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1. INTRODUCTION 

As one of the most fundamental physical quantities 
the entropy has recently become a topic of intense inves­
tigations. The classical quantum-mechanical definition 
of the entropy S(p) co - Tr p log p is closely connected 
with the description of states by density matrices p . 

Today voluminous surveys about the fundamental pro­
perties of the concave functional S(p) as a measure 
of disorder on the density matrices exist /8,14,1'7 '.It is 
an actual problem of mathematical physics to reveal 
such properties of the entropy S(p) and their connec­
tions with other physical quantities (energy ,etc. ), which 
allow one to define the conception of entropy also for 
states of statistical systems in the thermodynamical 
limit, which are not given by density matrices in general. 

In what follows we want to state which of the mathe­
matical properties of the local structure of statistical 
systems ensure a correct definition of the entropy as 
a set-function and what its continuity properties are. 

2. DEFINITION OF THE ENTROPY 
ON LOCAL SYSTEMS 

The basic object to describe st.ates of an infinite 
system in the algebraic approach to statistics is the 
* -algebra OL · . 01 "of local observables, where dLv 

v 
is the observable *-algebra related to the bounded 
region (box) V. Since 01.v r ()·'-v, for V c V ', the * -algeb-
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ra is well-defined. For the sake of definiteness we re­
gard only lattice systems on a lattice Z. V is always 
a finite subset of z. A state UJ is a linear, positive 
and normed functional on OL , i.e., UJ (,\A+ pB) = AUJ(A)+pUJ(B.), 

(l) (NA) ~ 1 and UJ(l) = 1, where A.B~ ot. Now it 
may happen, and this is in fact so for physically impor­
tant models as we shall see below, that otv can be 
realized as a *-algebra of operators on a Hilbert space 
in such a way that a state UJ restricted to Ot.v is 
given by a density matrix Pv in the form 

UJ(A) = TrAp v for all A E l:tv · 

Then we can define the local entropy S v (UJ) 
state UJ in the volume V by 

S (cu) •- Trp logp . v v v 

(2.1) 

of the 

(2.2) 

Let us first remark that in case of reducible reali­
zations of rn. v on a Hilbert space the density matrix 
Pv and therefore also the entropy of the state (l) may be 

not uniquely determined. For example, if Ot v is the 

algebra of all 4x4-matrices of the form A "' ( Ao 0) , 
o A 0 

where A0 is a 2x2-matrix. The two density matrices 

p 0 
P1 =<o o), ( lhp 0 "t" d d p = ), p a pos1 1ve an norme 

2 0 lhp 

2x2-matrix, define the same state on Gtv , i.e., Tr~Ap 1 = 

=TrAp 2. But S(p 1) =- Trplogp ~ S(p 2) = _-2Tr(lhp)log(lhp). 
For many lattice models (Ising model, Heisenberg 

model, etc.) Ol.v is isomorphic to the *-algebra of 
all nvxnv -matrices, where nv is finite and depends 
on V. Then we can apply the following theorem to define 
the entropy. 

Theorem 1 

i) If Olv is isomorphic to the * -algebra of all 
nx n -matrices, then every nontrivial irreducible repre-
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sentation A .... rr(A) of Of..v is finite dimensional and faith­
ful. Two such representations are unitary equivalent. 

ii) If (l) is a state on 01.v and rr a nontrivial ir­
reducible representation of otv on a finite dimensional 
Hilbert space }( v., then there exists a unique positive 
operator Pv on }( v such that UJ(A) = Trrr(A)p v for all 
A E Otv. The entropy 

S (UJ) =- Trp logp v v v (2.3) 

is independent of the choice of rr. 

The statement i) is a well-known fact for the repre­
sentations of ~(}{), dim}(< .,.,,!7,§~21. ii) is a straight­
forward consequence of i). 

3. THE ENTROPY OF A BOSE-LATTICE-GAS 

For a Bose-lattice-gas Ot.v is the *-algebra of 
all polynomials of finite many pairs P j , Q j satisfying 
the CCR, where j runs over the lattice points of V. 
We shall see that also in this case the entropy of a state 
(l) can be defined in the analogous way as for the case 
that Olv are algebras of finite-dimensional matrices. 
But since now crt v has only representations by un­
bounded operators, one needs some special facts about 
such representations, which we are going to describe 
first. 

