ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 คAEPHЫX
 ИССАЕАОВАНИЙ
 АУБНА

F-52

$$
\begin{gathered}
895 / 2-79 \\
\text { A.T.Filippov }
\end{gathered}
$$

MESON SPECTROSCOPY,
MIXING OF QUARK CONFIGURATIONS
AND QCD

E2 - 11997

A.T.Filippov

MESON SPECTROSCOPY, MIXING OF QUARK CONFIGURATIONS AND QCD

Submitted to $Я \Phi$

Спектроскопия мезонов, смешивание кварков и квантовая хромодинамика
Нзложена потуфеноменологическая теория спектра масс мезонов, состояших ия кварка и антикварка. Учитываются релятивистские кинема тические эффекты неравных масс кварков, нарушение SU_{3}-симметрии в наклонах траекторий Редже и в радиально возбужденных состояниях. Нарущение правнла ОЦИ учтено с помошьк матриць смешивания кварковых волновнх функций, вид которой подсквзывается кванговой хромодизонов пр. -ля описаяия зависимости параметров смешивания от масс мефомолинамикоіи, из облая " расного рабств". алдасти асимптотической свободы" в область "инфр
 этом масса η-мезона оказывается бпизой ния теорни для масс и углов смешивания мезоиов моральой. Предсказа с экстериментом.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института ядерных исследований. Дубна 1978
Filippov*A.T.
E2 • 11997
Meson Spectroscopy, Nixing of Quark
Configurations and QCD
A semi-phenomenological theory of the quark-antiquark meson mass spectrum is presented in which relativistic kinematic effects of unequal quark masses as wall as SU_{3}-breaking in Regee trajectories and in radial excitations are properly taken into account. OZI breaking cffects, suggested by s-channel gluon exchange or by t-channel meson exchange, are introduced by means of an SO_{3}-symmetric mixing matrix for the quark wave functions. A simple seneralization and extrapolation of the QCD expressions for nixing parameters from the domain of "asymptotic freedom" into the ciomain of "infrared slavery" is proposed to describe a dependence of the mixing parameters on meson masses. A condition of a minimum of the pion matas is used for calculating the pseudoscalar masses and mixing angles, which prove to be somewhat different for η and $\eta^{\prime}: \theta_{\mathrm{p}}(7) \geq-17 . \bar{y}, \theta_{p}\left(\eta^{\prime}\right) \equiv-20.5$. The η meson mass is obsemed to be maximum possible. The prediction for mesm masses and mixing angles are in good agreement with experiment. Preprint of the Joint Institute for Nuclear Research.

1. Introduction

The discovery of the charmed particlea requires to make some more precise concepts of the "old" particle physics, such as SU_{3} breaking, chiral symmetry breaking, the quark line rule (or the OZI rule), and miring of quark configurations in isoscalar states $\eta-\eta^{\prime}, \omega-\varphi, f-f^{\prime}$, etc. (which is the phenomenological manifestation of the OZI rule breaking). The necessity of a revision of these and some other phenomena is dictated by the fact that in "new" particle physics they define principal effecte rather than give amall corrections. Por example, SU_{4} symmetry breaking is much larger than SU_{3} breaking, and the eiope of the \mathcal{J} / ψ Regge trajectory is two or three times smaller than the average slope of the "old" particle trajectories. The OZI rule results in extremely small widths of the J / ψ and ψ^{\prime} and a very good theory of OZI breaking is necessary to understand the decays of these particles. Our ideas of "radial" excitations (auch as $\rho^{\prime}(1.6), \psi^{\prime}(3.7)$), and of "exotic" many-quark syateme (which probably spoil the generally aimple picture of the charmonium levels) should also be clarified and made more quantitative.

A consistent approach to apectroacopy of new and old particlea should be based on QCD (see,e.g.,$^{1 /-/ 6 /}$). However, to construct a complete theory, we should first understand the structure of QCD at large distances, where the coupling is large, and to solve the notorious quark confinement problem. In first attempts to employ QCD in constructing badron spectroscopy the quark confirement was used as a fundamental bypothesis. The simplest idea is to write down some equation for quark bound-atates with a binding potential, which is $\sim / / r$ for $r \rightarrow 0$ and is indefinitely rising
for $r \rightarrow \infty$ (see,e.g., $3 /, / 5 /$). A more consistent approach was realized in the MIT and SLAC "bag" models and in some other similar models $/ 4 /$. The spectrum of low-lying hadrons in these models is approximately the same as in earlier approaches based on some sort of confinement (e.g., "Dubna bagn, oscillator potential, etc., for a comparative review aee $/ 7 /)^{1}$).

A serious attempt to develop the hadron spectroscopy starting from the QCD Lagrangian with built-in confinement hypothesis has recently been enterprised in refs. $10 /, / 11 /$. While the results are very promiaing, much more remains to be done. In fact, the problems mentioned above were not conaidered up to now (see, however, a very interesting descussion of the $\eta-\eta^{\prime}$ problem in ref./11/).

The aim of the present paper is to give a general and aimple enough treatment of the meson spectrum, based on a relativistic dynamic quark model, but using minimum detailed information on interactions of the quarks. The following discussion will in general be restricted to conaidering the old mesons, consiating of the quark u, d, s and of the antiquarks $\bar{u}, \bar{d}, \bar{s}$. Charmed, exotic and radially excited atates will be treated in subsequent publications. In the next paper a phenomenological consideration of the radiative decays of the vector and pseudoscalar mesons, using the resulte of the present paper, will be given.

Our approach to meson spectroscopy is frankly phenomenological and as close as possible to standard treatmenta (see, e.g. $/ 12 /, / 13 /,{ }^{2}$) though, when necessary, we shall use some baaic concepts of QCD, dual modela, etc. Our principal aim is to obtain a phenomenology of all quark-antiquark meson states which is free of ahortcomings of the atandard phenomenological models. This phenomenology should not be a substitute for potential models, bag theories, or QCD, it is rather aimed at elucidating which of the resulta are independent of detailed dynemical considerations, and at finding eimple ompirical relations to be explained by a future consiatent theory.

Some of the ideas employed in what follows were firat formulated in refs./17-21/,/7/, they are briefly summarized in

the next section. The main new result of this paper is the good deacription of the quark configuration mixing in the pseudoscalar nonet. In the standard treatments the $\eta-\eta^{\prime}$ mixing angle ia calculated by using all the pseudoscalar massea as an imput. Here we not only calculate the angle but also succesafully predict one or two of the pseudoscalar masses, thus verifying our ideas of mixing mechaniams.

$$
\begin{aligned}
& \text { Let us introduce the notation used below } \\
& \left.\qquad Q_{0}\right\rangle=\frac{1}{\sqrt{3}}\left\{|u \bar{u}\rangle_{Q}+|d \bar{d}\rangle_{Q}+|s \bar{s}\rangle_{Q}\right\}, \\
& \left|Q_{B}\right\rangle=\frac{1}{\sqrt{6}}\left\{|u \bar{u}\rangle_{Q}+|d \bar{d}\rangle_{Q}-2|s \bar{s}\rangle_{Q}\right\}
\end{aligned}
$$

Here Q is the set of the quantum numbers (\mathcal{Z}, L, S, N) defining the atate of the quarks. For the peeudoacalar (P), vector (V), tensor (T), axial (A), and acalar (S) multipleta, reap. $Q=$ $=P, V, T, A, S$. The states $\left|M_{Q}^{\prime}\right\rangle$ and $\left|M_{Q}\right\rangle$ deacribing the heavy (M_{Q}^{\prime}) and the light $\left(M_{Q}\right)$ iaoscalar mesona of the multiplet Q are some superpositions of $\left|Q_{0}\right\rangle$ and $\left|Q_{g}\right\rangle$. One usually defines the pseudoacalar atatea as

$$
\begin{align*}
& \left|\eta^{\prime}\right\rangle=\left|P_{0}\right\rangle \cos \theta_{p}\left(\eta^{\prime}\right)+\left|P_{8}\right\rangle \sin \theta_{p}\left(\eta^{\prime}\right), \\
& |\eta\rangle=-\left|P_{0}\right\rangle \sin \theta_{p}(\eta)+\left|P_{8}\right\rangle \cos \theta_{p}(\eta) . \tag{1.2}
\end{align*}
$$

