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Asymptotical Behaviour of Pion Electromagnetic Form 
Factor in QCD 

In the framework of the renormalizable quantum field theory 
a new approach is developed to the investigation of asymptotical 
behaviour of two-particle bound state electromagnetic form factor, 
It is shown that the behaviour of the pion EM form factor in 
quantum chromodynamics at sufficiently large momentum transfers 
is controlled by the short-distance dynamics only. The formula 
is obtained which expr~sses the asymptotical behaviour of the 
pion form factor in terms of the fundamental constants of the theory! 

The investigation has been performed at the Laboratory 
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1. INTRODUCTION 

Investigation of electromagnetic form factors of had
rons at high momentum transfers raises now a consi
derable interest i-S.'. To a great extent, this is caused 
by the agreement between the quark counting formula Al,lo/ 

FH (t)-ti-nH (1.1) 

which relates the asymptotical behaviour of the hadron 
form factor F' H to the number of quarks inside hadron 
H. and experimentally observed power-law behaviour of 
the proton form factor (G ~ - t- 2

) and that of the pion 
(F rr - t -l ). The agreement indicates that for large t, the 
behaviour of F (t) may be controlled by small distance 
dynamics. Really, eq. (1.1) can easily be obtained from 
the tree diagram depicted in fig. la, if one assumes that 
the hadron momentum is equally shared between the 
quarks 11 0 1, whereas the "decay" of the pion into its con
stituents (quarks) is described by some functions ¢.¢* 
which do not affect the asymptotical behaviour with res
pect to t. 

But it is not a trivial task to prove the validity of this 
approximation as well as to give a recipe of calculating 
the corrections to it. 

An analysis of bound states and of the corresponding 
dynamical variables is based usually on the Bethe-Sal
peter formalism /11.121, that is, the hadron (e.g., the pion) 
is described by the BS wave function 

x P (x 1 , x
2

) ·~ < OI'I'(Ij!(x
1 
)~(x2 ))1P >. (1.2) 
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a) b) 

c) 

Fig. 1 

To study the behaviour of the bound state form factor 
in such an approach one must solve the BS-equation or 
at least, thoroughly analyse it (or the quasipotential 
equation /!31, see ref. /5/ ) to get necessary information 
about the corresponding wave function. As a result, the 
form factor is expressed in terms of X·X and of the 
functions y, s-1, r (fig. 1b,c) which can be obtained in 
perturbation theory. 

It is just a simple comparison of jigs. 1a and 1 b that 
shows that the function ¢ describing in fig. 1a the 
"decay" of the pion into two quarks does not coincide with 
the BS wave function. The authors of refs. /7 • 10i have 
used for the function ¢ the term "soft part of the BS 
wave function". It was implied there that the function 
x p (p 1 • P2 ) .(defined in the momentum representation) 

in the region PI • oo can be represented as x p - l(p 1 .P 2 )¢ . 
The function I corresponds to exchange of a highly vir
tual gluon, hence it may be related to the short-distance 
quark-quarl_c interaction. Asymptotical properties of the 
function x p (p 1 , p 2 ) have been investigated in 
refs. /1,2,4,7/ with the help of the operator product 
expansion for T(cjF(x 1)t,&'(x 2)) at (x1-x2) 2 •0. This 
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regime corresponds in fact to the limit p ~ _ p ~ __, "" 
whereas in jig. 1a one has p ~ -(P,'2f.-m~Hence one is 
forced to assume that taking pi small does not change 
the asymptotical properties radically. This assumption 
is not evident. Furthermore, the investigation of simple 
models/1/ as well as a more general analysis /14: show 
that it is possible that not only small distances are rele
vant to the asymptotical behaviour of form factors. If 
the probability for a single quark to carry the whole 
momentum of the pion is large enough, then the asympto
tical behaviour can be controlled by the Feynman pro
cess /15/ when only a quark carrying the whole pion 
momentum participates in the hard scattering process, 
whereas the second one having a negligible fraction 
of the pion momentum, may be associated with the pion 
both in initial and final states. This corresponds in 
jig. 1a to a soft gluon exchange, hence this mechanism 
is explicitly dependent on large distance dynamics. The 
question is whether this process can dominate in a spe
cific field theory model, e.g., in quantum chromody
namics (QCD), or not. 

The main conclusion of the present paper is that 
for sufficiently large t the behaviour of the pion EM 
form factor in QCD is controlled only by short-distance 
properties of the theory 

r2 
(as) 2 rr 

F (Q ) ~~ 8rra (Q)----, 
lT s Q2 

(1.3) 

where as is the effective quark-gluon coupling constant, 
and f rr = 132 MeV is the pion decay constant, which 
describes the large-distance contribution. On the other 
hand, our analysis of simple scalar models (¢ (~) • ¢ (6 )) 

shows that in these theories the leading asymptotical 
behaviour of form factors is very sensitive to large
distance dynamics. It sounds like a paradox, but the 
analysis of form factors of colourless bound states in 
QCD is in some aspects simpler than the analysis of 
the analogous problem in ¢~6 , -theory. 
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The paper is organized as follows. In order to split 
the complicated problem of investigating the bound state 
form factors in QCD into separate parts, we investigate 
first some relatively simple models. In Sec. 2 we study 
the superrenormalizable ¢ (~) -model using the a -
representation analysis. In particular, we investigate 
here the specific manner in which the asymptotical 
behaviour of the bound state form factor can depend on 
large distances. In Sec. 3 we study the peculiarities of 
re_!lormalizable theories taking the Yukawa type model 
glj!lj!¢ (4 ) as an example. In Sec. 3 we give a treatment 
of the pion EM form factor in QCD. 

The approach used in the present paper was de
veloped in refs. /16- 18/ (hereafter referred to as I-III), 
where we have studied some inclusive processes. The 
acquaintance with these papers will facilitate the under
standing of the permanently used standard reasonings. 
We have supplied them here only with short comments, 
because they have been discussed in detail in I-III. The 
main results of the present paper have been published 
in a short form in refs. 119,20/. 

2. ALPHA-REPRESENTATION ANALYSIS 

Let us consider the asymptotical behaviour of the 
form factor of a "pion" composed of two scalar quarks 
a, b interacting through a scalar gluon field cp in the 
4-dimensional space-time 

f. t(X)= I_ glj!~(X)t/J.(X)cp(X). 
1n i=a,b 1 1 

We start, as usual /121, with the auxiliary 
Green function 

R5(x1,x2; y1 ,y2;0)= < 

= < Ol T(lj! a (Y 1 )o/ b(y2 )j(O)t/J~ (x1 )o/~ (x 2))10> 
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(2.1) 

5-point 

(2.2) 

or, in momentum representation (see ref. /tl/ ) 

) 
4 4 , , q)R ( . , , . ) 

(211 8 (p
1

+P
2

+P1+P2+ 5 p1,p2,pl'p2, q = 

(2.3) 
= < Ol T(o/ a (P{ )1/Jb (p; )j( q)t/J ~ (P2 )o/~ (p 1 ))10>. 

