.g.
w=p , A,=4%) and MQ —MQO which follow from eqs. (2.9)-
(2.11). Then, neglecting in eq.(3.12) the terms of second order
in é and 621 , we obtain an approximate mass formula which
for the vector mesons is

¢+ = 202K, P+ w? (3.13)

The prediction of this formula for the _f° mass is §=,7726

while the exact formula predicts P= ,7728, With regard for the

uncertainty of the §p mass (electromagnetic splitting) the best

prediction for the P -mass is P=.773(2).004 ,(K,), Hereafter

we employ the notation (I))(m) for errors correlated to the

errors in the variable (e.g.,(Ky)) written in the parentheses.
Now, the masses of other vector mesons allow us to fix

other free parameter 2
A= 3*-y® = 1086 ().0007, & = .0020(F).0008,

=, $17().004, 8, =0, =(1.5().6)°, 6, =(36.8 (¥, 6.

Here all the errore are correlated to the errors in Ky .

Applying eq. (3.12) to the tensor meson one can predict
the mass of the K+ by using the input masses A21§'§’
Kr= 1.421%,006, This is slightly different from the mass quoted
in ref./23/ (Ke= 1.434%,005),, but the statistical average
(with Student's distribution) of the world data gives another
result, KT== 1.42371.0015/23/, which is in good agreement with
our value. For this reason we take Kr= 1.421 as an "experimental™®
K+ -mass. For similar reasons we consider ¢= .773 as an "expe-
rimental®™ f -mass.

(3.14)

9) Strictly speakin this formula is valid only for [= O.
If L+0 , eqs. (3.3), %3 8), (3.9), (3.10) depend on Ae;—Agu
instead of A%, (see eq.(2.8)). As far as the difference A a
is very small (ﬂf.0223 with respect to the squared masses of fhe
L. =1 mesons we can approximate the A2 in eq.(3.4) by &%
without looming the accuracy. Then we arrive at the mass formu-

la (3.12) for the L =4 multiplets.
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As the mixing parameters &&leé are slightly different and
are larger than €§ we calculate an average mixing parameter
e$ by taking half-sum of eqs.(3.8) and (3.9), the parameter rn$
being fixed by the A, mass. The result is

2

EXz=- 0114, 6, =6,= —56° . 15)
Due to the approximate relation 9;::1E - B, , where {390 JZ
(see (1.7)), we can write the simple approximate expression

tﬂe; = (V2 _ﬁ)(4+\12)‘) (3.16)

which is easy to remember,

A more careful analysis of the vector and tensor multiplets
indicates that Ej(Ml) and Eﬁ{ML) are smooth-decreasing func-
tions of MZ%., However, the present data on. masses do not allow
us to extract this dependence with good precision., On the cont-
rary, this dependence is very pronounced in the pseudoscalar
nonet. 0 .

In this case there are 4 masses and 5 unknown parameters
m:-,ir:, Ez' E; and 8;’, . As pointed out above,the independen~
ce of ¢2,, M2 results in a too large predlctlon for the pion
mass. This is easy to understand if &p #=E}z. In fact, assuming
€= Ey = £y one can obtain £.%,5, &~ ,1. It is interes-
ting to observe that g,r’»A" , g;‘ ~ A%/2 . Very probably,
the last relation is not accidental, Indeed, regarding 72' as
a function of £2 , one can obtain from eq.(3.9) the remarkable
result: the mass of2 z1:he » meson has a maxlmum for EZ Az
(J;ZZ/CJEQZ =0, 47/(}@;)1 >0 for &, =A /o), and

146, = {/VE, 6, =6 e..m——w 4% °
Thus, a simpie pattern ‘of mixing in’ the pseudoscalar nonet emer-
ges - the pion mass is minimum and the ? mass is maximum
possible,

With the observed dependence of éP on M , the last sta-
tement is only approximately realized. If we take 57 é§~ and
calculate the unknown parameters by using the pseudoscalar masses
we find a variation of £°(M?) in the interval Ki=M'< n% to be
too large:

£ =032 € X.0509 g;;,m—ﬁz/ 8;,5,0504_

10) We are not discussing other multiplets as their experi-
mental status is unclear,
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Assuming a more realistic approximation &£ =g, we obtain
2 2 2z
g¢ = {038, €, =&, =.0605 £, =
T ’ L4 ’ 7 . 0503 (3.17)

— o —
B, =3%15°, 0, =3386°, 6p(9)=-1359°, 6,(y)=-29.88°
These values of the parameters satisfy the simple relation gvz +
+gz, = A2 . With this relation as an input the parameters are

-2 ks — z = i =
€ =,1035, & =.0602, &, =,0582 , £y =.0509 (3.18)

6,=36.49°, 0,/ =3390°, B:4)=—1625" Bp() =-20,94°
We regard this result as a most reliable description of mixing
in the pseudoscalar multiplet.