Our reault for the anglea $\theta_{p}\left(\eta^{\prime}\right)$ and $\theta_{p}(\eta)$ is the following

$$
\theta_{p}(\eta) \cong-17.2^{\circ}, \quad \theta_{p}(\eta) \cong-20.6^{\circ}
$$

i.e., the atatea $|\eta\rangle$ and $|\eta\rangle$ are alightly non-orthogonal. To obtain this result, we have used the value of

$$
\begin{equation*}
\Delta^{2}=\Delta_{s u}^{2}=s^{2}-u^{2} \tag{1.3}
\end{equation*}
$$

derived from the vector meson masses, and the values of masses m_{π}, η (the masses of the mesons and quarks are denoted by their respective symbola, with the exception of the pion mass). The masses of K and η^{\prime} are predicted to be $K \cong .49, \eta^{\prime} \cong .96$ (all meases in 1 GeV units) $\approx-10^{\circ}$
In the atandard mixing modela ${ }^{3)} \quad \theta_{p}^{(Q)}=\theta_{p}(\eta)=\theta_{p}\left(\eta^{\prime}\right) \tilde{\text { for }}$ quadratic (Q) mass formulae, and $\theta_{p}^{(L)} \cong-24^{\circ}$ for linear (L) mase formulae. Remark that our angle $\theta_{\rho}(\eta)$ is intermediate between these extremes ;

$$
\theta_{p}(\eta)=\frac{1}{2}\left(\theta_{p}^{(L)}+\theta_{p}^{(Q)}\right)
$$

[^0]In the quark model another definition of mixing angles is obviously more natural

$$
\begin{align*}
& \left|M_{Q}^{\prime}\right\rangle=\left|Q_{s}\right\rangle \cos \theta_{M_{Q}^{\prime}}+\left|Q_{u}\right\rangle \sin \theta_{M_{Q}^{\prime}}^{\prime} \tag{1.4}\\
& \left|M_{Q}\right\rangle=-\left|Q_{s}\right\rangle \sin \theta_{M_{Q}}+\left|Q_{u}\right\rangle \cos \theta_{M_{Q}}
\end{align*}
$$

where

$$
\begin{equation*}
\left|Q_{s}\right\rangle=|s s\rangle_{Q}, \quad\left|Q_{u}\right\rangle=\frac{1}{\sqrt{2}}\left\{|u \bar{u}\rangle_{Q}+|d \bar{d}\rangle_{Q}\right\} \tag{1.5}
\end{equation*}
$$

are the wave functions of quarks with zero isospin ($I=0$).
Note that the standard definition of the mixing angles for $Q \neq P$ is different from Eq. (1.2):

$$
\begin{align*}
& \left|M_{Q}^{\prime}\right\rangle=\left|Q_{8}\right\rangle \cos \theta_{Q}\left(M^{\prime}\right)-\left|Q_{0}\right\rangle \sin \theta_{Q}\left(M^{\prime}\right) \\
& \left|M_{Q}\right\rangle=\left|Q_{g}\right\rangle \sin \theta_{Q}(M)+\left|Q_{0}\right\rangle \cos \theta_{Q}(M) \tag{1.6}
\end{align*}
$$

which is rather incovvenient. The relation between our anglea and the standard ones is given by

$$
\begin{aligned}
& \theta_{p}(\eta)=\theta_{\eta}+\theta_{0}-\frac{\pi}{2} ; \quad \theta_{Q}(M)=\theta_{M}+\theta_{0}, Q=V_{1} T, A_{1} S \\
& \operatorname{tg} \theta_{0}=1 / \sqrt{2}, \quad \theta_{0} \cong 35.26^{\circ}
\end{aligned}
$$

(the same for η^{\prime} and M_{Q}^{\prime}). The angle θ_{0} is usually called the "ideal" mixing angle.

Our excuse for a somewhat lengthy discussion of the trivial matter of defining the mixing angles is in that the inconvenient standard definitions formerly led some authors to wrong conclusions. Besides that, the equation (1.6) for $\theta_{Q}=\theta_{0}$ gives $\left|M_{Q}^{\prime}\right\rangle=-|3 \bar{j}\rangle_{Q}$, and the minus aign is easy to lose. The more important advantage of Eq. (1.4) over Eqs. (1.2), (1.6) is a somewhat more clear relation of the angles $\theta_{M_{Q}}, \theta_{M_{a}^{\prime}}$ to OZI breaking. For the exact OZI rule $\theta_{M}=\theta_{M^{\prime}}=0$, $\quad\left|M_{Q}^{\prime}\right\rangle=\left|Q_{B}\right\rangle$ $\left|M_{Q}\right\rangle=\left|Q_{U}\right\rangle$, and $\left|\theta_{M}\right|,\left|\theta_{M}\right|$ are growing with growing $O Z I$ violating amplitudes.

2. Mass Formulae Without Mixing

As in refs./18-20/, let us suppose that the wave function $\psi_{i j Q}$ of the quarks q_{i} and \bar{q}_{j} in the atate Q satisfy the following equations

$$
\begin{equation*}
\left\{\hat{X}_{i j Q}^{2}-k^{2}\left(M_{i j Q}^{2}, m_{i}^{2}, m_{j}^{2}\right)\right\} \psi_{i j Q}=\sum_{k, l} M_{i j, k l}^{Q} \psi_{k l Q} \tag{2.1}
\end{equation*}
$$

where the right-hand aide deacribes the quark mixing. The wave function $\psi_{i j Q}$ depende on the relative coordinates of q_{i} and \bar{q}_{j} and on $Q=\left(J_{1} L, S, N\right)$, where \mathcal{J} is the total angular momentum, L is the relative orbital momentum, S is the total spin angular momentum, and $N=0,1,2, \ldots$ is the radial quantum number. We do not use any explicit form of the operator $\hat{X}_{i j Q}^{q}$ making, instead, some simple assumptions on the dependence of its eigenvalues $\mathcal{K}_{i j Q}^{2}$ on i, j and Q. Finally, k^{2} is the centrum-of-mase momentun squared of quarks q_{i}, \bar{q}_{j} :

$$
\begin{equation*}
K^{2}\left(M^{2}, m_{i}^{2}, m_{j}^{2}\right)=\frac{1}{4} M^{2}-\frac{1}{2}\left(m_{i}^{2}+m_{j}^{2}\right)+\frac{\left(m_{i}^{2}-m_{j}^{2}\right)^{2}}{4 M^{2}}, \tag{2.2}
\end{equation*}
$$

where m_{i} is the mase of the i-th quark, $i=u, d, j, M$ is the mase of the bound etate to be determined by solving the equations. Even if $\hat{\mathscr{K}}^{2}$ is independent of i and j, some symetry breaking is implicit in eq. (2.1) due to the dependence of k^{2} on quark masses. As will be shown below, some symmetry breaking, effective for the states with $L \neq 0$ or $N \neq 0$, must be present in $\hat{\mathbb{K}}^{2}$.

For the sake of completeness let us mention two eimple dynamical realizations of our phenomenological echeme. For example, we may asaume that

$$
\begin{equation*}
\hat{K}_{i j Q}^{2}=-\frac{d^{2}}{d r^{2}}+L(L+1) r^{-2}+V_{i j Q}(r) \tag{2.3}
\end{equation*}
$$

where $r=\left|\vec{r}_{i}-\vec{r}_{j}\right|$ is the distance between the quarks. Then eq. (2.1) essentially coincides with the Schroedinger equation, up to a different energy momentum relation. Equatione of the form (2.1) with
$\hat{\mathcal{K}}^{2}$ given by eq. (2.3) can be derived in some relativistic quasipotential models. In some cases the Bethe-Salpeter equation can be approximately reduced to similar equations. For example, the tightly bound pseudoscalar $(q \bar{q})$ wave function approximately satisfies the equation (2.1) with

$$
\begin{equation*}
\hat{\mathscr{K}}_{i j p}^{2} \cong-\frac{d^{2}}{d r^{2}}+\left[L(L+1)+\frac{3}{4}\right] r^{-2}+V_{i j p}(2) \tag{2.4}
\end{equation*}
$$

where $r^{2}=\left(x_{i \mu}-x_{j \mu}\right)^{2}$ is the squared distance between the quarks in the four-dimensional Euclidean coordinate apace. A more detailed discussion of these and other realizations of the general equation (2.1) as well as numerous references may be found in refs. /7/./20/

Let us temporarily forget about mixing, i.e., assume that
$M_{i j, K \ell}^{Q}=0$. Then, supposing that the dependence of $\mathcal{K}_{i j Q}^{2}$ is
$M_{i j, k l}^{Q}=$
given by

$$
\begin{equation*}
\mathcal{K}_{i j a}^{2}=k_{Q}^{2}+\frac{1}{2}\left(\mu_{i}^{2}+\mu_{j}^{2}\right) l_{Q}, \tag{2.5}
\end{equation*}
$$

it is easy to obtain simple mass formulae. Postponing the discussion of the Q-dependence of k_{Q}^{2} and l_{Q}, and uaing the isospin invariance relations $u=d, \mu_{u}=\mu_{d}$ we derive the mass relations from the eigenvalue condition

$$
\begin{equation*}
\mathcal{K}_{i, Q}^{2}=K^{2}\left(M_{i j Q}^{2}, m_{i,}^{2}, m_{j}^{2}\right) \tag{2.6}
\end{equation*}
$$

To make the derivation more transparent introduce effective quark masses $M_{i Q}$:
$m_{i Q}^{2}=m_{i}^{2}+k_{Q}^{2}+\mu_{i}^{2} l_{Q}, m_{i Q}^{2}-m_{j Q}^{2}=m_{i}^{2}-m_{j}^{2}+\left(\mu_{i}^{2}-\mu_{j}^{2}\right) P_{Q} \equiv \Delta_{i j, Q}^{2}$,
1.e.,

$$
\begin{equation*}
\Delta_{i j Q}^{2}=\Delta_{i j}^{2}+\left(\mu_{i}^{2}-\mu_{j}^{2}\right) l_{Q}, \quad \Delta_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2} \tag{2.8}
\end{equation*}
$$

Now, a simple calculation gives

$$
\begin{equation*}
M_{i j Q}=m_{i Q}+m_{j Q} \tag{2.9}
\end{equation*}
$$

and consequently

$$
\begin{align*}
& \rho=\omega, \quad K^{*} \equiv K_{v}=\frac{1}{2}(\varphi+\rho) \tag{2.10}\\
& A_{2}=f, K^{* *} \equiv K_{T}=\frac{1}{2}\left(f^{\prime}+A_{2}\right) \tag{2.11}
\end{align*}
$$

The observed vector masses (see $/ 23 /$) are in good agreement with eq. (2.10) for the tensor mesons the agreement is reasonable. The corresponding relations for the paeudoscalar mesons are badly violated. The concluaion is that mixing (or OZI violation) is very small for $Q=V$, somewhat larger for $Q=T$ and very large for $Q=P$.

