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1. INTRODUCTION

As one of the most fundamental physical gquantities
the entropy has recently become a topic of intense inves-
tigations. The classical quantum-mechanical definition
of the entropy $p)=- Trplogp is closely connected
with the description of states by density matrices p .
Today voluminous surveys about the fundamental pro-
perties of the concave functional S(p) as a measure
of disorder on the density matrices exist /8,14,17/]It is
an actual problem of mathematical physics to reveal
such properties of the entropy S() and their connec-
tions with other physical quantities (energy ,etc. ), which
allow one to define the conception of entropy also for
states of statistical systems in the thermodynamical
limit, which are not given by density matrices in general.

In what follows we want to state which of the mathe-
matical properties of the local structure of statistical
systems ensure a correct definition of the entropy as
a set-function and what its continuity properties are.

2. DEFINITION OF THE ENTROPY
ON LOCAL SYSTEMS

The basic object to describe states of an infinite
system in the algebraic approach to statistics is the
+ -algebra OL- . ()”Lvof local observables, where GLV

\Y
is the observable «-algebra related to the bounded
region (box) V. Since 0y « iy~ for Vo v, the s -algeb-
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ra is well-defined. For the sake of definiteness we re-
gard only lattice systems on a lattice Z. V is always
a finite subset of Z. A state « is a linear, positive
and normed functional on QU , i.e., o (AA+ ;B) = Mo(A)uw(B),
w(A*A) > 1 and ow()=1, where AB: (. Now it
may happen, and this is in fact so for physically impor-
tant models as we shall see below, that OI.V can be
realized as a =*-algebra of operators on a Hilbert space
in such a way that a state » restrictedto Qi is
given by a density matrix py in the form

w® = TrApy for all Ac(X,. 2.1

Then we can define the local entropy S, (w) of the
state ¢ in the volume V by

Sv(w) - - Trpvlogp - 2.2)

Let us first remark that in case of reducible reali-
zations of le on a Hilbert space the density matrix
py and therefore also the entropy of the state » may be
not uniquely determined. For example, if OLV is the

algebra of all 4x4-matrices of the form A = (AO 0) ,
0 A
where A, is a 2x2-matrix. The two density matrices
0 Y 0
p =Py, = 7F

. 0 o o 0 Y%p ), p a positive and normed
2x2-matrix, define the same state on OLV , l.e., TrAp, =
=TrAp, But S(p,)=-Trplogp # S(p o) = —2Tr(%p)log(%p).

For many lattice models (Ising model, Heisenberg
model, etc.) @Oy is isomorphic to the «-algebra of
all nyxn, -matrices, where n is finite and depends
on V. Then we can apply the following theorem to define
the entropy.

Theorem 1

i) If Olv is isomorphic to the « -algebra of al}
nxn-matrices, then every nontrivial irreducible repre-
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sentation A s n(A) of @ is finite dimensional and faith-
ful. Two such representations are unitary equivalent.

ii) If o is a state on and , a nontrivial ir-
reducible representation of Oly; on a finite dimensional
Hilbert space H ., then there exists a unique positive
operator p, on X such that »(A)= Tra(Apy  for all
A ¢ Olv. The entropy

SV(w)=- Trp, logp 2.3)
is independent of the choice of ».

The statement i) is a well-known fact for the repre-
sentations of B(H), dim K< ~,/7§22/ii) is a straight-
forward consequence of i).

3. THE ENTROPY OF A BOSE-LATTICE-GAS

For a Bose-lattice-gas O, is the = -algebra of
all polynomials of finite many pairs P;, Q ;. satisfying
the CCR, where j runs over the lattice points of V.
We shall see that also in this case the entropy of a state
» can be defined in the analogous way as for the case
that Ol are algebras of finite-dimensional matrices.
But since now m has only representations by un-
bounded operators, one needs some special facts about
such representations, which we are going to describe
first.

Let © be a dense domain in a Hilbert space K then
we denote by £%9) the = -algebra of all (unbounded)
operators A on H so that A, A* are defined on ©
and leave © invariant, i.e., AA*T ¢ . We denote
A" = A*lpIf R is a .-algebra, then a representation
-of R~ is a *-homomorphism of R into £%9) .
A representation is called self-adjoint if T = ~ Tix(A)»

AGR
where Z(z(8)%) is the natural domain of the adjoint
operator n(A)* /2:9:13.15/

Let 7o denote the Schrodinger representation of OLV

1 9
i = P )=— -2 on the Schwartz
defined by "o(Qj) xj , 170( j) " axj
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space d ¢ L 5 of rapidly decreasing functions. =, 1is
a self-adjoint representation. A state » on OLy is called
strongly positive if « (A) > 0 for all A & Olv with
7 (A) > 0 on 8. A representation » is called strong-
ly positive, if »_ (A)>0 implies 7 (A)> 0. After these
preparations we can state the main theorem.

