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MnorsocTs B penﬂruaucrcxoﬂ MoAeNHd CTONKHOBEHHH TAXeNbX
HOHOB K&K CHCTeMbl NABYX HeB3aHMOAeACTBYIOWHX ra3os

npennaraercn penATHBHCTCKAaHd MOAdellb, ONMUChIBapUas CTOJKHOBEHHE
THAXeNbIX MOHOB KakK CHCTEMY H3 ABYX HeB3AHMOAENCTBYIOIIMX ral3os, NPOHH-
Kapugx aApyr s apyra. OkaspiBaeTrcd, 4TO IMNOTHOCTh YHCAA 4aCTHI
38BHCHT OT 3HEprWH MNy4YkKa H ee BeJllIH9HHa 6onblue, yeM npocTas CymMma

co6CTBeHHBIX MJIOTHOCTEH CHapsNa M MHIIEHH.

Pa6oTa eninonHena p JlaBoparopen Teopernueckoil ¢uankn OULAU,
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Iwe H. ' E2 - 11964
Density in a Relativistic Heavy lon Model System
Consisting of Two Freely Interpenetrating Nuclei

The relativistic determination of the density in a heavy ion
model system consisting of two freely interpenetrating nuclei
is presented. It is pointed out that the density becomes beam-
energy-dependent and, thus, is increased beyond the sum
of the rest densities of projectile and target,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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1. INTRODUCTION

The increasing availability of high-energy heavy-ion
projectiles made the production of nuclear matter under
extreme conditions an experimental possibility, and the
idea to observe new phenomena associated with pionic
instabilities rapidly gained attention. One of the most
important parameters for the possible onset of these
collective phenomena is the value of attainable particle
number density p during the heavy ion reaction process.
But the problem is how to produce dense regions. At
present only two mechanisms for getting an ‘increase
in density are known: i) incoherent interacting nucleons
which make a basis for microscopic scattering models
as the hydrodynamical model, the intranuclear cascade
model on the Monte-Carlo basis or the model using
classical equations of motion and ii) shock waves as-
sumed a priori.

First attempts have been done to calculate the time-
dependent density evolution in the framework of 90}]1
the first models (Gudima et al/!/, Amsden et al.’?)
mentioned under i). Usually the extracted density p is
reduced to the equilibrium nuclear density p . The
ratio p/pu then tells us how many times the density
is larger or smaller as compared to p,. If during the
reaction a phase transition or other collective phenomena
occur, then this quantity is significant. However, if we
want to get an information about the efficiency of a scat-
tering mechanism with respect to an increase in density,
this procedure is not very qualified for adensity reduction.
For a better understanding of the attained density we have
to eliminate the initial state.
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It is the aim of the present work to give a p(_)ssibility;
of reducing the density in such a way..ln'domg so, 2118
first the basic definition in the relat1v1st1cdesle:;:tem

i ity in a mo

tated. On that basis, the densl . odel
ioz:lsisting of two freely, interpenetrating relat1v15t¥c gase—ii
charactarizing the very early stage of the collision
treated.

2. DENSITY IN A RELATIVISTIC
HEAVY ION MODEL SYSTEM

Taking into account the motion of particles in (ﬁz;
continuous matter, the proper density of tl?e' tAmas °r
requires rather careful definition. In nonrelativistic m};ed
tems thermodynamical quantities are tu;uz;;l):v;;ih o

it i tory syste
to a volume unit in the labora in wh ne
i i i i But for relativistic sy
iven fluid element is mMoOvVing. : ys-
fems we are forced to introduce another con&derat;(l):-
All thermodynamical quantities for eacl? r'nt:t:ﬁ:,‘n o
i i h case inl
ment have to be defined in eac n : §
system (Landau and Lifshitz 3/ ). Quantities llkeel(;(:d
sity, internal energy, enthalpy and eptropy are reen ”
to 2; rest volume unit. Thermodynafmlcs 1st;232hsau ot
i i t frame,
be essential a science of the res ' .
variables which occur have known transformation laws