Note that the corresponding equations for the charmed particles

$$
\begin{equation*}
D^{*} \equiv \mathscr{D}_{V}=\frac{1}{2}(\gamma / \psi+\rho), \quad F^{*} \equiv F_{V}=\frac{1}{2}(\gamma / \psi+\varphi) \tag{2.12}
\end{equation*}
$$

predict the masses $\Phi_{V} F_{V}$ to be $\sim 70 \mathrm{MeV}$ lower than observed ones, in spite of the expected smallness of mixing. This effect is probably related to a larger SU_{4} breaking as compared to the SU_{3} breaking - the parameter k_{Q}^{2} may be different for the charmed particles and the mold" onea. (see /19/,/20/ where the intriguing problem of the η_{c} meson is also discussed). Here we will not apply our mass formulee to the charmed particles, but
emphasize that the quadratic mass formulae are satisfied significantly worae, for example, the \mathscr{D}^{*} mase is predicted to be $\sim 250 \mathrm{MeV}$ larger than the observed one. The obvious conclusion is that the linear mass formulae obtained in our model without mixing, are better than the quadratic formulae. Por the old particles the linear formulae are approximately as good as quadratic, though the former are alightly better.

Note that our mass formulae are linear in apite of the fact that all the equations depend on squared masses. This is due to the relativistic kinematic relation (2.2) and to the neglect of the mixing effects. In the presence of such effects the mass formulae are neither linear nor quadratic.

Now we introduce a dependence of k_{Q} and l_{Q} (see eq. (2.5)) on the quantum numbera Q which in the non-relativistic limit corresponds to a simple picture of orbitally and radially excited quarks with spin-spin(S-S) and spin-orbit (L-S) level aplitting. We supplement this aimple picture by certain relation between radial and orbital excitations.

Let us call the radial aplitting the quantity

$$
\begin{equation*}
\delta_{R}\left(M_{i j Q}^{2}\right)=M_{i j Q}^{2}(N=1)-M_{i j Q}^{2}(N=0) \equiv M_{i j Q^{\prime}}^{2}-M_{i j Q}^{2}, \tag{2.13}
\end{equation*}
$$

and the "orbital splitting" the quantity

$$
\begin{equation*}
\delta_{L}\left(M_{i j Q}^{2}\right)=M_{i j Q}^{2}(L=1)-M_{i j Q}^{2}(L=0) \tag{2.14}
\end{equation*}
$$

It is implied in eq. (2.13) that all the quantum numbers Q, except N, are unchanged. In eq. (2.14) $Q=(\mathcal{H}=L, L, S=Q N)$, so as the $L-S$ term vanishes for all L. Por all models (e.g., eq.(2.3), (2.4)) and for all potentials there exiate a certain relation between δ_{L} and δ_{R}. The reason is very aimple: both quantities are defined by an average "radius" $R_{i j}$ of the bound

$$
\begin{aligned}
& \text { state }\left(q_{i} \bar{q}_{j}\right): \\
& \quad \delta_{R}\left(M_{i j Q}^{2}\right) \sim\left\langle\frac{d^{2}}{d r^{2}}\right\rangle_{i, Q} \sim\left\langle\frac{1}{r^{2}}\right\rangle_{i j Q} \sim \frac{1}{R_{i j}^{2}}, \delta_{L}\left(M_{i j Q}^{2}\right) \sim\left\langle\frac{1}{r^{2}}\right\rangle_{i j Q} \sim \frac{1}{R^{2}}, \\
& \text { where the brackets denote averaging over the atate } \Psi_{i j}
\end{aligned}
$$

where the brackets denote averaging over the state $\psi_{i j Q}$. For simple potentials (linear, oscillator, Coulomb, square well, etc.) δ_{L} and δ_{R} are proportional to $R_{i j}^{-2}$ and are approximately independent of Q.

For the oscillator potential $\delta_{R} / \delta_{L}=2$, for the linear potential δ_{R} / δ_{L} is alightly leas then 2 , and for Coulomb potential $\delta_{R} / \delta_{L}=1$. If $V=R^{-2}(r / R)^{a}$, then the ratio δ_{R} / δ_{L}
defines the value of a, and the magnitude of δ (or δ_{L}) defines the dimensional parameter R. Any realistic potential must be of a more complicated form, and some additional information (e.g., on decays of the vector and pseudoscalar particles) is required for eatimating the form of the potential.

Taking into account all these considerations we finally suppose that the eigenvalues of $\hat{\boldsymbol{R}}_{i j \alpha}^{2}$ are of the form $4 \hat{K}_{i, Q}^{2}=m_{0}^{2}+2\left(\mu_{i}^{2}+\mu_{j}^{2}\right)(L+\beta N)+\mu_{L}^{2}(\vec{L} \vec{S})+4\left[\mu_{F}^{2} \delta_{L O}+\mu_{F}^{\prime 2}\left(1-\delta_{L O}\right)\right]\left(\vec{S}_{L} \vec{S}_{j}\right)\{2.15)$ where $\vec{S}=\vec{S}_{i}+\vec{S}_{j}$. We have tacitly aupplimented the abovementioned assumptions by the hypothesis of linearly rising Regge trajectories and used the simplest possible expressions for the $L-S$ and $S-S$ splittings. For simplicity we neglect the tensor forces which mix states with different values of Q At first aight, the assumption $R_{i j}^{-2} \sim\left(\mu_{i}^{2}+\mu_{j}^{2}\right)$, used in eq. (2.15), does not seem to be natural. In fact, the multiplicative relation between the Regge slopes $\alpha_{i i} \alpha_{j j}=\alpha_{i j}^{2}$ seems to be more justified $/ 24 /$. However, for the "old" mesons the distinction between multiplicative relations for $\alpha_{i j}$ and additive relations for $\alpha_{i j}^{-1}$ is practically negligible, while the latter is more convenient in the context of mase formulae, In the potential models the additive relation is easier to obtain (see, e.g. ${ }^{/ 25 /}$).

Combining the equations (2.1), (2.2) and (2.15), one easily obtains the universal mass formula for the mesons

$$
M_{i j Q}^{2}=m_{0}^{2}+2\left(\mu_{i}^{2}+\mu_{j}^{2}\right)(L+\beta N)+2\left(m_{l}^{2}+m_{j}^{2}\right)-\left(m_{i}^{2}-m_{j}^{2}\right)^{2} / M_{i j Q}^{2}+
$$

$$
+4\left[\mu_{F}^{2} \delta_{L O}+\mu_{F}^{2}\left(1-\delta_{L O}\right)\right]\left(\vec{s}_{i} \vec{S}_{j}\right)+\mu_{L}^{2}(\vec{L} \vec{S})-\frac{4}{3} \varepsilon_{Q}^{2}\left(M_{i j a}^{2}\right) .
$$

A new term $-\frac{4}{3} \varepsilon_{Q}^{2}$ has been added here, the explanation of its origin to be given later. For the moment, the reader is advised to forget about this term ${ }^{4}$). This formula is applicable to $I=1 / 2$ and $I=1$ states. For $I=0$ states it can be used, provided mixing is very amall, as,e.g., in the vector nonet. In that case, as explained above, it gives the aimple linear mass relations (2.9)-(2.11).

By fixing the parameters in eq. (2.16) one can predict the massea of all $I=\frac{1}{2}, 1$ mesons and, for negligible mixing, the masses of the isoscalar particles. Taking into account the isoapin symmetry, there are 8 independent free parameters in eq. (2.16).

[^1]To find them, let us first use the masses $\rho, \stackrel{*}{K}=K_{V}, A_{1}(1.1), A_{2}$, $K^{* *}=K_{7}, \quad B(1.231)^{5)}$. Then

$$
\begin{equation*}
m_{0}^{2}+2\left(u^{2}+s^{2}\right)+\mu_{F}^{2} \cong .814, \quad \Delta_{1 u}^{2}=\Delta^{2} \cong .108, \tag{2.17}
\end{equation*}
$$

$\mu_{F}^{\prime 2} \cong-.012, \mu_{L}^{2} \cong .255,4 \mu_{u}^{2}-\mu_{F}^{2} \cong .880,2 \mu_{u}^{2}+2 \mu_{s}^{2}-\mu_{F}^{2} \cong .968$.
With these values of the parameters the masses of other states can be predicted. For example, $g(J=3, L=2, S=1) \cong 1.690$, $K^{*}(J=3, L=2, S=0) \cong 1,80, K^{*}(y=1, L=1, S=1) \cong 1,23$, $K^{*}(J=1, L=1, S=0) \cong 1.35, \quad \rho_{1}(J=1, L=2, s=1) \cong 1.26$.
The experimental masses are respectively $g=1.688, k^{*}=1.784$, $Q_{1}=1.28, Q_{2} \sim 1.4$. Some arguments in favour of the ρ_{1}-particle with mass $\rho_{1} \sim 1.25$ are discussed in ref. ${ }^{/ 26 / \text {. }}$

The parameter μ_{F} will be fixed after considering the mixing effecta; later on we shall show that $\mu_{F}^{2} \cong .111$ With this value of μ_{F} we can fix the parameters μ_{4}, μ_{s} and β. Identifying $\rho^{\prime}(1,6)$ with the first radial excitation of the ρ-meson $(N=1)$, we now find $\beta=1.98$, which is rather close to the oscillator potential prediction. Knowing this parameter one can predict the masses of other radially excited mesons, but any comparison with experiment would be premature ${ }^{6}$).