If the particles a, b 
mass m 

11 
then 

can compose a bound state with 

R (p p · ' , 2 Xp,(p' -p' )F (q)x* (P ) 
6 1' 2' p1 ,p2; q) = i ____ !__!.__~ ___ P 1- p2' --·~- ,(2.4) 

(P 2- m 2)(P, 2 - m 2-. 
11 11) 

where x.x* and F11 are, respectively, the BS wave 
functions and the bound state form factor, all taken in 
the momentum representation 

< OIT(o/a (p 1)o/b (p2))1P > = (211)4 a 'p1 + p 2- P)x iP 1- p2 ), 

4 4 
<P'Ij(q)IP>=(211) a (P'-P+q)F 11 (q). (2.5) 

Relations (2.4), (2.5) allow one to obtain F (q) if the 
function R 5 is known. We will demonstrate "later that 
the functions x P disappear in the final expression for 
F 

11
, so there is no need in our approach to calculate 

it explicitly. 
To simplify the a -representation analysis we take 

P
1 

'=P
2

=PI2;; P1=P2 ·~P'/2~. Then the contribution of 
any diagram (fig. 2a) can be represented as 

R6 (P ;2, p /2; p '/ 2, p, I 2; q) = (2.6) 

z oo II da A A A 
2

g T a 2 u t s 
= g (--) f ---expi[q ("A+--+--+ -)/D+I(a,m

2
)], 

411 o D2 2 2 4 

~ This does not result in the loss of generality, as 
we will show below. 
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c) 

Fig. 2 

'-......._ --
b) 

where A" B(Oil234), A 1 = B(01!234),'-B(02i134), A
11 
~ B(03·124)-t· 

+ B(04i 123); As= B(241013) + B(23l014) + B(14;023) + B(13;024 ). 
(for the a -representation analysis see, e.g., refs. U,16/ , 

the functions B( ... \ ... ) are defined, in particular, in the 
Appendix to ref./16/ ). The coefficient F(a) " A1 At/2, At/2' A/4 
is non-negative by construction, hence it vanishes only 
at the edge of the integration region, when a = o for 
lines a constituting some t - subgraph V a (i.e., the 
subgraph after the contraction of which into point the 
diagram loses its dependence on t , q 2 ). 

Integration over A v -~ 0 (by definition A v - 2: r1 ) 
a;;. V 0 

3 
gives in the ¢ ( 4 ) -theory the following asymptotical 
contribution (see I) 

R (Q) 4- v (V) :5. Q ·ext - v (2.7) 

where f ext is the number of external lines of the 
t -subgraph V, whereas v is that of its vertices. In 

-4 our case eext :_: 5 , v ..:: 3, hence R lVl ~ •. Q . The lead-
ing contribution is given by subgraphs V 1 , V 2 (fig. 2b). 
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We introduce the Mellin transform ll>(J) of the amplitude 
R" . For the diagrams of fig. 2b type 
" 

E r 
z T oo IT d a (L + --)( R + --) 

ll>(J) = g2(-4~-) I _!!__-~-(i ____ 2 ___ _:__) J e il(a,m 2) (2.8) 

" o2 D 

where Rr (L !') are the functions corresponding to the 
right (left) hand of the diagram 2b: R(V R) = B(Q, 345. V R ) , 
r B, (05134: V R) and similarly for L.l'. We will 
utilize the factorization properties: 

R =a 3 D0 ('k')+a 4 R(V~); r(VR)=a4 r(V~); 

L =a D (VL') + a L (VL' ); e = a e (V' ), 
(2.9) 

1 0 3 2 L 

where the functions R(V it), r (VR) are related to the 
subgraph VR. Introducing 1Fa3 -ra4, A'a 1 .,.a 2 andintegrating 
in the region A., p - 0 we obtain 

II> p A 2 g 4 1 2(J + 2) 
pole pole (11 ) = ----- (--) f f h. 

(J + 2) 2 112 L R 
(2.10) 

The functions f R have the following a -representa
tion 

zv' 

f R = (JL) R 
4rr 

exp ii(a,m2
) 2 · 

[ II da ------- ------------- · 

o aEVR a Do2(VR) 1-:R_(VR)/Do(VR) 

(2.11) 

The function h corresponds to the "hanging" part: 

h = 

00 d r -~~-- e -a5 m2 

0 2+ J 
a 5 

IJ='-='2 =cm2)J+t, (2.12) 

where m is quark mass. 
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To derive formulas (2.10)-(2.12) we have integrated 
over f3=a 4 ! p from 0 to 1. We have also used the relations 
D=a 5 D0 (V{.-)D0 (VR)l1+0(,\)+ O(p)! and D0 (Vi)= R ~ R' + r, 
where R' is the function analogous toR: R'(VR)= B(6i034;VR). 
By definition R_ = R '- R. 

Eq. (2.11) resembles formula (5) from I which describes 
the deep inelastic structure function in the <7>~41 -model. 
One may introduce by analogy the parton wave functions 
iC~) 

z , 
VR "" ll daa R (V') . 2 

<P (~) = I (-L) r __Q __ o(~- --=-~)el I(a, m ) (2.13) 
V , 477 . D2 D (V ') 

R 0 0 0 R 

(cf. I, eq. (7)). From the equality D 0 = R + R '+ r it follows 
that ! R _ ;D

0 
1 ::; 1. Hence <7> (~) vanishes outside the 

region 1~1::; 1. The wave function <f>(~) may be related 
to matrix elements of local operators just in the same 
manner it was done for the parton distribution functions. 
Really, the expression 

, z "" II da R n 
b ..... ( g ) a -= .... --- r _Q_ ___ (--) 

n 4 2 
VR 77 0 D 0 Do 

') 

il(a, m-) 
e (2.14) 

corresponds to a sum of graphs which have n derivatives 
in the 0 -vertex, consequently the quantity bn is defined 
by 

~ 

< Ol T 0 (P)tjF* (P 1 )t/Fb* (p 2) I 0 > "' 
111"' fln a 

4 4 
"'(2rr) o (p 1 +P 2 -P)IP" ... P lbn. 

rl 11 n 

(2.15) 

In the coordinate representation 0 (X) 
f11"'11n 

= (2i)nt/F*(x)a ... a tjf(x). If there exists a bound state of 
111 fln 

particles a, b with mass m77 , then 

b =-n p2-=-;2 an X p(P 1 -p2 ). 
(2.16) 

77 
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The function an is defined now by the matrix element 

<OIO" (0)\P > = IP
11 

, .• P,1 Ia . 
rl···fln 1 rn n 

(2.17) 

Expanding the expression (1--R_/D
0
)-

1 (entering into 
eq. (2_11)) into power series in (R_/D

0
)and using eqs. 