Let p be the proper particle nurpber den_stityV of
matter m(())ving with a definite Minkows.klan veloziiedi 11;
so that p dV’ is the number of partlc}es cocliIV'ortho—
a 3-dimen§ional volume element of magnitude o ot
gonal to its world line, i.e., to v; .- The rest Sy'srement
each fluid element is then defined by the rqutl e
that each element has the momentum zero and i stities
gy is determined by all other thermoglyr;zmlca;tgzagf mo_-

inci i e ce -0i-

The velocity v, then comc@es wi 1 )
mentum (CM) lsystem velocity of thedfelemerrlr:m\;h;;lét;i
i i i ith the corresponding ga
given in connection wi O ement are

in the appendix. If the particles ‘
ng o in the laboratory will measure

rest then an observer 1n the

ztlhe density n which is related to Po by the well known
formula
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However, moving particles represent a current which
has to be taken into account for the transformation. Den-
sity and current form the four-current density vector
i; =~ p u=(p,7) whose timelike component is the par-
ticle “number density p = y,p, and whose spacelike
component is given by the space vector of the particle
current ;= pu’. The length of the 4-vector it is
a Lorentz invariant quantity which turns out to be the
particle number density p, Pproviding the covariance of
P, = —ji'u" The inverse Lorentz transformation of cur-
rent and density from the lab frame to the rest frame

moving with the velocity vy parallel to the

z -axis
is

p = )’CM(H - jV(:M) and j° =‘)’(:M(j - vy (@)

With these aspects, we will tackle a relativistic heavy
ion reaction regarded as two perfect gases with the rest
densities p;’ and p° penetrating each other without
interaction.” Let the y -factor of the projectile in the

lab system be yp: 1+t with = %bom where E is the

bom

laboratory bombarding energy of the projectile nucleus
in GeVand M its total mass. ' ’

Let us consider in the lab system an infinitesimal
volume dV which contains target particles at rest of
the density n o= p;’ and moving projectile particles of
the density n =y p°. The projectile beam represents

P .
a currentof j =n_v .In order to determine the 4-current
density vector of’ the element, we have to sum up all
partial densities and currents, i.e.,

— — (o]
n=mn,+n = pp(yp+ B)
and j = n v .Here we have used the abbreviation for the
ratio of tlfeptarget and projectile rest densities
B = pg/p;;.



Going to the rest system of the regarded element ac-
cording to eq. (2) we find for the rest density

PR o v TN @
Here the sign o means the relativistic rule for the
composition of velocities. An observer in the rest sys-
tem therefore sees the sum of the target and projectile
rest densities increased by the y -factors corresponding
to eq. (1). Introducing Yoy (see the appendix) into
eq. (3) we obtain

(y +B]§1)yp+8
P(VP,B) = p° > = . @)
Vy2(1+2B) + B
P

We see from this expression, the relativistic density
of two gases penetrating each other without interaction
is not a simple sum of the target and projectile rest
densities po + po aS it is well known in the nonrela-
tivistic physics.

Let us discuss the asymptotic behaviour of eq. (4).
The trivial limits p? =0 and p3 =0 yielding p = pg and
p= pt", respectively, are automatically included. If ¥,
tends to ypzl (vp << 1) we get p = pg + pY,as is ex-
pected. A power expansion of expression (4) in the vici-
nity of Yp =1 yields to a high degree of accuracy

0o _0
p/pd = -B——é—l + -§§T or usingB P=pg+p‘t’+f£+—m-p—?t 5)
P
We see, only in the limit of small energies we get the
simple sum p° + p? . 1f y s increased the rest density
becomes always larger tﬁan the nonrelativistic one, i.e.,
it depends on the state of motion. If Yp tends to infinity
then eq. (4) displays the following behaviour:

p/p? _—(yp+ —B——+——1)/\/1+2B —_ Y. (6)
B }/ -» 00 P

From this expression we can d‘éduce the following equa-

tion which provides excellent approximate values for an

estimation of the density at given beam energies:
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p/pe = 2+ 0.77. )

The quantity T is measured in units of GeV per nucleon.
It can be seen that the nonrelativistic density will be
enlarged by a growth rate of 0.7 per GeV/nucleon in-
crease in beam energy.