As the data on the scalar mesons are somewhat controversial we do not mention our predictions for the acalar multiplet. In addition, there are good reasons to believe that the aimple quark picture is, in this case, spoiled by mixing of the $q \bar{q}$ states with exotic $9 \overline{9} 9 \overline{9}$ states (see $/ 9 /$), similar effects are expected for the charmed particlea $/ 3 /, / 7 /, / 19 /, 120 /$. Neglecting such a mixing one can obtain $4 \mu_{c}^{2} \cong 2.0$ and predict the radially excited states of the J / ψ particle: $\psi^{\prime}=3.7, \psi^{\prime \prime}=4.19$, etc.

A more detailed comparison of the predictions of eq. (2.16) with experiment will be given in another communication. Here we make only some general remarks. It has been shown that these formulae give a good description of the mass apectrum of the "uaual" mesons and a reasonable first approximation for treating the charmed particles (see/19/,/20/ for more detail). The main symmetry violation is due to mass differences of quarke,

[^2]and some symmetry breaking is observed in the Regge slopes (in our treatment these are $\left.\left(4 \mu_{u}^{2}\right)^{-1},\left(2 \mu_{u}^{2}+2 \mu_{s}^{2}\right)^{-1},\left(4 \mu_{s}^{2}\right)^{-1},\left(4 \mu_{c}^{2}\right)^{-1}\right)$. For the old particles this breaking is $\approx 10 \%$, and for charmed particles it is $\approx 40 \%$. The same pattern is to be observed in the apectrum of the radial excitations. For the $S-S$ and $L-S$ splittings the eymetry violation is expected to be significantly smaller as far as the corresponding parameters depend on the behaviour of the wave function at amall distances. In fact, the pectrum of the old meaons exhibite no SU_{3} symmetry breaking in the $S-S$ and $L-S$ splittinge, and the SU_{4} violation is $\leqslant 20 \%$ for the charmed particles. (see $/ 20 /$). Above we have tacitly assumed no dependence on i, j and Q of the parameter m_{0}^{2}. For the old particles this is justified by good agreement of predicted masses with experiment. However, some effects not included in our scheme (e.g., tensor forces) may give an effective dependence of m_{0}^{2} on Q. With present data such a poseibility is difficult to exclude for the charmed particles.

We conclude by summarizing the main foatures of our approach as distinct from the standard treatments:/12/-/16/: 1) the relativistic energy-momentum relations, eep. for unequal masses; 2) a relation between orbital (L) and radial (N) excitations; 3) inclusion of some symmetry breaking in the dependence of the meson messes on L and N. Similar formulae can be employed for describing the diquark ($d_{i j}$) mass spectrum, the baryon mase spectrum, and the exotic meson ($d_{j} \bar{d}_{i j}$) mase spectrum $/ 18 /$. The mass formulae are alway linear.

3. Mixing Effecte

As has been pointed out in refe. $/ 28 /-/ 38 /$, eimple QCD argumente give the mixing matrix of the form

$$
\begin{equation*}
M_{i j, k \ell}^{Q}=-\varepsilon_{Q}^{2} \delta_{i j} \delta_{k \ell} \tag{3.1}
\end{equation*}
$$

This corresponds to annibilation of two or three gluons in the s-channel of the aystem $q_{i} \bar{q}_{j}$ and to further tranaition of the gluons into $q_{k} \bar{q}_{e}$. The offective Lagrangian for such a transition may be written as $\mathscr{L}_{\text {eff }} \sim\left(\bar{q} \lambda_{n} q^{\prime}\right)\left(\bar{q}^{\prime} \lambda_{n} q\right)$, where $\lambda_{n}(n=1, \ldots, 8)$ are the Gell-Mann matrices, $\lambda_{0}=\sqrt{\frac{2}{3}} I$, and $q^{\prime}, \bar{q}^{\prime}$ are referred to the guarks in the final state. We auppress here the γ-matrices deacribing a apin dependence of the mixing matrix and neglect the colour structure. All these offects are included in the para-
meter ε_{Q}^{2}. Introducing, for exemple, a nonet of veeter mesons V_{n}^{μ} one may interpret $\mathcal{L}_{\text {eff }}$ in terms of the exchange of these mesons in the t-channel, with the effective quark-meson Legrangian $\mathscr{L}_{v q 9} \sim\left(\bar{q} \lambda_{n} \gamma_{\mu} q\right) V_{n}^{\mu}$. The Lagrangians $\mathscr{L}_{\text {eff }}$ and $\mathscr{L}_{v q \mathcal{G}}$ are not only SU_{3}-invariant but also U_{3} - invariant. Remark that the assumption of the U_{3}-invariance was first used by Schwinger $/ 31$ /, who invented the mixing matrix (3.1) and derived on its basis his well-known mass formula ${ }^{7}$). Schwinger's mass formula is quadratic in meson masses and is in reasonable agreement with present data, its prediction for the ρ-mass being $\rho_{(a)}^{\cong} \xlongequal{\cong} .760$. The linear version of the formula is better: $\rho_{\mu} \cong .774$.

Both linear and quadratic Schwinger's mass formulae, however, fail to describe the pseudoscalar nonet. The predictions of η^{\prime} with the input masses m_{π}, K and η are resp. $\eta_{\mu}^{\prime} \bar{\sim} 1.61$, $\eta_{(2)}^{\prime}=2.34$. To avoid this difficulty it was proposed $/ 29 \%_{\text {that }}$ ε_{Q}^{2} is strongly dependent on the bound state mase M. This is very natural in QCD as $\varepsilon_{p}^{2}\left(M^{2}\right) \sim \alpha_{s}^{2}\left(M^{2}\right)$ and $\varepsilon_{v}^{2}\left(M^{2}\right) \sim \alpha_{s}^{3}\left(M^{2}\right)$ (see, e.g. $/ 2 /, / 3 /$). However, this dependence for the linear mass formulae ${ }^{\prime 29 /}$ proves to be unreasonably strong $-\varepsilon_{p}^{2}\left(\eta^{2}\right) / \varepsilon_{p}^{2}\left(\eta^{\prime}\right)=7.6$, which is difficult to reconcile with $\varepsilon_{v}^{2}\left(\varphi^{2}\right) / \varepsilon_{v}^{2}\left(\omega^{2}\right) \sim 1$. This difficulty has not been discussed in refe. $/ 28 /, / 30 /$ treating the same mixing mechanism in the context of the quadratic mass formulae. Assuming a dependence of ε_{Q}^{2} on M^{2} to exist also in this case, one can find that $\varepsilon_{p}^{2}\left(\eta^{2}\right) / \varepsilon_{\rho}^{2}\left(\eta^{2}\right) \simeq 3.6$, and $\varepsilon_{v}^{2}\left(\varphi^{2}\right) / \varepsilon_{v}^{2}\left(\omega^{2}\right) \sim 1$, leading to the same difficulty. In addition, both "linear" and "quadratic" predictions for the pseudoscalar mixing angle are in poor agreement with present data on radiative decays of the vector mesons and with data on η / η^{\prime} production at high energies (see $/ 22 /$). Por the quadratic formulae $\theta_{p}(\eta) \cong-5.4^{\circ}, \theta_{p}\left(\eta^{\prime}\right) \cong$ -19.8°, for the linear $-\theta_{p}(\eta) \cong-11.1^{\circ}, \theta_{p}\left(\eta^{\prime}\right) \cong-44.7^{\circ}$. In the next paper it will be shown that these angles are inconsistent with the decay data unless OZI violating terms not included in $\eta-\eta^{\prime}, \omega-\varphi$ mixing are unreasonably large. The linear anglea badly disagree with the high-energy production data, and the quadratic angles give the value of $\sigma\left(\eta^{\prime}\right) / \sigma(\eta)$ which is $\sim \frac{3}{2}$ larger than the experimental result.

The mixing mechanisms in question share with the standard mechanisms (see $/ 12 /-/ 16 /$) the following doficiency. Either none of the pseudoscalar masses is predicted, or the prediction 1s very bad. An exterme of this feature is presented in the inteT) Fifis ract was overlooked in refe. /28/-/30/ as well an by the preaent author, who independentiy introduced a similar by the proaent authgr
mechaniem in refe.
mis
reating paper $/ 32$, where a large SU_{3} breaking has been introduced into the mixing matrix. As a reault, all the pseudoacalar masses and the mixing angle $\theta_{p}(\eta)=\theta_{p}\left(\eta^{\prime}\right) \cong-10^{\circ}$ should be used for a deacription of the pseudoscalar nonet. In addition to poor agreement of this angle with experiment, there is no way to check up the consistency of the assumptions within the old particle family.