The next section is devoted to an attempt to explain the
Ml-dependence of E‘Pz in QCD, All the above procedures of calcu-~
lating the mixing angles are in fair mutual agreement and give
Bp()= (17.5420)°, and Op(y)=-(20+2{)", The data discussed by
Okubo , are in very good agreement with these mixing angles.
With due regard for the large experimental errors, the tensor
and vector angles are not at variance with the data.

4. Mixing and QCD

The dependence of 5;(#“) can be qualitatively explained
by the relation 820M7Qrvd;(wﬁz where o¢(M?) is the "Sommer-
feld constant® for the quark-gluon interaction (related to the
invariant “charge")/1/'76/. As far as we are trying to apply
QCD in the resonance region, where this constant is not small,
we have to somewhow take into account the higher order contribu~
tions, With this in mind, we assume that

-4
E(M2) ~olg(MD) [ + Aos(MD] ) (4.1)
where A 1is some unknown constant, responsible for these contri-
butions to £(M?). To make this relation useful, some explicit

expression for olg(M?) is needed. The renorminvariant perturba-
tion theory result for the o(M)is (see e.g./a/'/s/)

dg(M?) = oty [ 1+ oo G (M2Y] ™, (4.2)

where 6,,(M;)=-_O , o= O(S(Moz)>0 , and 6,(M?) repre-

sents the second-order-quark-loop contribution, For M%*>0 the
G7(M%) 1is logarithmically divergent so as for some finite M?%
the denominator in eq.(4.2) has a zero. If we believe in deriv~-
ing a confinement mechanism from infrared singularities of QCD,

20

a more natural assumption would be diverging s (M%) for
M*=0 ., Starting from this observation we suggest to regula-
rize G&o(M?) in such a way that the denominator in eq.(4.2)
would vanish only at M7'=O o

Agsume that

~4
ds (MZ) = O(Q[1 + o Gf* (Ml)] > (4.3)

where Gx(M?)=Go(M*+H7), i.e.y, M‘u-,u?-; 55 +M™ z;
2,,.1 W+ 23 +

G;(M"):lz_f-,r_{ 35 6” [:cz:/}:-; . 4@&1( 52“1 + ‘-I’_L*'/‘z ‘20’4(551*' ‘Pl*(’{f”-

— 2&«(’55‘4-{\41 Rz )
5ct +y? +

Here ¥ is the mass of the g/q/ particle, ¢ is ths ¢ -

quark mass, U is a regularizing mass, and G, (y%) =0 (the

normalization condition).

As in refs./29/5/21/ 4o assume U~myp/L.s then the
masses of other quarks are defined 4in terms of observed
meson masses, our results for Azju and A'cue leading to
A~ .33,(~ 1.6. The final results are weakly dependent
on quark masses, The variation of the most sensitive to the
quark masses quantity G’L (m:‘.-) is £ 5% on the interval 0 <
£ U< Mg/2 s Gu(o) varies within 2%, and other quanti-
ties are stable up to 1%.

The commonly used value of o, =dg(¥?)is ¥~ .2 (see,e.g.,
/2/’/3/). Solving the equation 1 -+ d, G.(0)=0 with this value of
o, we find M=.,115, very close to Wy = ,137, as should be

expected., In the following we simply take u=my , 80 as

o, == [&m,(0)] 1 =,212¢ . We shall use the following values

of Gm”(Mz_), where the index im, will be suppressed
S(mE)=-4137, 6(K?) =-2,611, €(p*)=-2,466.  (4.6)

G(yir) =-{,666, G'(M)=215(%).8, (my).
ow we can attempt to fix the only unknown parameter /1

to reproduce the obtained above values of &p (M%) (e.g.,eq.(3.18.)).
To achieve this we observe that eqs. (4.1), (4.2) imply the
relation (B, = A +o/fgt)

eemty/emiy = Dpo+6MDILp+enH] ™ @)

For Po"’ 9.5 the result (3.18) is fairly reproduced by this
relation with the error < 4%.