(2.14), (2.15) we obtain 

4 2 2 "" 
,\ p 2 g Q m ~ ~ b ) R (p ) = -----ln----(2 -c. b )(2

0
-c. 

0 
• 

pole pole m2 Q4 
11

4 n=O n. r =0 t 
(2.18) 

Comparing eqs. (2.4), (2.16) and (2.18) we find that 
the contribution into the form factor is given by eq. 
(2.18), where one must change R _, F. b n,P -·an, p . 

Thus we have seen that, as promised, the BS func
tion Xp (P 

1
• p

2 
) - ' 0 if tjF (P ) tjF (P 

2 
)I P / disappears in 

the final expression for the form factor. It means that 
one may use in place of t/F (P 1 )t/F (P 2 ) any combination 
CX.t/J, tjF*, <f>) of quark and gluon fields satisfying 
< 0 i Cl P > 1- o. In particular, the only restriction for p 1 , 

p 2 in eq. (2.4) is p1 +p 2 -P. We are free to utilize this 
arbitrariness for simplifying the investigation of R5 in 
the a -representation. -

The wave function <P (see eq. (2.13)) also possesses 
the pole at P 2 = m 2: 

77 

<P = <P -~_!'~~_!_=!_ 2 ) 
p2_m2 -. 

77 

(2.19) 

According to eqs. (2.13-2.17), (2.19) the coefficients 
an are the moments of the function <7>: 

1 n 
an = r <f>(~)~ d~. (2.20) 

-1 

Eq. (2.18) may be rewritten in terms of the <!>~func

tions 

,\ p 
F pole pole 

4 2 2 
g Qm 1 <f>(c) 2 

(Q) = ----- ln ---( J ---'=--). 
m2Q4 /14 -1 (1-t)/2 

(2.21) 
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The pole contribution (2.21) is due to integration over 
the region A- o, p -0. The remaining domain of integration 
over the a -parameters also yields the leading poles in 
J as a result of integration over p - o (then \ t 11

2 ) 

or over A- 0 (then p > 1t 11 
2 ). To calculate the corres-

::-JOnding contributwn F ~ule ~g one has to use the 

formulas D 11 ('' 'D i '7 ., ) I 
~0 .,.RJ' o'"L 1 \.._ 

OIA) ~ and R- r, 2 

=leo (V )·R i. This gives the following representation for 
2 0 R -

the right half of the diagram 

II da ,, L :x. ...... {) ... 
rb\ r (] rl, 
~---~ I · · -;·- '-:-.- \1 -

4,1 D"' ~ 

R_ :r I;n.!n
2 

1 
---)) e . 
Do 

(2.22) 

lt possesses a pole (J ~ 2f 1 due to integration over 
p -O.One must subtract this pole and then put .T ~- .2 . This 

can be written formally as 

F A p 
pede reg 

'l 

s ·~ " 6(0ct.;~ \ : c/h;l . ---- ( 1 -'--~----, Reg ( 1 ----·----rl ~, 
4 ' . '- 8 ' , , 'I' 

Q - I ( 1- !;, )!' 2 11 - 1 ( 1_~ )'I_ ) 2 

2 

P.2 X 

'.'. (2 l a ) Reg . ( 1 l (m c l)a ,). 
Q4 n~o n 112 mo-o n. (2.23) 

Eq. (2.23) has a simple parton interpretation dictated 
by fig_ la: the function <;)(~) describes the "decay" of the 

pion into two quarks with momenta l_::_ (p .. c. 
d 1- c: an .... , p 

'! ' 

whereas the functior< i .<--! \ 
CJ \TfJ describes the ''fusion·' .Jf 

quarks with momenta l~:,_p ' 
2 

1-: __ :Lp " 
' 2 

into pion. Am-

plitude for a parton subprocess is constructed accord~ng 
t·;) ordinary rules oi perturbation theory: it is just the 

1 ~ .. :-., . 
1- 'I 

2 __ 1 . 

Q· 
~rhe !.a_:~ o pag ~-tors which giv2 the far:-<or 2 

!2 

sum of eqs. (2.21), (2.23) must not depend on 11 • One may 
always ,substitute the 11 -independent sum ln(Q2m2 ·1-l ·l) + 

c;oust(/-! 2 ) byln(Q2fM2). Thisgives 

4 2 1 g Q -~(C) d C 2 
F rr ( Q) -~ ------ln --- ( ( _'+"__~---'=-----) 

m2Q4 M2 -1 (1-1;,)'2 
(2.24) 

It is worth noting that in each order of perturbation 
theory the contribution into <f;CI;,) behaves like (1-1;,) as 
I; . 1 Really, taking I; 1 (. we obtain 

R_ 
8(1:, - - -) 

. DD 
8( r_~_2R 0--··- (). 

The equality r 2R 0 may be fulfilled only due to 
vanishing of at least two a -parameters. For instance, 
one must take a:> a

4 
0 in !he di_agram shown in fig. 2c, 

because of r a 
1 

f ,_ R a 8 D ~a 4 R. Integrating over a 3 , 

a 
1 

we obtain that <P (/;,) . ( 1- I; in the region t; . 1 Such 
a behaviour produces a logarithmic divergence of the 

r1 -integral in eq. (2.23). This reflects the fact that the 
right-half contribution has a pole at .J -2.Formula (2.24) 
obtained as a result of singling out this pole is a meaning-
ful expression if the function <,6(1;,) behaves like 1 I; 
as [, . 1. i.e., in each finite order of perturbation theory. 
However, there exists a possibility that the "full" func
tion 6<t,J resulting from the summation over all re
levant diagrams does not approach zero as 1:, • 1. In this 
case the ; ·-integral (2.24) diverges. The parton 
interpretation allows one to expect that an account of 
quark transverse momentum leads to the change 
xy J 2 • xy Q 2 • (k ·'- - k_; ) 2 which provides the convergence 
of the aforementioned integral. But as a result, there 
appears an explicit dependence on ·k 2 which characte-
rizes the pion size. • 

In the <?t4J -model we have no a priori suggestions 
about the behaviour of the wave function ¢(!;,) for i; 
close to 1. But in renormalizable theories, e.g., in 

3 ¢ (
61 

• matrix elements of operators. (_and, hence, t~e 
wave function ¢(/;,) )) depend on an add1honal renormah-
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zation parameter 11 : ¢U;) , ¢M; , 11 
2 ) and it is pos

sible to calculate the limiting form of ¢\1;, 11 
2 ) as 

112'"'-· 

Dependence of the coefficients an on 11 , i.e., the 
anomalous dimensions, is calculated in the standard 
way '21', with some obvious modifications In the ¢~6 ) -
theory we have 

a a 
(11- + {3(g)---)a (!1 2,g) = 

all i]g n 

2 6 n k 
= K g I - an + --------- 2, _!_~~l-2 a 1 

(n + 1)(n+2) k=O 2 k · 
(2.25) 