We will not discuas other, more exotic mixing achemes as our approach is a direct generalization of those based on eq. (2.1). In ref. $/ 7 /$ we have developed a mixing scheme atarting from eqs. (2.1), (2.2), (2.15) with the mixing matrix (3.1). Even aseuming no dependence of ε_{Q}^{2} on M^{2} we have succeeded in describing V and T multiplets and the masses of the pseudoscaler mesons η. η^{\prime} and K. For the optimum value of $\varepsilon_{p}^{2}\left(\varepsilon_{p}^{2} \cong .524\right)$ the mixing angle is predicted to be $\theta_{\rho}(\eta)=\theta_{\rho}\left(\eta^{\prime}\right) \cong-20.1^{\circ}$ and the fitted masses of η and η^{\prime} are $\eta=.542, \eta^{\prime}=.963$. In spite of the bad prediction for the pion mass ($m_{\pi} \cong .28$) the description seems to be more successful than those discussed above, as the dependence of ε^{2} on M^{2} is rather weak and the mixing angle is in nice agreement with experiment. With cegard for such a dependence, we have obtained $\varepsilon_{p}^{2}\left(\eta^{\prime}\right) \cong, 0605, \varepsilon_{p}^{2}\left(\eta^{\prime}\right) \cong 0503$, $\theta_{p}(\eta) \cong-17.6^{\circ}, \theta_{p}\left(\eta^{\prime}\right) \cong-20.9^{\circ}$. This improvement is solely due to the relatitistic kinematic relation (2.2). If we omit the last term in this equation, we reproduce the quadratic formule of refs. $/ 28 /, 130 /, / 31 /$. Substituting, in addition, masses for squared masses, we arrive at the linear relations of ref. $/ 29 /$.

To successfully describe also the pion it has been suggested $/ 19 /, / 20 /$ to generalize the mixing mechanism (3.1) as follows. As is well known, the U_{3} symmetry, implied in eq. (3.1), results in unpleasant consequences for the pseudoscalar mass spectrum (the so-called U_{1}-problem, see,e.g. ${ }^{133 /}$). Recently, a possible solution of the problem has been outlined in the course of developing new ideas on the infrared properties of QCD/34/. It seems quite probable that the two-gluon anomaly, along with a rearrangement of the vacuum due to instanton contributions, reduce the undesirable U_{3}-symmetry to U_{1}-symmetry. One may therefore tentatively assume that the mixing matrix is
SU_{3} aymmetric rather than U_{3}-aymmetric.
Apparently different arguments in favour of using SU_{3}-aymmetr mixing were earlier given in refa. 19/,/20/. It is con-
ceivable that the effect of soft gluon exchangea can be represented by an exchange of the Regge trajectories (R) of the observed mesona in the t-channel (see fig. 1). Then the $\mathrm{SU}_{3}-$ flavour-exchange amplitude is decreasing with S while the amplitude with the exchange of the δU_{3}-ainglet "trajectories" R is approximately "constant". The latter is the same for all meson states ($\mathcal{L}_{\text {eff }} \sim\left(\bar{q} \lambda \circ q^{\prime}\right)\left(\bar{q}^{\prime} \lambda_{0} q\right)$ in the S - channel and can be included in the \hat{K}^{2}. The octet- R-exchange can be described by an effective Lagrangian $\mathscr{L}_{\text {eff }} \sim g(s)\left(\bar{q} \lambda_{n} q^{\prime}\right)\left(\bar{q}^{\prime} \lambda_{n} q\right), n=1, \xi$, that atrongly depends on $s=M_{i j}^{2}$ and gives the mixing matrix

$$
\begin{equation*}
M_{i j, k l}^{Q}=-\varepsilon_{Q}^{2}\left(M_{i j Q}^{2}\right)\left[\delta_{i j} \delta_{k l}-\frac{1}{3} \delta_{i k} \delta_{j l}\right] . \tag{3.2}
\end{equation*}
$$

In the following descussion we consider the mixing mechanism based on eqs.(2.1), (2.2), (2.15) with the mixing matrix (3.2).

The mixing parameter ε_{Q}^{2} is large only for $Q=P$, an elegant explanation of this fact in terms of QCD has recently been advanced by Friedberg and Lee $/ 11$ /. Owing to the amallness of ε_{Q}^{2} for $Q=V, T, \ldots$ and to the approximate degeneracy of masses in these multipleta, the M^{2}-dependence of ε_{Q}^{2} can be neglected in the firat approximation. To save the space we shall write the relevant formulae for the general case not making such an approximation.

With the mixing matrix (3.2) the equations for calculating the masses of the $I=1 / 2,1$ mesons belonging to the multiplet Q, are

$$
\begin{align*}
& M_{Q, 1}^{2}=m_{Q}^{2}-2 \Delta^{2}-\frac{4}{3} \varepsilon_{Q}^{2}\left(M_{Q, 1}^{2}\right) \tag{3.3}\\
& M_{Q, 4 / 2}^{2}=m_{Q}^{2}-\frac{\Delta^{4}}{M_{Q, 1 / 2}^{2}}-\frac{4}{3} \varepsilon_{Q}^{2}\left(M_{Q, 1 / 2}^{2}\right), \tag{3.4}
\end{align*}
$$

where M_{Q}^{2} is to be determined from eq. (2.15), $\Delta^{2}=\Delta_{s u}^{2}$. As $\varepsilon_{Q}^{2}\left(M^{2}\right)$ is a decreasing function of M^{2} the equations have two solutions at most. Only one of them is stable in each case ${ }^{8}$. The easiest way to see this is to draw the picture version of the equations as presented in fig. 2. The curves correspond to the right member of the equations, the stable solution is denoted by S, the unstable one- by A, the dotted lines correspond to iterations
8) A solution is atable if and only if the derivatives of the right-hand-sides of eqg. (3.3), (3.4) are <1 and >-1 in the respective points. We shall show that this condition is fulfilled for the observed masses.

$+$

a)

$$
\sim \sum_{R}
$$

b)

Fig. 1

Fig. 2
always giving the stable solutions. If ε_{Q}^{2} is independent of M^{2}, the solution is unique (the point S^{\prime}). In the case $Q=P$ the pion mase, $M_{P, i}=m_{\pi}$, is very amall, and this requires $\varepsilon_{P}^{2}\left(M^{2}\right)$ to be rather large and rather atrongly dependent on M^{2}. By inapecting fig. $2 a$ one can infer that m_{π}^{2} has a minimum if the curve repreaenting the right-member of eq. (3.3) is tangent to the atraight line $O R$ at the point S_{0}. Then

$$
\begin{equation*}
d \varepsilon_{p}^{2} / d m_{\pi}^{2}=-\frac{3}{4} . \tag{3.5}
\end{equation*}
$$

This hypothesis of the minimum mass of the pion, or of the maximum mixing will be used later to calculate the magnitude of the mixing parameter $\varepsilon_{\pi}^{2} \equiv \varepsilon_{p}^{2}\left(m_{\pi}^{2}\right)$.

> The isoscalar wave functions satisfy the equation

$$
\begin{align*}
& \left(\hat{K}_{u u Q}^{2}-K_{u}^{2}\right) \Psi_{u, Q}=\varepsilon_{Q}^{2}\left[-\frac{5}{3} \Psi_{u, Q}-\sqrt{2} \Psi_{1, Q}\right] \tag{3.6}\\
& \left(\hat{K}_{1, Q}^{2}-K_{1}^{2}\right) \Psi_{1, Q}=\varepsilon_{Q}^{2}\left[-\frac{2}{3} \Psi_{1, Q}-\sqrt{2} \Psi_{u, Q}\right] \tag{3.7}
\end{align*}
$$

where (aee eq. (2.2))
$k_{u}^{2}=\frac{1}{4} M^{2}-u^{2}, \quad k_{s}^{2}=\frac{1}{4} M^{2}-s^{2}, M^{2}=M_{Q}^{2} \quad$ or M_{Q}^{2},
$\Psi_{4, Q}, \Psi_{1, Q}$ are the wave functions in the quark basia (1.5), and the isospin invariance has been used. Solving this system we find the equationa for M_{Q}^{\prime} and M_{Q}

$$
\begin{align*}
& M_{Q}^{\prime 2}=m_{Q}^{2}+\frac{14}{3} \varepsilon_{Q}^{\prime 2}+2 \sqrt{\left(\Delta^{2}-\varepsilon_{Q}^{\prime 2}\right)^{2}+8 \varepsilon_{Q}^{\prime 4}}, \tag{3.8}\\
& M_{Q}^{2}=m_{Q}^{2}+\frac{14}{3} \varepsilon_{Q}^{2}-2 \sqrt{\left(\Delta^{2}-\varepsilon_{Q}^{2}\right)^{2}+8 \varepsilon_{Q}^{4}}, \tag{3.9}
\end{align*}
$$

where $\varepsilon_{Q}=\varepsilon_{Q}\left(M_{Q}^{2}\right), \varepsilon_{Q}^{\prime}=\varepsilon_{Q}\left(M_{Q}^{\prime 2}\right)$. The elgenvectors corresponding to these elgenvalues are to be determined by eqs. (1.4), and
$\operatorname{tg} \theta_{M_{Q}}=2 \sqrt{2} \varepsilon_{Q}^{2}\left[\Delta^{2}-\varepsilon_{Q}^{2}+\sqrt{\left(\Delta^{2}-\varepsilon_{Q}^{2}\right)^{2}+8 \varepsilon_{Q}^{4}}\right]^{-1}$.
To obtain $\operatorname{tg} \theta_{M_{Q}^{\prime}}$ one has aimply to aubstitute here \mathcal{E}_{Q} by ε_{Q}^{\prime}.
The solutions of eqs. (3.8), (3.9) are stable for all observed particles.