We can, however, obtain more interesting predictions,
by deriving the three unknown parameters m,l, Pa and 81-%'
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from eqs. (3.3), (3.9) (for Mg =% ) and (3.5). By using
eq.(4.7) (or (4.1) and (4.3)) the last equation can be rewritten
in the form "
gr [ po+e0mr)] ™ = 2lemm] =, 0175 (¥).0006, (mrd.  (4.8)
The right member of this is approximately equal to m, (remark
that q:(m%)&.407 /@n% ). Numerically solving all the eguations
we have

mi=,3736 . 0005, &7 =.{03% 004,

Bt e(mr) = 5,9%.2 g, = 0,0%.2 (4.9)
and the predictions for &£,(M*) are
T 2z 2
= = = =+ °
€ =.065 £.001, £, =,062% 001, & =.051F.001;, o
me =, 488 £,002, my = 960+ 004,

By=32.6°, 6, =34,12°, B,(P=-{7.18° , 0,()=-206* ™"
These values are in good agreement with eqs.(3.17) and (3.18),
and the predicted masses are close to the observed ones, The
average of eqs,(3.17), (3.18) and (4,11)

6, = (37,07 +,54)° , 8, =(33.962.14)°
B,() =-(17.67 *+.54)° , Bp(y)=—(20.28 = .14)°

is the final result of our analysis to be later confronted with
experiment.

The success of the naive extrapolation of the simplest QCD
relations into the domain where they are certainly not applicable
cries for a discussion, Note that the results are rather sensi-
tive to the choice of ¢/, because of the strong dependence of
&@’C m}> on this choice. As the above two estimations of Pfo
are close to each other (@ofv 9.5, P, = 10) the choice o)~ ,2
seems to be quite reasonable, Only 2#’ and ., are sensitive
to o , While other parameters remain fairly stable.

There exist two important dimensional parameters 1in our
theory - A2= jz—uif» .11, correspornding to the mass parameter A~
~ .33, and WMy , or the W -quark mass, For M >A the value
dg(M?) 1is small (<£.5) so as applying the equation (4.3) is
justifiable, For M <m, we have olg(M?) 2 Q , and the confi-
nement mechanisms are most important. These mechanisms are
implicit in our phenomenological parameters /( and Q , intro-
duced for "correcting™ the "asymptotically free"™ expressions.

(4.12)
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The problem of a more profound derivation of such an extrapola-
tion lies far beyond the scope of the present paper. We only
mention that the modern investigations of the confinement in QCD
/34/ jp4icate that main large distance (z My ) effects are rela-
ted to a rearrangement of the vacuum state and to a quark bag
formation., Then the qualitative feature of perturbative results,
may be used,with due modifications,for describing the residual
interactions of quarks inside hadrons (a picture of "free" quarks
in a bag).

In conclusion we would like to mention that the resulis of
this sectton allow us to improve the treatment of the vector and
tensor nonets, In the first approximation £,(M®) satisfies the
relation (4.1) with the right member risen to the 3/2 power
(three gluon exchange). Then

Az=.(091/ €:>=,0021/ s_::;v=,0015) E;=‘0017‘/ (4.13)

Mﬁ' is practically unchanged, and the prediction for the f mass
is 9= .T72. These numbers lie within the errors of the approxi-
mate values (3.14), and, most important, the A% 18 practically
the same, The improved values of 8;(M1)can be calculated quite
gimilarly. We leave this to the reader,

At different stages of this work the author benefited by
discussions of results and of relevant problems with S,Gerasimov,
A, De Rujula, A.Efremov, I,Kobzarev, J.,Kuti, V.Matveev, A,A Mig-
dal, V.Ogievetsky, O.Rassi-Zadeh, B, Struminsky, M,Terent'ev,
L.,Frankfurt. Yu.Prokoshkin drew the author's attention to the
important experimental results on high energy 7/7’ production,
The authors of the cited references kindly sent thelr works
prior to publication, All these helpful communications are kindly
appreciated,
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