Theorem 2

i) Every nontrivial irreducible and strongly positive
self-adjoint representation of .y, is unitary equi-
valent to the Schrodinger representation =

ii) If o is a strongly positive state on ®_ and »
a nontrivial irreducible and strongly positive self-ad-
joint representation of Oly on T then +there exists
a unique positive nuclear operator p, € 7T, so that

w(A) = Tra(A)p, forall Ac @ . The entropy
Sv(m) = -~ Tl‘pvlogpv (3.1)

is finite and independent of the choice of .

The statement i) is well-known uniqueness theorem
for the CCR /#:7/in a form proved in 9’ If ¢, is a strong-
ly positive state on G‘LV, then it is given by a density
matrix in the described sense, as it was proved
in/12'16’3'”/- The finiteness of the entropy was proved
in 45/, The independence of the entropy of the represen-

tation is a consequence of i).

4. CONTINUITY PROPERTIES OF THE ENTROPY

As it was outlined in the foregoing section every state
» has an entropy Sv(w) as a set-function depending
on V. In the case described by Theorem 1 the states w
are linear functionals on a normed = -algebra O and
therefore the norm ||lw|| of the states is well-defined.
For every fixed V the mapping w-py is norm-
continuous if we take the usual operator norm on the
finite dimensional density matrices. Hence for fixed Vthe
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entropy Sv(w) depends continuously on «» with respect
to the norm on the states.

In the case of the Bose-lattice-gas regarded in the
fqregoing section the situation is much more difficult.
Since the observable algebra OU contains unbounded
elements the states « are not normable. The strong
topology B* on the states, which we call the physical
topology /4 5/ is a locally convex topology defined by
the following system of seminorms

B lolly = Sup lw(A)] < o, “.1)

where J runs over all weakly-bounded sets of OL. For
every bounded volume V the physical topology B*;'] on
the states on GIV is given by the system of seminorms

Br: oy Il = 1N s D5 NG+ 1 5L, 4.2)

k-0,1,2,.., on the corresponding density matrices s/
Nyis the number operator. Then we have the following
theorem.

Theorem 3

i) The mapping o - py is continuous with respect
to the topologies g* and B for every V.

ii) For every V the entropy S(w) is a continuous
function of o with respect to the physical topology
B *on the states on 01,

The statement i) can be proved by a modification
of the proof of Theorem 1 in our paper -5/; ii) is then
a consequence of Theorem 2 in the same paper.

Especially for translation invariant states it makes
physical sense to define the entropy density S(wo) =

. Sylw) . . .
= lim —V~—-,wh1ch is finite for many lattice models.
Vo
The entropy density has in some sense better continuity
properties than the entropy. For quasi-free states the
continuity of the entropy density was proved in 1/,



REFERENCES

Fannes -M. Comm. Math.Phys., 1973, 31, .279.
Lassner G. Rep. Math. Phys., 1972, 3, p.279.
Lassner G., Timmermann W. Rep.Math. Phys.,

1972, 3, p.295.

%s;nf;‘? G., Lassner G.A. Rep.Math. Phys., 1977,
glg7s7sner G., Lassner G.A. JINR, E2-10764, Dubna,
v. Neumann J. Math. Ann., 1931, 104, p.570.
Neumark M.A. Normierte Algebren. Dt. Verlag d.
Wiss., 1959.

Ochs W., Spohn H. A Characterization of the Segal
Entropy, Preprint Miinchen, 1976.

Powers R.T. Comm.Math.Phys., 1971, 21, p.85.
Rellich F. Nachr. Ges. Wiss. Gottingen, 1946, p.107.

. Schmiidgen K. Trace Functionals on Unbounded Ope-

rator Algebras. Preprint Leipzig KMU-MPh-4, 1977.
Sherman T. J.Math. Anal. Appl., 1968, 22, p.285.
Uhlmann A. Some General Properties of *-Algebra
Representations. Preprint Leipzig TUL 42, 1971.

. Lassner G., Wiss. Z.Karl-Marx-Univ. Leipzig,

Math.-Naturw.R., 1972, 21, p.4.
Vasilev A.N. Teor. Mat. Fiz., 1970, 2,2 p.153.

. Woronowicz S.L. Rep.Math. Phys, 1970, 1,135, p.175.

Wehrl A. General Properties of Entropy. Preprint
Wien, 1977.

Received by Publishing Department
on October 24 1978.