Eqs. (3.3), (3.4), (3,8), (3.9) constitute the solution of the mixing problem for all multiplets. Now aasume $\varepsilon_{\mathbb{Q}}$ to be independent of M_{Q} and introduce the notation

$$
\begin{equation*}
M_{Q, 0} \equiv 2 M_{Q, V_{2}}-M_{Q, 1}, \delta_{Q}^{2} \equiv M_{Q}^{2}-M_{Q, 1}^{2}, \delta_{Q}^{\prime 2} \equiv M_{Q}^{12}-M_{Q, 0}^{2} \tag{3.11}
\end{equation*}
$$

After simple calculations the following mass formula can be derived ${ }^{9}$)

$$
\begin{equation*}
\delta_{Q}^{2}\left(1+\frac{\delta_{Q}^{2}}{M_{Q}^{\prime 2}-M_{Q}^{2}}\right)=2 \delta_{Q}^{2}\left(1-\frac{\delta_{Q}^{\prime 2}}{M_{Q}^{\prime 2}-M_{Q}^{2}}\right) \tag{3.12}
\end{equation*}
$$

By aubatituting massea in the first of the definitions (3.11) by squared masmes the Schwinger's formula can be reproduced.

If the mixing parameter is amall, the δ_{Q}^{2} and $\delta_{Q}^{\prime 2}$ are very small due to the approximate equalities $M_{Q} \cong M_{Q, 1}$ (e.g., $\omega \cong p^{\cdot}, A_{2} \cong f$) and $M_{Q}^{\prime} \cong M_{Q, 0}$ which follow from eqs. (2.9)(2.11). Then, neglecting in eq.(3.12) the terms of second order in δ_{Q}^{2} and $\delta_{Q}^{\prime 2}$, we obtain an approximate mass formula which for the vector mesons is

$$
\begin{equation*}
2 \varphi^{2}+p^{2} \cong 2\left(2 k_{v}-\rho\right)^{2}+\omega^{2} \tag{3.13}
\end{equation*}
$$

The prediction of this formula for the ρ mass is $\rho=.7726$ while the exact formula predicts $\rho=.7728$. With regard for the uncertainty of the ρ mass (electromagnetic splitting) the beat prediction for the $\rho-$ mass is $\rho=.773(\pm) .004,\left(K_{v}\right)$. Hereafter we employ the notation $(\pm),(\ldots)$ for errors correlated to the errops in the variable (e.g., (K_{V}) written in the parentheses.

Now, the masses of other vector mesons allow us to fix other free parameter
$\Delta^{2}=1^{2}-u^{2}=.1086(\mp) .0007, \quad \varepsilon_{v}^{2}=.0020(\mp) .0008$
$m_{v}^{2}=.817(土) .004, \theta_{\omega}=\theta_{\varphi}=(1.5(\mp) .6)^{\circ}, \theta_{V}=(36.8(\mp) .6)^{\circ}$.
Here all the errors are correlated to the errors in K_{V}.
Applying eq. (3.12) to the tensor meson one can predict the mass of the K_{T} by using the input masses $A_{2, f,} f^{\prime}$: $K_{T}=1.421 \pm .006$. This is slightly different from the mase quoted in ref. $/ 23 /\left(K_{T}=1.434 \pm .005\right)$., but the statiatical average (with Student's distribution) of the world data gives another result, $K_{T}=1.4237 \pm .0015^{/ 23 /}$, which is in good agreement with our value. For thia reason we take $K_{T}=1.421$ as an "experimentaln K_{T}-mass. For similar reasons we consider $\rho=.773$ as an "experimental" ρ-mass.

[^3] la (3.12) for the $L=1$ multiplets.

As the mixing parameters $\varepsilon_{f /}^{2} \varepsilon_{\zeta^{\prime}}^{2}$ are alightly different and are larger than ε_{V}^{2} we calculate an average mixing parameter ε_{T}^{2} by taking half-sum of eqs. (3.8) and (3.9), the parameter m_{T}^{2} being fixed by the A_{2} mass. The result is

$$
\begin{equation*}
\varepsilon_{T}^{2} \cong-.0114, \quad \theta_{f} \cong \theta_{f^{\prime}} \cong-5.6^{\circ} \tag{3.15}
\end{equation*}
$$

Due to the approximate relation $\theta_{f} \simeq \frac{\pi}{6}-\theta_{0}$, where $\operatorname{tg} \theta_{0}=\frac{1}{\sqrt{2}}$ (see (1.7)), we can write the aimple approximate expression

$$
\begin{equation*}
\operatorname{tg} \theta_{f} \cong(\sqrt{2}-\sqrt{3})(1+\sqrt{6})^{-1} \tag{3.16}
\end{equation*}
$$

which is easy to remember.
A more careful analyais of the vector and tensor multiplets indicates that $\varepsilon_{V}^{2}\left(M^{2}\right)$ and $\varepsilon_{T}^{2}\left(M^{2}\right)$ are amooth-decreasing functions of M^{2}. However, the present data on masses do not allow us to extract this dependence with good precision. On the contrary, this dependence is very pronounced in the paeudoscalar nonet. 10).

In this case there are 4 masses and 5 unknown parameters $m_{p}^{2}, \varepsilon_{\pi}^{2}, \varepsilon_{k}^{2}, \varepsilon_{\eta}^{2}$ and $\varepsilon_{\eta^{\prime}}^{2}$. As pointed out above, the independence of ε^{2} on M^{2} resulta in a too large prediction for the pion mass. This is easy to understand if $\varepsilon_{\pi}^{2} \neq \varepsilon_{\eta}^{2}$. In fact, assuming $\varepsilon_{k} \simeq \varepsilon_{\eta} \simeq \varepsilon_{\eta}$, one can obtain $\varepsilon_{\eta}^{2} \simeq .5, \varepsilon_{\pi}^{2} \simeq .1$. It is interesting to observe that $\varepsilon_{\pi}^{2} \sim \Delta^{2}, \varepsilon_{\eta}^{2} \sim \Delta^{2} / 2$. Very probably, the last relation is not accidental. Indeed, regarding η^{2} as a function of ε_{η}^{2}, one can obtain from eq. (3.9) the remarkable result: the mass of the η meson has a maximum for $\varepsilon_{\eta}^{2}=\Delta^{2} / 2$ $\left(d \eta^{2} / d \varepsilon_{\eta}^{2}=0, d^{2} \eta^{2} / d\left(\varepsilon_{\eta}^{2}\right)^{2}>0\right.$ for $\left.\varepsilon_{\eta}^{2}=\Delta^{2} / 2\right)$, and $\operatorname{tg} \theta_{n}=1 / \sqrt{2}, \quad \theta_{\eta}=\theta_{0}, \quad \theta_{p}(\eta) \cong-19.47^{\circ}$. Thus, a simple pattern of mixing in the pseudoscalar nonet emerges - the pion mass is minimum and the η mass is maximum possible.

With the observed dependence of ε_{p}^{2} on M^{2}, the last statement is only approximately realized. If ve take $\varepsilon_{\eta}^{2}=\frac{\Delta^{2}}{2}$ and calculate the unknown parameters by using the pseudascalar masses we find a variation of $\varepsilon^{2}\left(M^{2}\right)$ in the interval $K^{2} \leqslant M^{2} \leqslant \eta^{2}$ to be too large:

$$
\varepsilon_{\pi}^{2} \cong .1032, \varepsilon_{k}^{2} \cong .0509, \varepsilon_{\eta}^{2} \cong .0543, \varepsilon_{\eta^{\prime}}^{2} \cong .0504
$$

10) Fe are not diacussing other multiplets as their experimental statas is unclear.

$$
\begin{align*}
& \text { Assuming a more realistic approximation } \varepsilon_{\eta} \cong \varepsilon_{k} \text { we obtain } \\
& \varepsilon_{\pi}^{2}=.1038, \varepsilon_{k}^{2} \cong \varepsilon_{\eta}^{2}=.0605^{\prime}, \varepsilon_{\eta}^{2}=.0503 \\
& \theta_{\eta}=37.15^{\circ}, \theta_{\eta}=33.86^{\circ}, \theta_{p}(\eta)=-17.59^{\circ}, \theta_{p}\left(\eta^{\prime}\right)=-20.88^{\circ} \tag{3.17}
\end{align*}
$$

These values of the parameters satiafy the simple relation $\varepsilon_{\eta}{ }^{2}+$ $+\varepsilon_{\eta^{\prime}}^{2} \equiv \Delta^{2}$. With this relation as an input the parametere are $\varepsilon_{n}^{2}=.1035, \varepsilon_{k}^{2}=.0602, \varepsilon_{\eta}^{2}=.0582, \varepsilon_{\eta}^{2}=.0504$
$\theta_{\eta}=36,49^{\circ}, \theta_{\eta^{\prime}}=33.90^{\circ}, \quad \theta_{p}(\eta)=-18,25^{\circ}, \theta_{p}(\eta)=-20,84^{\circ}$.
We regard this reault as a most reliable description of mixing in the pseudoscalar multiplet.