If one chooses another basis, namely, the conformal 
one (see the Appendix) 

K oi n [f'cJnC 
312

(2d/cl ) 'I 
I~ 1. · · 11 ' n t 1.f1 ~t •• ·I~ ! n 1 n 

(2.26) 

then the anomalous dimension matrix is diagonalized 

a a 2 2 6 2 <w:- + {3(g)---)kn(!l ,g) =Kg (-1-c ----------)kn(/1 ,g) -O 

d11 clg (n '-1)(n + 2) 

2 
= Y n (g)k n (/1 ,g), (2.27) 

where 

<O!KII II IP>-= IP 11 .... P II : k 
1 
< 1~ 2• g). 

r 1 "' rn r 1 r 11 1 
(2.28) 

As a result, we have (see eq. (A.9)) 

2 2 
00 

2 . 11 ,. 3/2 3/2 ¢(f,), 11 ) ~ ( 1- I; ) 2. kn (!1 ,g)----- -----C n (I;), (2.29) 
n -~ 0 , I '1 , 1)(11 + 2) 

where k n(/12, g) ~ (l11 11 2)-r;/ 
8 

(by definition {3(g) ~- Bg ~ ... ). 

From the representation (2.29) it follows that the 
term with minimal 11 (for which k f. o) dominates for 
11

2 
... ""• whereas the contribution fro~ higher harmonics 

responsible for a "bad" behaviour at t;- 1 diminishes 
with growing 11

2 : 

-y B 
¢(1;, 11 2) _. (1 - t;2)C 3/2 (i;)(ln i1 2) no 

nn (2.30) 
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The coupling constant g in g¢ 3 ) -theory has dimension 
of mass. This results in a "good~~ behaviour in the ultra
violet region and in a rather "bad" behaviour in the in
frared one. In particular, eqs. (2.18), (2.24), are meaning
less in the limit m -• o. The limits m ~ 0 and Q2 ->c~do not 
commute in this case. Large- Q2 asymptotical behaviour 
of the form factor in the massless ¢;

4
J -theory, in dis

tinction with the theory with m t 0, is governed by a • ex ' a 
F(u), D(a) --. 0 regime (where F. D is the q2 -coeffi-
cient in the a -representation eq. (2.6)). Note., that by 
construction F as well as D are linear functions of 
any chosen aa -parameter 

F(a) c a f (a) i ¢ (a). 
a a a 

(2.31) 
D(a) = a d (a) 1 8 (a). 

a a a 

Furthermore, the D -function contains the parameters 
of all the lines of the diagram (we consider now only 
!-particle irreducible diagrams) i.e., du (u) ;; 0 for 
any line rJ, whereas it is possible that 1

0 
(a):O for some 

line u. Really, the function F(a) is a sum of products 
of o. ...a type, where the lines a 1 ..... o 1_ are sub-

,, 1 ak · 

jected to the requirement that after removing these 
lines we obtain a 2-tree, and the square of the total 
momentum k entering into each component of the 2-tree 
is large: k 2 O(Q 2). As a result, the function F (a) does 
not include the uu i -parameter, if for any 2-tree ob
tained after removing (among others) the a i -line, we 
have k 2 small(i.e., k2 doesnotcontainthe 0(Q 2) term). 
In other words the diagram looses the Q -dependence 
after removing the a i -line. In the configuration fig. 2b 
such a line is a

5
• Hence in the massless ¢:~ 4 >-theory the 

integration of the expression 

da 5 

0 (a,; d5 (:)+~5-;:.)) 2;::)- (¢5 (all J •"P i- Q(a: p} a d +O 
5 5 5 

r (2.32) 

over the a _. = region gives a pole at J ~-1. and the diag
ram 2b gi~es 0(1JQ2) contribution. The limit a 5->00 cor-
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responds to a zero-momentum flow through the ar. -line, 
i.e., to the Feynman mechanism. It follows from the 
representation (2.32) that the only possibility to damp 
such an "infrared" contribution is to introduce the non
zero mass for a particle corresponding to the a

5 
-line. 

The infrared regime a i -• "" can contribute also when 
fi (a) ! 0, if one performs a simultaneous integration 
over a i _. "" and over the region of the a -parameters 
space where fi /d i - 0. The meaning of such a combined 
integration is easily demonstrated without using the 
Mellin transformation 

00 da.flda f.a- -rA... 
I a . 2 I I '+'1 r ---------- exp[-IQ -----------+I]-

0 ( d 8 )2 d. a. + 8. ai j + j I I I 

1 oo lldaa 
-- r -----

Q2 0 d . ..J... -8- f. 
1 '+'1 I I 

2 f i -
exp[iQ ----+I]. 

dj 
(2.33) 

The Q 2 -dependence is trivial only if f i (ell •· 0. For 
r (a) ~ o the r .h.s. of eq. (2.33) has a form similar to 
the ordinary a -representation, and the large-Q2 be
haviour is governed by the region, where fi /d i - 0. This 
can be realized either by >..v-' 0 regime, when the a -pa
rameters which correspond to the lines of some sub
graph V tend to zero (the subgraph V must be t -sub
graph for the diagram with the line a i removed), or by 
ak .... "" , fi (a)/di (a) -~ 0 regime. In the second case 
fi I d i = 0 may be provided either by the fact that after 
removing the lines a i , a k the diagram loses the Q2-
dependence, or by integration over the region where 
fik I d ik -0, and so on, until all the possibilities will 
be exhausted. 

For example, jig. 3a gives a contribution into the 
form factor of a quark participating in the Feynman 
process. Fig. 3b describes a modification of the Feynman 
process when one has several wee partons. (The dashed 
lines correspond to the a .... oo integration). Fig. 3c des
cribes a situation when the hard scattering process is 
accompanied by the wee parton exchange between initial 
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I' 

a) 

"- ./ 

c) 

Fig. 

b) 

d) 

3 

and final states. In the ¢~4 ) -model, however, all these 
contributions give the corrections which vanish more 
rapidly than 1/Q 2. Hence, one may neglect them. On the 
other hand, higher order corrections result in a more 
singular behaviour of the propagator De (k) in the small
- k2limit: Dc(k). l!k2- (g2;k4)lnk2., ... . As a conse
quence, the integration over p .. xo for the diagram 3d 
(where p a 1 ' a 2 • a 3 a 4) gives F - const contribu
tion, whereas the diagrams containing the (g 2) n -order 
corrections to the propagator, may give as large con-
tribution as F 

77 
- g 2n(Q 2) n-·l_ It is very probable that 

the expansion for D c (k) is a series expansion in g2 
for an expression like (k2 -.- g 2L(k 2)) ··l. If this is true, 
then the rising powers of Q2 correspond to the expan
sion like 