Let us now suppose that in the element dV there are
the same densities of projectile and target particles
(n,=n, or B=y, ) Then we get p = 2p% Yoq

where y =1 +t/2 is the y -factor for the equal veloci-
ty systefn’

F9/8

Tl in GeY/nucleon)
N 1 i i L i N i
1 2 3 L 5

Rest density (in units of the target density p9 ) in
a heavy ion reaction during the diving phase as a function
of the beam energy in units of GeV per nucleon. The
curves reflect the cases: i) a-particle and silver(qpper),
ii) two nuclei with the same densities (B=1) and iii) the
same as in ii) but the asymptotic behaviour for large
energies (lower).
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In the figure the function eq. (4) is represented for
some coefficients B. Finally, it should be referred
to an analogue in the electrodynamics (Born/4/ ). Con-
sider a long straight wire atrest. If electrons are moving

in it, they give rise to an electric current. Because of

charge conservation the wire is electrically neutral,
for there are as many positive ions at rest as moving
negative electrons. However, an observer moving in the
direction of the wire now finds it positively charged, i.e.,
the total charge density has been increased in the ob-
server’s system in consequence of motion.

3. SUMMARY

In this paper the determination of the density in a re-
lativistic heavy ion model system consisting of two freely
interpenetrating nuclear characterizing the very early
stage of the collision has been presented. It has been

pointed out that just at that moment, if the projectile
enters the target without any interaction, the density
is changed due to a relativistic effect. All nucleons in
the overlap region between projectile and target feel
in their rest system an enlarged neighbourhood of other
nucleons which results during the diving phase in an
increased density beyond the sum of the rest densities
of projectile and target. The density becomes beam-
energy-dependent. It is shown that the nonrelativistic
density 2p  will be enlarged by a growth rate of 0.7 P,
per GeV/nucleon increase in beam energy. Further,
collisions with a-particle projectiles which are the
densest known complex particles provide the highest

densities.
APPENDIX. DETERMINATION OF THE y -FACTOR

A. Generalities

Consider first Lorentz transformations between the
CMS and the target system (TS) where vcy is the velocity

of the CMS in the TS. To determine Vems Ve proceed ?ls
follows. We form the 4-momentum vector_ Fti of. tte
group of particles in question and use then its invariant.
The timelike component is given by the total enetrgy
E -3E, and the spacelike one by the total momeg‘um
P = Zf)k . We have, for the group o'f particles .regz.lr mg,
that the velocity of their CMS in the TS is given by

E f (A1)
Vem = P/E .

Further,

Yoy = E/m

wheré:M m is the invariant mass of the group of particles
which is defined by

w2 - (P,)% = E?- P%.
It has the same value in all frames. Inserting this equa-
tion into the foregoing one we find

E (A2)

vy =

JEZ - P?

B. The y -factor of two gases penetrating
each other without interaction

nsider the case when all particles*of a gas w'1th
the Cs(:)ame kinetic energy T and momentum p arltle mo:;gg
parallelly against a second one at rest. Tte gv >
penetrate each other. Let the volume ellemen hereby
the lab system have N = Np+ Nt pgrtlcles wta oY
N are of the projectile typ_e and v+ of the Sregc_
typpe leading to the lab densit%es n, and n,, resp
tively. For the total energy we find

E - Npmyp + Ntm. | . . ) .
The total momentum can be written as P = Npp

> , 2 _

1P| = Npmvyp 1

According to eq. (Al) we obtain
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VoM = B1
cM v 2. p (B1)
P
and uéing eq. (A2)
y2 + B
oy = ———_ .

\/Bz+ y§(l+ZB)

We see that ycy as a function of ¥, depends only on
the ratio of the projectile and target rest density B.
Let us now consider the asymptotic behaviour of formula
(B2). If only target particles are in the volume (pp= 0,
Yp = 1), we get Yem = 1. If, on the other hand, there
are only projectile particles, we obtain Yem = ¥, - Now
let in the volume element there be the same partial
densities (np = n, or B =y ) Then we have You®
= Yeq=VI1+t 2. i.e., the y-fac[or equals that one (for
arbﬁrary colliding partners in the ”equal velocity coor-
dinate system’”. The particles own rest frame agrees
with the particles equal velocity system. The asympto-
tic behaviour with.respect to Yp provides for the non-
relativistic case (y,~—1) that 1 and for Yy =

that oy~ Yp Aas is expected.
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