The next section is devoted to an attempt to explain the M^{2}-dependence of ε_{P}^{2} in QCD. All the above procedures of calculating the mixing angles are in fair mutual agreement and give $\theta_{p}(\eta)=(17.5+20)^{\circ}$, and $\theta_{p}\left(\eta^{\prime}\right)=-(20 \div 21)^{\circ}$. The data discussed by Okubo $/ 22 /$, are in very good agreoment with these mixing angles. With due regard for the large experimental errors, the tensor and vector angles are not at variance with the data.

4. Mixing and QCD

The dependence of $\varepsilon_{p}^{2}\left(M^{2}\right)$ can be qualitatively explained by the relation $\varepsilon^{2}\left(M^{2}\right) \sim \alpha_{s}^{2}\left(M^{2}\right)$ where $\alpha_{s}\left(M^{2}\right)$ is the "Sommerfeld constant" for the quark-gluon interaction (related to the invariant "charge" $/ 1 /-16 /$. As far as we are trying to apply QCD in the resonance region, where this constant is not small, we have to somewhow take into account the higher order contributions. With this in mind, we assume that

$$
\begin{equation*}
\varepsilon\left(M^{2}\right) \sim \alpha_{S}\left(M^{2}\right)\left[1+\lambda \alpha_{S}\left(M^{2}\right)\right]^{-1} \tag{4.1}
\end{equation*}
$$

where λ is some unknown constant, responaible for these contributions to $\varepsilon\left(M^{2}\right)$. To make this relation useful, some explicit expression for $\alpha_{S}\left(M^{2}\right)$ is needed. The renorminvariant perturbation theory result for the $\alpha_{s}\left(M^{2}\right)$ is (see e.g. $/ 2 /, / 6 /$)

$$
\begin{equation*}
\alpha_{S}\left(M^{2}\right)=\alpha_{0}\left[1+\alpha_{0} \sigma_{0}\left(M^{2}\right)\right]^{-1} \tag{4.2}
\end{equation*}
$$

where $\sigma_{0}\left(M_{0}^{2}\right)=0 \quad, \alpha_{0}=\alpha_{s}\left(M_{0}^{2}\right)>0$, and $\sigma_{0}\left(M^{2}\right)$ represents the second-order-quaris-loop contribution. For $M^{2} \rightarrow 0$ the $\sigma_{0}\left(M^{2}\right)$ is logarithmically divergent so as for some finite M^{2} the denominator in eq. (4.2) has a zero. If we believe in deriving a confinement mechanism from infrared singularities of QCD,
a more natural assumption would be diverging $\alpha_{S}\left(M^{2}\right)$ for $M^{2}=0$. Starting from this observation we suggest to regularize $\sigma_{0}\left(M^{2}\right)$ in such a way that the denominator in eq. (4.2) would vanish only at $M^{2}=0$.

$$
\begin{align*}
& \text { Assume that } \\
& \alpha_{S}\left(M^{2}\right)=\alpha_{0}\left[1+\alpha_{0} \sigma_{\mu}\left(M^{2}\right)\right]^{-1} \tag{4.3}
\end{align*}
$$

where $\sigma_{\mu}\left(M^{2}\right) \equiv \sigma_{u}\left(M^{2}+\mu^{2}\right)$, i.e.g $\sigma_{\mu}\left(M^{2}\right)=\frac{1}{12 \pi}\left\{33 \ln \frac{M^{2}+\mu^{2}}{\psi^{2}+\mu^{2}}-4 \ln \left(\frac{5 u^{2}+M^{2}+\mu^{2}}{5 u^{2}+\psi^{2}+\mu^{2}}\right)-2 \ln \left(\frac{5 s^{2}+M^{2}+\mu^{2}}{5 s^{2}+\psi^{2}+\mu^{2}}\right)\right.$ (4.4)
$-2 \ln \left(\frac{5 c^{2}+M^{2}+\mu^{2}}{5 c^{2}+4^{2}+\mu^{2}}\right)$.
ψ is the mass of the
Here ψ is the mass of the J / ψ particle, C is the C quark mass, μ is a regularizing mass, and $\sigma_{\mu}\left(\psi^{2}\right)=0$ (the normalization condition).

As in refs. $/ 20 /, / 21 /$ we assume $u \sim m_{\bar{j}} / 2$, then the masses of other quarks are defined in terms of observed meson masses, our results for $\Delta^{2} 3 u$ and $\Delta_{C L}^{2}$ leading to S~.33, C~1.6. The final results are weakly dependent on quark masses. The variation of the most sensitive to the quark masses quantity $\sigma_{\mu}^{\prime}\left(m_{\pi}^{2}\right)$ is $\leqslant 5 \%$ on the interval $0 \leqslant$ $\leqslant u \leqslant m_{\pi} / 2 \quad, \sigma_{\mu}(0)$ varies within 2%, and other quantities are stable up to 1%.

The commonly used value of $\alpha_{0} \equiv \alpha_{s}\left(\psi^{2}\right)$ is $\alpha_{0} \sim .2$ (see, e.g.g $/ 2 /, / 3 /$). Solving the equation $1+\alpha_{0} \sigma_{\mu}(0)=0$ with this value of α_{0} we find $\mu=.115$, very close to $m_{\pi}=.137$, as should be expected. In the following we simply take $\mu=m_{\pi}$, so as $\alpha_{0}=-\left[\sigma_{m_{\pi}}(0)\right]^{-1} \cong .2126$. We shall use the following values of $\sigma_{m_{\pi}}\left(M^{2}\right)$, where the index m_{π} will be suppressed
$\sigma\left(m_{\pi}^{2}\right)=-4.137, \sigma\left(k^{2}\right)=-2.611, \sigma\left(\eta^{2}\right)=-2.466$

$$
\begin{equation*}
\sigma\left(\eta^{\prime 2}\right)=-1.666, \quad \sigma^{\prime}\left(m_{\pi}^{2}\right)=21.5(\mp) .8,\left(m_{\pi}\right) \tag{4.6}
\end{equation*}
$$

Now we can attempt to fix the only unknown parameter λ to reproduce the obtained above values of $\varepsilon_{p}\left(M^{2}\right)$ (e.g., eq. (3.18)). To achieve this we observe that eqs. (4.1), (4.2) imply the relation $\left(\beta_{0} \equiv \lambda+\alpha_{0}^{-1}\right)$

$$
\begin{equation*}
\varepsilon\left(m_{1}^{2}\right) / \varepsilon\left(m_{2}^{2}\right)=\left[\beta_{0}+\sigma\left(m_{2}^{2}\right)\right]\left[\beta_{0}+\sigma\left(m_{1}^{2}\right)\right]^{-1} \tag{4.7}
\end{equation*}
$$

For $\beta_{0} \sim 9.5$ the result (3.18) is fairly reproduced by this relation with the error $\lesssim 4 \%$.

We can, however, obtain more interesting predictions, by deriving the three unknown parameters m_{p}^{2}, β_{0} and ε_{π}^{2}
from eqs. (3.3), (3.9) (for $M_{Q}=\eta$) and (3.5). By using eq.(4.7) (or (4.1) and (4.3)) the last equation cen be rewritten in the form
$\varepsilon_{\pi}^{2}\left[\beta_{0}+\sigma\left(m_{\pi}^{2}\right)\right]^{-1}=\frac{3}{8}\left[\sigma^{\prime}\left(m_{\pi}^{2}\right)\right]^{-1}=.0175(\pm) .0006,\left(m_{\pi}\right)$.
The right member of this is approximately equal to m_{π} (remark that $\left.\sigma^{\prime}\left(m_{\pi}^{2}\right) \simeq .407 / m_{\pi}^{2}\right)$. Numerically solving all the equations we have

$$
m_{p}^{2}=.3736 \pm .0005, \quad \varepsilon_{\pi}^{2}=.103 \pm .001
$$

$$
\begin{equation*}
\beta_{i}+\sigma\left(m_{\pi}^{2}\right)=5.9 \pm .2, \quad \beta_{0}=10,0 \pm .2 \tag{4.9}
\end{equation*}
$$

and the predictions for $\varepsilon_{p}\left(M^{2}\right)$ are

$$
\begin{aligned}
& \varepsilon_{k}^{2}=.065 \pm .001, \quad \varepsilon_{\eta}^{2}=.062 \pm .001, \varepsilon_{\eta^{\prime}}^{2}=.051 \pm .001 ;(4.10) \\
& m_{k}=.488 \pm .002, \quad m_{\eta^{\prime}}=.960 \pm .004, \\
& \theta_{\eta}=37.6^{\circ}, \quad \theta_{\eta^{\prime}}=34.12^{\circ}, \quad \theta_{p}(\eta)=-17.18^{\circ}, \quad \theta_{p}\left(\eta^{\prime}\right)=-20.62^{(4.11)}
\end{aligned}
$$

These values are in good agreement with eqs. (3.17) and (3.18), and the predicted masses are close to the observed ones. The average of eqs.(3.17), (3.18) and (4.11)

$$
\begin{array}{ll}
\theta_{\eta}=(37.07 \pm .54)^{\circ}, & \theta_{,}=(33.96 \pm .14)^{\circ} \\
\theta_{p}(\eta)=-(17.67 \pm .54)^{\circ}, & \theta_{p}\left(\eta^{\prime}\right)=-(20.78 \pm .14)^{\circ} \tag{4.12}
\end{array}
$$

is the final result of our analysis to be later confronted with experiment.