Let ~ be a dense domain in a Hilbert space }( then 
we denote by f +(j)) the * -algebra of all (unbounded) 
operators A on }( so that A, A* are defined on j) 
and leave g) invariant, i.e., A,A*gj c g), We denote 
A+ = A *ij)' If R is a *-algebra, then a representation 
rr of R is a * -homomorphism of R into ~ +(j)) . 
A representation is called self-adjoint if ~ = n T(rr(A)*), 

AE-R 

where g)(rr(A)*) is the natural domain of the adjoint 
operator rr(A)* 12,9,13,15 /, 

Let rr 
0 

denote the Schrodinger representation of DZ..v­
defined by rr (Q.) = x . , rr (P. ) = ..J:.- _j)_ on the Schwartz 

0 J J 0 J 1 ax j 
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space S c L 2 of rapidly decreasing functions. "o is 
a self-adjoint representation. A state w on Ol v is called 
strongly positive if w (A) _::: o for all A E- tl.v with 
"o(A) :_:: 0 on S. A representation " is called strong­
ly positive, if "o(A)~ o implies "(A).? o. After these 
preparations we can state the main theorem. 

Theorem 2 

i) Every nontrivial irreducible and strongly positive 
self-adjoint representation of Cl.v is unitary equi-
valent to the Schrodinger representation " . 

ii) If w is a strongly positive state dh I.'Jtv and " 
a nontrivial irreducible and strongly positive self-ad­
joint representation of crtv on T then there exists 
a unique positive nuclear operator Pv E ~~+(T). so that 
w(A) = Tr"(A)pv for all AE Cilv .The entropy 

Sv(ul) ~ -- Trpvlogpv (3.1) 

is finite and independent of the choice of "· 

The statement i) is well-known uniqueness theorem 
for the CCR ,tS,7/in a form proved in 9'. If ul is a strong­
ly positive state on Otv, then it is given by a density 
matrix in the described sense, as it was proved 
in 112•16 •3•111 • The finiteness of the entropy was proved 
in 14•51• The independence of the entropy of the represen­
tation is a consequence of i). 

4. CONTINUITY PROPERTIES OF THE ENTROPY 

As it was outlined in the foregoing section every state 
w has an entropy Sv(w) as a set-function depending 
on V. In the case described by Theorem 1 the states uJ 

are linear functionals on a normed • -algebra at and 
therefore the norm I lwll of the states is well-defined. 
For every fixed V the mapping w -· p v is norm­
continuous if we take the usual operator norm on the 
finite dimensional density matrices. Hence for fixed Vthe 
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entropy Sv(w) depends continuously on w with respect 
to the norm on the states. 

In the case of the Bose-lattice-gas regarded in the 
foregoing section the situation is much more difficult. 
Since the observable algebra 0t contains unbounded 
elements the states w are not normable. The strong 
topology {3* on the states, which we call the physical 
topology /4, 51, is a locally convex topology defined by 
the following system of seminorms 

{3*: I iwllm = sup__ lw(A)l < ""• (4.1) 
Jll AE:ffi 

where m runs over all weakly-bounded sets of ot. For 
every bounded volume V the physical topology {3 't on 
the states on Otv is given by the system of seminorms 

f3 ~: 
k k 

IIPv II k = ll(N v+ 1) Pv<Nv + 1) 11. (4.2) 

k ~ 0,1, 2, ... , on the corresponding density matrices /5/ . 

Nvis the number operator. Then we have the following 
theorem. 

Theorem 3 

i) The mapping w _. p v is continuous with respect 
to the topologies f3 * and f3*v for every V. 

ii) For every V the entropy S v<w) is a continuous 
function of w with respect to the physical topology 
f3 *on the states on 07.. 

The statement i) can be proved by a modification 
of the proof of Theorem 1 in our paper /51; ii) is then 
a consequence of Theorem 2 in the same paper. 

Especially for translation invariant states it makes 
physical sense to define the entropy density S (w) = 

S (w) 
=lim _y_ ___ ' which is finite for many lattice models. 

v_.,., v 
The entropy density has in some sense better continuity 
properties than the entropy. For quasi-free states the 
continuity of the entropy density was proved in /l~ 
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