1 1 1 "" g 2Q 2 n 
-- ----------- 0 ----- ~ (- ------) 

Q2 1 + g 2Q 2jM 4 Q 2 n = o M 4 ' (2.34) 

where M2 (g 2, Q2) is a slowly varying function. As are
sult, the sum of infrared contributions behaves asympto
tically like 1/Q 4 , i.e., just like the m J 0 formula 
(2.24). This is natural because adding g 2L is equivalent 
to introducing the effective k2 -dependent mass for 
a quark. Hence, the result (2.24) can be justified in this 
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sense, but one must assume now that the mass m en
tering into eq. (2.24) is the effective quark mass ave
raged over the pion volume, i.e., a phenomenological 
constant accumulating the (nonpertu!'bative) large-dis
tance contribution. This parameter reflects the dyna
mical cut-off for integrals over large a (or small k) 
at lim 2 as if the system were enclosed into the bag 
having a radius 1;hl These reasonings, of course, 
pretend only to a rough qualitative description of such 
theories where the behaviour of the exact propagator 
is less singular at k ~ 0 than dictated by perturbation 
theory. It is quite possible that QCD is a theory of this 
type. But, as we will see later, the situation in QCD is 
simpler: infrared contributions cancel out in the leading 
term for colourless pion form factor. 

3. SCALAR GLUON MODEL 

Renormalizable theories are more singular than the 
6(~)-model in the ultraviolet region, but less singular 
in the infrared one. For example, in c,6 8

6 
-theory, the 

terms rising with Q2 are absent: all i~ftared contri
butions behave like Q~4 modulo logarithms. Small- A v 
integration gives also Q- 4 contribution for any t -sub
graph v having 5 external lines. There appear also 
logarithms due to ultraviolet divergences of diagrams 

inherent to renormalizable theories. The Born term 
(1-~)-1 (l-71)-2 behaves just like in the c,6 3

4 
-model. 

As a result, both "left" and "right" subgr~phs may 
contribute simultaneously i.n ,the <t>?G) -model. This 
leads, in particular, to ln 2 Q 2 -behavwur of the one
loop diagram. 

Fortunately, the amplitude of the leading parton sub
process (i.e., of those giving O(l!Q 2

) contribution) 
in theories with the spin- 1/2 quarks in 4-dimensional 
space-time is as singular for y ~ ( 1 - ~)/2 _, 0 as 1/y 
modulo logarithms y. This follows from simple dimen
sional considerations. Really, taking into account that 
both the amplitude T and the propagator S (fig. 4a) 
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I, 
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a) b) 

c) 

Fig. 4 

depend on the momentum P ' only thr1ugh the product 
- yP' we obtain 

a p .. !1 ( y p ') a p + ,B ( y p ') 
'T - }': ~---------------: s- --------- -------

5 y(P 'P) y(P 'P) 
(3.1) 

This gives TST' - 1/y for y ... o. since the vertex func
tion T'(q,p 1 ,p 2 ),..,f'(P'-P,P'-yP,(1-y)P~ may possess 
only logarithmic singularities as p 1 /Q 2 --o. Thus, for 
spin- 112 quarks only one subgraph in the configu
ration 4b may produce a pole at J ,.,-1, whereas the se
cond one gives the contribution which is regular at 
,h- 1. Henceforth it is always assumed that the form 
factor F 

77
(Q) is given by 

,p'IP'J11 (0)'Pc 
F (Q) o: ____ _'__fl: ______ ~------- • (3.2) 

TT 2 p ') m" '- (P 
Hence, the contributions which must be taken into 

account in the Yukawa type theory (i.e., for scalar gluons) 
are those shown in fig. 4c. We have also taken into ac
count that the estimate (2. 7) for theories with dimen
sionless coupling constants is 

F (V\Q) < Q 2-~ti 
77 ' 

(3.3) 
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(see the Appendix to paper 1), where the sum is taken 
over the external lines of the t -subgraph V. excluding the 
photon one; t i is the twist of the field describing the 
i -th external line (remind, that t 1 for particles 
with spin equal to 0 or 1/2, and t ·_ 0 for a vector field 
in the Feynman gauge). 

The au , "" regime gives 0(1iQ 4
) contribution for 

lines cr corresponding to spin-1/2 particles. This al
lows one to neglect the configurations shown in fig. 3a, b,d. 
The configuration of fig. 3c gives 0 ( li Q:.>) only if the 
wee parton is a vector particle. Our proof of these state
ments is based on the a -representation analysis of all 
possible combinations of the preexponential factors. We 
will not present it here because it is rather lengthy 
whereas the final result - that the contribution of the 
infrared domain (a • .,.. . , or k . o ) is not damped only 
for vector particles - is well-known (see, e.g., ref. ·::.:. ). 

We consider first the scalar gluon model. To facto
rize the contribution of spinor numerators one must 
use the Fierz identity 

8 a, iJ;_,·- ~ 0' ){3a (I' )f3,': i S. V, T. A. P. (3.3) 
a ~'"' i 1 1 a 

The S- , V-, 'r-projections give bilocal operators which 
have zero matr~x ~elements: , O!Oi !p /. The A- projection 
gives factors P ,P' which combine into an additional 
factor (PP 1 :~ Q 2/2 absent for the P -projection. That 
is why the axial projection is responsible for the leading 
contribution. We write it in the coordinate representa
tion (see jig. 4c): 

fill\ dP2drl dr2EpA (fl. f2,rl, r2: o,,, 2
) X 

A 2 p. 2 
x<01tl (f 1,f 2 ; 11 )\P><P'I~ (r 1,r 2:11 )!O>. 

(3.4) 

The parameter 1,
2 characterizes the subtraction proce

dure which is constructed just in the same way as it was 
done for massive lepton-pair production process in II. 
It provides the necessary infrared regularization of the 
E -functions and the recipe of the renormalization for 
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local operators Op p
1 

... p n which result after the Taylor 
expansion 

r 1 .,. ;·2 
-iP '-------

~ 9 2 <P'It' (r r · - )iO> = e - p 1' 2' 11 
1 

n' 

'· 2 , . 1 P1 Pn -~ <P 0 pp
1 

... pn (0,!1 l10/(r 1 -r 2, ... (r 1 -r 2 ) 

integrating over i' i. r i gives 

(3.5) 

·~ Q2 
F (Q)--_1_ __ 1 l f*(p 2)E {---,g(11))f(11

2)+0(1/Q 2)L 
rr Q 9 m n = 0 m mn 2 n 

- ' 11 

(3.6) 

where f n are defined by 
C) ll -

(2iJ <O.tify_ ly a ... a_ 
" I' 111 Pn 

(tif ~ p -d ({1- )l p p 
n !I 111 

... P L (3.7) 
11 n 

The contributions from higher twist operators have 
additional factors (M/Q) ' i ··s , where M is a charac
teristic scale inherent to the matrix element of a higher 
twist operator 