The success of the naive extrapolation of the simplest QCD relations into the domain where they are certainly not applicable cries for a discussion, Note that the results are rather sensitive to the choice of α_{0} because of the strong dependence of $\sigma^{\prime}\left(m_{\pi}^{2}\right)$ on this choice. As the above two estimations of β_{0} are close to each other ($\beta_{0} \sim 9.5, \beta_{0} \simeq 10$) the choice $\alpha_{0} \sim .2$ seems to be quite reasonable. Only ε_{π}^{2} and m_{π} are senaitive to α_{0}, while other parameters remain fairly stable.

There exist two important dimensional parameters in our theory $-\Delta^{2}=j^{2}-u^{2} \sim .11$, corresponding to the mass parameter $\Delta \sim$ $\sim .33$, and m_{π}, or the u-quark mass, For $M>\Delta$ the value $\alpha_{s}\left(M^{2}\right)$ is amall ($\leqslant .5$) so as applying the equation (4.3) is justifiable. For $M \leqslant m_{\pi}$ we have $\alpha_{s}\left(M^{2}\right) \gtrsim 2$, and the confinement mechanisms are most important. These mechanisms are implicit in our phenomenological parametera μ and λ, introduced for "correcting" the "asymptotically free" expressions.

The problem of a more profound derivation of such an extrapolation lies far beyond the scope of the present paper. We only mention that the modern investigations of the confinement in QCD $134 /$ Indicate that main large distance $\left(\geqslant m_{\pi}^{-1}\right)$ effects are related to a rearrangement of the vacuum state and to a quark bag formation. Then the qualitative feature of perturbative reaulta, may be used, with due modifications,for describing the residual interactions of quarks inside hadrons (a picture of "free" quarks in a bag).

In conclusion we would like to mention that the results of this section allow us to improve the treatment of the vector and tensor nonets. In the first approximation $\varepsilon_{V}^{2}\left(M^{2}\right)$ satisfies the relation (4.1) with the right member risen to the $3 / 2$ power (three gluon exchange). Then

$$
\begin{equation*}
\Delta^{2}=.1091, \quad \varepsilon_{\omega}^{2}=.0021, \quad \varepsilon_{k_{v}}^{2}=.0019, \quad \varepsilon_{\rho}^{2}=0017, \tag{4.13}
\end{equation*}
$$

m_{V}^{2} is practically unchanged, and the prediction for the ρ mass is $\rho=.772$. These numbers lie within the errore of the approximate values (3.14), and, most important, the Δ^{2} is practically the same. The improved values of $\varepsilon_{T}^{2}\left(M^{2}\right)$ can be calculated quite similarly. We leave this to the reader,

At different stages of this work the author benefited by discussions of results and of relevant problems with S.Gerasimov, A. De Rujula, A.Efremov, I.Kobzarev, J.Kuti, V.Matveev, A.A.Migdal, V.Ogievetsky, O.Rassi-Zadeh, B. Struminsky, M.Terent'ev, L. Prankfurt. Yu. Prokoehkin drew the author's attention to the important experimental results on high energy η / η^{\prime} production. The authors of the cited references kindly gent their works prior to publication, All these helpful communications are kindily appreciated.

References

1. H. Fritzach, M. Gell-Mann. Proc, of the 16-th Intern. Conf. on High Energy Phys., vol 2, p. 135, Chicago, 1972.
2. H.D.Politzer. Phys.Reports. 14C, 129 (1974).
3. A.I.Vainstein e.e. Usp.Fiz. Nauk, 123, 217 (1977) (in Russian). 4. S.D. Drell." Quark Confinement", preprint SLAC-PUB-2020, Stenford, 1977.
4. H. Fritzach. "Chromodynamic Theory of Hadrons," preprint CERN, TH-2483, Geneva, 1978.
5. W.Mardiano, H. Pagels. Phys.Reports, 36C, 137 (1978).
6. A.T.Filippov. Proc. of the 18 -th Intern. Conf. on High Energy Phys. (Tbilisi, 1976), vol 1, p. C129-159, JINR publ. D1-1040, Dubna, 1977.
7. K. Johnson. "The Static Potential Energy of a Heavy Quark and Anti-Quark", preprint MIT, CTP No. 725, Cambridge, 1978. $n_{\text {A }}$ Field Theory Lagrangian for the M.I.T. Bag Model; preprint M. I.T., CTP No. 719, Cambridge, 1978.
8. R.L.Jaffe. "The New Spectroscopy in the Bag Model", preprint M. I.T., CTP No. 717, Cambridge, 1978.
9. A.A.Migdal. Ann. Phys. (N.Y.) 110, 46 (1978).
M.A.Shifman, A.I.Vainstein, V.I.Zakharov, ${ }^{\text {MQCD }}$ and Resonance Physicen, preprints ITEP-73, 80, 81, 94, Moscow, 1978.
10. R.Friedberg, T.D.Lee, "QCD and the Soliton Model of Hadrons", prepr. Columbia Univ., CU-TP-118, New York, 1977.
11. J.Kokkedee. nThe Quark Modeln, Benjamin, N.Y., 1969.
12. B.Feld. "Models of Elementary Particles, Blaidell Pub. Comb., Waltham, Mass.-Toronto-Lond. , 1969.
13. H. Lipkin. Phys.Reports, 8C, 173 (1973); preprint PERMILAB, 1977.
14. A.W.Hendry, D. B. Lichtenberg. "The Quark Modeln, Indiana Univ., preprint IUHET-26, Bloomington, 1978.
15. O.W.Greenberg. "Quarks", Univ. of Maryland preprint, Phys. Rap. No. 78-185, College Park, 1978.
16. A.T.Pilippor. In "Neutrino 75 n, vol. 2, p.233, Budapest, 1975.
17. A.T.Filippov. In NNonlocal, Nonlinear and Nonrenormalizable Field Theories" (Proc. of IV Intern. Symp. in Alushta, 1976). JINR Publ. D2-9788, Dubna, 1976 (in Russian).
18. A.T.Filippov. In "Neutrino-77n, vol. 2, p. 229, "Naukan, Moscow, 1978.
19. A.T.Filippov, Preprint JINR E2-11435, Dubne, 1978. (to be published in NNeutrino-78", Lafayette, 1978).
20. A.T.Pilippov, Žurn.Exptl.Teor. Fiz., Pisma, 27, 599 (1978) (in Russian).
21. S.Okubo. Phys.Rev. D16, 2336 (1977).
22. Particle Data Group. Phys.Lett. 75B (1978).
23. J. Pasupathy. Phys.Rev.Lett. 37, 1336 (1976). K. Igi. Phys.Lett., 66B, 276 (1977).
24. P. Becher, H. Bohm. Phys.Lett., 60B, 189 (1976).
25. B. H. Wilk, G. Wolf. "A Review of $e^{+} e^{-}$Interactions", preprint DESY 78/23, Hamburg, 1978.
26. S.D. Protopopescu. "New States Below 2.2 GeV Observed in $\mathrm{e}^{+} e^{-}$ Annihilations", preprint BNL-23612, Upton, 1977.
27. N. Isgur. Phys.Rev. D12, 3770 (1975).
28. A. De Rujula, H. Georgi, S.L.Glashow. Phys.Rev. D12, 147 (1975).
29. H. Pritzsch, P.Minkoweky. Nuovo Cim. 30, 393 (1975).
30. J.Schwinger. Phys.Rev. 135, B816 (1964).
31. H. Fritzach, J.D.Jackson. Phys. Lett. 66B, 365 (1977).
32. S.Weinberg. Phys.Rev. D11, 3583 (1975).
33. A.M. Polyakov. Nucl. Phys. B120, 429 (1977). G.'t Hooft. Phys.Rev. D14, 3432 (1976). C.Callan, R.Dashen, D.Gross. Phys.Rev. D17, 2727 (1978).

[^0]: 3) For a fresh review of different mixing models and of their comparison with experiment see /22/, for further references вee also /7/.
[^1]: 4) The magnitude of ε_{Q}^{2} is very amall $\left|\varepsilon_{Q}^{2}\right| \leqslant .01$, for all Q except $Q=P,\left|E_{p}^{2}\right| \leqslant .1$
[^2]: $5)_{\text {As justified in the next section, we use }} \rho=.773$, $K_{T}=1.421$. For K_{v} we take $\frac{1}{2}\left(K_{v}^{+}+K_{v}^{\circ}\right)$.
 6) For a diacussion of the present status of the data on the mass spectrum in the interval $1+2 \mathrm{GeV}$ see,e.g., the reviews/26,27/.

[^3]: 9) Strictly apeaking this formula is valid only for $L=O$. If $L \neq 0$ eqs. (3.3), (3.8), (3.9), (3.10) depend on $\Delta_{\text {ef }}^{2}=\Delta_{s u, Q}^{2}$ instead of $\Delta^{2} s_{4}$ (see eq. (2.8). As far as the difference $\mu_{0}^{2}-\mu_{2}^{2}$ is very amall (\sim e.022 approximate the Δ^{2} in eq. (3.4) by Δ^{2} ef without looaing the accuracy. Then we arrive at the mass formu-