(i) 
<Of0 111 • ., 11 n 1P 

l i- 2 (i) 
- ) P

11 
... P, ( M b 

11 
(It ). 

r 1 ,_..11 
(3.8) 

Eq. (3.6) resembles the expansion for the virtual Compton 
amplitude 

') 

T(uJ,Q-) 
(').;.) ll 2 Q 

~ uJnJ..:'::.<::-_1)_\E (-Q.-,g)A (11
2

) t O(M 2/Q )I 
n=-0 2 n~,2 n 

(3.9) 

for w =- 1. It is well-known '23 · that the terms denoted as 
O(M 2 .1 Q 2) give for w .. ) the contribution which exceeds 
the scaling term. The corrections O(M 2; Q 2) are in this 
case responsible for the resonance structure in the re-

gion where \-s , \ ,w -l)Q 2_m ~"is close to the masses of 
the low-lying resonances. In the kinematical situation 
characteristic for the form factor problem, we have no 
large time-like invariant variable, and the presence of 
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resonances having photon quantum numbers and the p -

dominance indicate the change L(l2 -• 1/(Q 2_, m 2). The con
tributions O(M 2JQ 2) correspond to the nonzlro value of 
the primordial transverse momentum of par~ons, or (as 
argued earlier) to the change xy .. xy ~ O(k} /Q 2) for 
integrals over x, y. In both cases the corrections O(M 2/Q~ 
may be neglected for Q2 sufficiently large. The detailed 
treatment of the higher twist contributions, of course, 
would be very useful for understanding the behaviour of 
the form factor at moderately large Q 

2
. In the present 

paper, however, we will concentrate only on the contribu
tion of operators having minimal twist. 

The wave functions ¢U;,. 11 2) may be introduced in the 
same way as in ¢f6 -model (with the change 
tf; *a nt/1 • f y 

5 
y a'~ ). ). The function E nm for 11 ,- Q is 

given by a s~ries expansion in g 2(Q) whereas all the 
logarithmic corrections are absorbed by the wave func
tions ¢U;. Q 2). Fig. 5a represents the Born approximation 
E rnn ~-g 2 . This results in 

- 2 1 2 
g (Q) cf>(,f.Q ) 21 -:2 l F l Q) = - -------( ( -~-------- d<f) 1 + O(g ) . 

TT Q2 -l 1-,f 2 
(3.10) 

We have used here the fact that only operators with 
even number of derivatives have nonzero matrix ele
ment <OI~y 5 y 11 d 11

tf; I P due to parity conservation. 
Hence, the function ¢(,f) is symmetric ¢(,f) : ¢(-,;) . 
The change (1-,f)- 1 .. [(1-,f)- 1+ (lt-,f)-V2 gives (1-,f2)- 1 in 
(3.10). 

The dependence of ¢(,f, Q 2) on Q2 is given by 
the formula 

cp(,f, Q 
2
) = ( 1- ,; l ~ kn (/1 ~) -

1 -tJ-12~- -~:+:.?!__? __ c312 
(,f) X 

n- 0 2 (n+ 1)(n+ 2) n 

Q -2 d.\ 
X exp ( r }' n (g (,\))--), 

ilo A 
(3.11) 

g2 2 . 
where y n "'- -- (1+ --------)(see the Appendix). 

16 rr 2 (n+ 1)(n+2) 
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The v -.!H./J( 4 ) -theory has a range o~ unpleasant pro
perties. First, the coupling constant g(Q) grows with 
growing Q (null-charge situation). Second, eq. (3.10) 
predicts that the form factor is negative for large Q . 
This probably indicates that the repulsion dominates in 
the q q -system, because in the nonrelativistic approxi
mation the EM form factor is positive for q 2 < o 124 -' if 
the potential is attractive. Hence, there arises a question 
about the very existence of the bound state. Third, the 
anomalous dimensions y n approach their limiting value 
from below, i.e., the contribution of higher harmonics 
responsible for a "bad" behaviour at ,; ' 1 is enlarged 
with growing Q. Thi~ also indicates that there are no 
bound states in the qq -system. 

4. QUANTUM CHROMODYNAMICS 

The leading t -subgraph may possess in vector gluon 
theories an arbitrary number of external gluon lines 
because the vector gluon field has zero twist (in the 
Feynman gauge). Hence one must sum over the gluons 
participating in the parton subprocess. In III we have 
developed a rather simple technique of such a summation. 
The diagrams describing the cross section for the 
AB -. 11 /1-Xprocess have the structure analogous to the 
diagrams describing the pion EM form factor, and we will 
not repeat the reasonings presented in III. Rather, we 
formulate only the final result that the summation over 
the gluons in configurations shown in fig. 5b gives (for 
the colourless pion) the gauge-invariant bilocal operators 

- rl 2 A 11 q,(e
1
,f

2 
;11 )=N 

2
[tjJU 1 )y

5
yvTcexp(ig ( A

11
(z)dz )lj!(C 2 )] 

11 f 2 

(4.1) 

in place of the operator ~;u 1 ) y5 y 
11

tf; U 2 ) . In the confi
gurations 5b we also obtain the contributions which cor
respond to operators containing the gluon field tensor 
G ;.tv. These operators have a higher twist and, as a con-
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1 M 2 N 
sequence they give power corrections -· --- (---;-) 

, Q2 Q2 

We have stressed earlier that in theories describing 
massless vector particles one can obtain the pole at J --1 
by a simultaneous integration over A v -· 0 , 
aa 1 .••.• a a 11 _, ""; where V is some subgraph which 
becomes a leading t -subgraph after removing the lines 
a 1 , .•• , a

11 
, corresponding to massless vector particles 

(cf. ref. 1 18/ ). Such a configuration (fig. 5c) describes 
the wee gluon exchange between the initial and final 
state. These exchanges spoil the factorization we have 
observed studying the scalar gluon model (see eq. (3.6)). 
But, as it was argued in III (cf. also with the results of 
ref. /25) the wee exchanges give power corrections 
( 0 ( M 11 Q 2) rather than logarithmic ones (- l n Q 2 / p 2 , 

where p2 is the parameter which is responsible for 
an infrared regularization), provided that only colourless 
particles are present in the initial and final states. 
Note that the elementary colourless particles are implied 
rather than colourless bound states. But the choice of 
fundamental fields describing the qq system in the 
auxiliary Green function (2.2) is rather arbitrary. If we 
substitute ljf( a 1 )y 5 ~'(a 2 ) by the ~roduct of ~olourless 
currents j (a 1)js (a2 ). . where j = M,, , j 5 , t/Jy 5 ~'· then 
the requirement formulated above is fulfilled. This cor
responds to the transition from 1/J( a 1)y 5 rj:( a 2) to the 
following gauge-invariant superposition of quark and 
gluon fields (fig. 6) 

- - c 
C(fjJ, rjJ, A)= rjJ(a 1 )yr:,8 (a 1 , a 2 )rjJ(a 2 ), (4.2) 

c 
where S (a 1 , a 2) coincides formally with the quark pro-
pagator in an external gluon field (see Ill) 

c c 4 c Jl~ c 
S (al'a 2)= S (aca 2)+g{d cfS (a 1 -cf)y A

11
(cf)S (cf-a 2)+ ... = 

a1 ~ c 
= T exp(ig { A dz11)[S (a 

1
- a

2
) + O(G )]. 

c 11 W' . 
a2 

(4.3) 
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2-'- I a~ 

a) 

c) 

Fig. 5 

where A 11 = r a A/~ . and r a is the gauge group matrix 
in the fundamental representation. Note, that up to 0( Gw,) 
term and a numerical factor S c ( a 1 -a 2 ), this change 
corresponds to the description of the pion by the gauge
invariant combination 

al 

cc¢, !/J,A) t~7cal)y5 Tc8lq)(ig r AJldz
11

)rjJ(a2). (4.4) 
a2 

It was argued in ref. ' 26~ that if one assumes the quark 
confinewent, then ~o (,&(a 1)yr:, y(a 2 )~ P > 0, ~ but 

'-- 0 I C( 0. y, A) i P 'F 0 nevertheless, and only C is the 
right combination to be used as a pion interpolating field. 

The gauge-invariant bilocal operators t" v ( t. 77 ; 11 2 ) 
may be expanded in the ordinary way into Taylor series 
over the local gauge-invariant operators (see III) 

..._, 
01/f' ( 0 II 

2 ) .1 ... t'm \ 'r N ·:> l,f(O)y "lyL,Du ... D,, l t/1(0) f4.5) 
Jl~ " 1 "m '\ 

Thus, the representation (3.6) is valid in QCD also. As 
usual, D 11 c= a J1.- igAJl denotes in eq. (4.5) the covariant 
derivative acting on tne quark field. 
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Fig. 6. 

The matrix element of operators (4.5) depends on the 
renormalization parameter 11 , as ( g 2 l n 11) N , hence, 
the validity of the representation (3.6) means that the 
double-logarithmic contributions (g 2ln2Q 2/ 11 2) N which 
appear in some diagrams, are cancelled after summation 
over all diagrams of the given order (cf. ref. /27 ). 

We emphasize that it is just the colourlessness of the 
pion that is responsible for cancellation of the wee gluon 
exchanges which spoil the factorization, as well as for 
cancellation of the double logs. If one considers the form 
factor of the coloured particle, no cancellation will be 
observed (cf. III, part 3). 

Further analysis proceeds in the same way as in sec
tions 2,3. The change a

11 
~ D11 does not affect the con

formal property of a tensor in the free-field approxima
tion*. It is natural, hence, to expect that in the confor
mal basis 

- n 312 
Kllll1···1ln ~ tPY5lyll(a,c ,; (2D/a+))f11···1ln l!f (4.6) 

the matrix of anomalous dimensions is diagonal in the 
one-loop approximation. Straightforward (but cumbersome) 
calculations support this view. 

The parton wave functions cp(~, 11 2 ) satisfy the very 
specific normalization condition 

1 

iPv J cp(~' 112)~ =- <O\j;y5 Yv tP \P> = iP v f n
-1 

* We are grateful to A.A. Vladimirov for clarifying 
this point. 
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(4.7) 

because matrix element of the axial current is known 
from the decay rr .. 11v: f rr = 132 MeV. This property 
(in a rather different way) was utilized also in refs. '7 ,8,28 , . 

Eq. (4.7) holds for all ll2, because the axial current has 
zero anomalous dimension. It is worth-while to introduce 
dimensionless functions a(~, fl 2 ) = cp <.;.11 

2)/f rr • Then 

= ( n 
a(~, Q 

2
) = ( 1- ~ l ~ _!_::__=1~ ---~~_?~---k (/l 2 )C 3 /2 (~) x 

n=O 2 (n+1)(n+2) n 0 n 

x (ln(Q~/ A 2) /ln(Q 2; A 2 )) y n/ B (4.8) 

where 

2 n-1: 1 1 2 
y = c (1- ------------- + 4 ~ ---); B o 11- --N , (4.9) 

n F (n-d)(n+-2) V 2 j 3 f 

cv "413 and Nr is the number of quark flavours. The 
coefficients ku ( Q5) are defined by 

2 
1 

2 '3/2-
kll(Qo) -~ r a(~. Qo)C II (~)d~. (4.10) 

-1 

Now we can express the pion form factor in terms of the 
wave functions 

1 1 2 
FTT (Q)= _!2 I (.!.; r drJcp '(Tf,ll2)E(~.Tf;--92,g)cp(,;,f12). (4.11) 

Q -1 -1 ll 

Taking Jl ~ Q and using the Born approximation for E 

-2 
. - 2g CF -2 

E(~, Tf· 1. g) = -------- · ---11 + O(g )!, (4.12) 
(1-~,)(1-77) Nc 

where N = 3, we obtain the final expression for the 
asymptotfcal behaviour of the pion form factor in QCD /19/ 

f. 2 
TT c F 2 

F (Q) = 8rra (Q)---- --- (y(Q)) 11 + OCa (Q))I. (4.13) 
" s Q2 N s 

c 
The function y(Q) is given by 

"" n l Q2/A2 y /B 
y(Q) _ -~ ~ 1+(-1) 2 2n+3 n 0 n 

- + ...., ---- k (Qo)-~--(---) 
2 n= 2 2 n (n+l)(n+2) lnQ2jA2 

(4.14) 
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Only the first term in the r .h.s. of eq. (4.14) remains 
in the limit Q 2 -~ ""• and we obtain eq. (1.3). Eq. (1.3) 
is nothing but the result of substituting the Born appro
ximation (4.12) for E and the limiting form of the 
wave function a(.;, <XJ) = {-(1-,; 2) into eq. (4.11). One 
can find the limiting form in a rather simple way, na
mely, solving the equation 

n 
~ z ,a , = 0, 
, nn n 

n =0 
(4.15) 

where z nn, is the anomalous dimension matrix, and 
using the normalization condition (4.7). The limiting 
curve a(.;,"")""{- (1-,; 2

) is analogous to the limiting form 
t'(x, oo) ~o(x) of the parton distribution functions. It is 

well-known that at accessible energies the functions 
f(x, Q2

) differ strongly from its limiting form. The wave 
function a(.;, Q 

2
) at moderately large Q 2 may also 

differ from f(l- t 2). Let us examine, however, what 
predicts eq. (1.3) if one interpolates it into the region 
Q2 

= 2 -: 4 GeV 2 • If one takes the ordinary QCD formula 
as= 4rr/9lnQ 2/A2 ) with A ::: 0.5 GeV, then the curve 

(1.3) crosses the curve F~P) .• (l.Q 2/m 2)- 1 (which is in 
agreement with experimental data) app/oximately at Q 2 = 
~ 2 GeV 2.For Q2 2 GeV2 the curve (1.3) goes 
lower, mainly due to decrease of the coupling constant 
a 8 (Q). Anyway, the asymptotical formula (1.3) pre
dicts a magnitude of the right order for F

77 
(Q) in the 

region Q 2 
.:,: 1 GeV 2, and this indicates that a better 

agreement between the QCD predictions and experimen
tal data can be achieved by using the wave function 
that differs from a(~·. ""), and also by taking into ac
count some higher twist operators and next order cor
rections in a (Q) for the E -function. s 

We express our gratitude to D.I.Blokhintsev, V.A.Mesh
cheryakov and D. V .Shirkov for their interest in this 
work, and also to V.L.Chernyak, A. De Rujula, R.N.Fa
ustov, I.F.Ginzburg, E.M.Levin, V.G.Serbo, N.B.Skach
kov, L.A.Slepchenko, A.A.Vladimirov, and V.I.Zakharov 
for fruitful discussions and stimulating remarks. 
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APPENDIX 

We investigate here the diagonalization of the anoma
lous dimension matrix. First we consider ¢~6 ) -theory. 
The anomalous dimensions in this theory are given by 
eq. (2.26). To simplify the calculations, it makes sense 
to consider the operators l/1* a· nt/1. with the derivative 
a rather than a. The sum in eq. (2.25) runs then over 

all k, not only over even k. In terms of these opera
tors 

( a a .... n 
117JM.- + f3Cg)ag,-) <O!t/J*a l/1 IP > = 

n n-k -.k 
= ~ z k<Oia (t/J'"rl ljf)jP>, 

k ~ 0 n 

where 

z -~ K g 2 1-o r ______ _? ______ (} l ; e = I 1 
nk nk (n + 1)(n + 2) nk nk 0 

n > k 

n<k 

(A.1) 

(A.2) 

The eigenvalues of the matrix znk are given by its 
diagonal elements A(!) =Kg 2(-1 + 6/(i + 1)(i+ 2)), because 
znk is a triangular matrix. Hence, we must find the 
vectors kn 

k n = ~ d nm am 
m=O 

which satisfy the equation 

( a . a ) (n) 
II ---- i {J(g) --- k = ,\ k . 
r (ill ag n n 

(A.3) 

(A.4) 

Using the explicit form of A (n), we obtain the equation 
for d nm' 

"" d p 
L ------~-

!' --mer ~ 1)(!' +- 2) 

The form of this 
of the coefficient 

d 
nm (A.5) 

(n t l)(n 1- 2) 

equation is determined by the structure 
in front of enk' Subtracting from (A.5) 
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the equation for d
11

, m + 1 gives the recurrent relation, 
from which it follows that 

m (m+n+ 2)! 
d n rn = ( -1) -----------

m! (m + 1)!(n-m)! 

(n) 
(A.6) 

where d(n) is an arbitrary normalization constant. 
We choose it in such a way that the multiplicatively renor
malizable operators have the following form 

K 
f.l-1 ···f.l-n 

m 
n (m-t-n-t-2)!(-1) n-m *--->m 

= ~ -------------a c 0 a 0) 
1 

= 
m=O 2m!(m-+-1)!(n-rn)! · · lf.l-r··lln 

<--~ 

n 3/2 . 
= (lj;*a+ C n (2a/a +)if;)j 111 ... f1-n l· (A.7) 

3 12 /'.29/ where C 1{ (x) are Gegenbauer polynomi~ls (see ref. , 
.~~ ·~ ._ ~ ....... n r k 

formula (10.9.20)); 2d -. a -a ' a+= d +d ; d_(d, a J 
n-k k ' 

=a+ a . The tensors K f.l-
1 

... f.l-n are conformal in the 
free-field approximation /30/. In a somewhat different con
text the conformal invariance was widely used in the 
earlier studies of asymptotic properties of the form 
factors /2-4,311. 

Matrix elements of the operators Kf.1-
1 

... f.l-, according 
to eq. (A.7), are related to ¢(~) in ttie fo~lowing way 

1 2 3/2 l -
{ ¢(f., f.1- )C n (f,)~l p 11 1 ... p f.l-n -

-1 

= <OIK IP> = kn (f.l- 2)lP ... p f.1- I . 
f.1- r·· fl-n f.1- 1 n 

(A.8) 

The polynomials C ~12 (~) are orthogonal on the seg
ment (-1.1) with the weight (1-f. 2). Taking into account 
their normalization /29/ gives 

2 "" 2 n '- 3/2 312 
¢ (f.,f.l- ) = ( 1- f. ~ ~ k (f.l- ) -----~------ -C n (f.). 

_ n-o 11 (n+ 1)(n + 2) 
(A.9) 

In the if; ~¢(4)-tl!_eory -• t~e anomalous dimension matrix 
for operators 1/JYrJ/1 a rjJ has the following form 

g2 2 
z =- -------(8 -+- ------------ e ). 

nk 16rr 2 nk (n + 1)(n -+- 2) nk 
(A.10) 

30 

The coefficient in front of e k has the same struc-
3 n 

ture as in the ¢ (6 ) -model. Hence, the conformal tensors 

~y ly an_, c 3 /2 (2a/a) 1~, (A.ll) 
5 f.1- n + !11 ... f.l- n 

are multiplicatively renormalizable. 
In QCD we have obtained for the operators ~ y

5 
y o• n if; 

that z k = z0) + z <2) where 11 
n nk nk ' 

(1) ~:-l-8 + ______ 1___ ____ e nk l, 
z nk = cF 2 nk (n -+- l)(n + 2) 8rr 

(A.12) 

g2 n-+-1 1 1 1 
z< 2) = c ---[-48 ~ (--) + 2(----- ---M -8 )]. 

nk 1= 877 2 nkj=2 j n-k n-t-1 nk nk 

(A.13) 

The term z<n2~ corresponds (in the Feynman gauge) 
to the prolongation of the derivative. 

To find the limiting form of the wave function from 
the equation l 7. nk a k , 0 one may use the following 
trick: one solves first the equation l z~{l a k ~o and 
then sees that the solution obtained satisfies also the 
equation ~ z~12J a k = 0. This reflects the fact that in the 
free field approximation the prolongation of the derivative 
does not affect the conformal properties of a tensor, 

i.e., it does not change the structure of eq. (4.8), The 
account of D changes only the magnitude of anomalous 
dimensions for n ?: 1. This explains the coincidence bet
ween eq.(:J.3) and the result of ref. 17/ obtained in the 
ladder approximation where only the term z(~~ works. 
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