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1. INTRODUCTION 

It is now generally accepted that quantum chromody­
namics (QCD) 111 - a Nonabelian gauge theory of coloured 
quarks and gluons - is a promising candidate for a theory 
of strong interactions. Weak and electromagnetic inter­
actions of quarks can easily be included by extending 
this framework to a unified theory based upon a spon­
taneously broken gauge group (e.g., SU(2)L xU(l)) /2, 3/ . 

QCD is an asymptotic free field theory. It is able 
to explain qualitatively many specific properties of high­
energy scattering processes as, for example, the weak 
deviations from scaling behaviour in deep inelastic lepton­
hadron scattering, etc. As to the low energy behaviour, 
however, some important problems still remain to be 
solved within QCD. This concerns first of all the expla­
nation of the experimental non-observation of quarks 
(quark confinement) and the calculation of the physical 
hadron spectrum. 

Looking forward to a solution of these complicated 
questions we recall that the low energy hadronic world 
has also successfully been described in the framework 
of phenomenological chiral Lagrangians /4-6/. In this 
approach, the hadrons are considered as approximately 
structureless objects which are described by their own 
fields. A field theory with a chiral-invariant Lagrangian 
has been first proposed by Gursey n; and Gell-Mann and 
Levy lSI. Further the connection of current algebra with 
chiral Lagrangians including partial conservation of axial 
vector currents (PCAC) has been clarified on the basis 
of tree diagrams !91. 
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The quantum chiral field theory gives us a possibility 
to obtain low energy expansions for the amplitudes of 
different hadron processes. Thus, using the "tree" and 
"one-loop" approximation many important low energy 
characteristics of hadron physics (e.g., scattering phases 
and lengths, interaction radii, decay probabilities and 
form-factors, etc.) have been calculated '10. 

In the following we are interested in the nonlinear 
(nonpolynomial) version of chiral Lagrangians ;,,6 be­
cause they do not contain spurious "a"- particles (re­
call that linear SU(4),SU(4) a -modelscontain,forexample, 
15 u -particles 11 'l.As is well known, the nonlinear mo­
dels are nonrenormalizable. One can, however, obtain 
quite reasonable results also for such theories by using 
special regularization methods (e.g., the superpropaga­
tor technique '12 '). It is worth mentioning that for the 
case of a nonlinear SU(3)A SU(3) Lagrangian most of the 
one-loop diagrams could be handled by applying standard 
renormalization techniques. This concerns, e.g., the 
calculation of almost all decays of the SU(3) meson oc­
tet /10.'. As has been found there, the small number of 
loop diagrams requiring special regularizations yields 
as a rule only small contributions negligible in compa­
rison with other diagrams. All these facts certainly 
illustrate the usefullness of investigating nonrenormali­
zable chiral Lagrangians. 

The aim of this paper is to construct a unified mo­
del for the weak, electromagnetic, and strong interac­
tions of hadrons based on a nonlinear chiral Lagran­
gian. Taking into account the recent discovery of charmed 
particles it is quite natural to extend first the SU(3)xSU(3) 

meson-baryon Lagrangians '5· 13 to chiral SU(4) x SU(4). 
The new Lagrangian contains the 15-plet and 20-plet 
of o- -mesons and 1;2 1 -baryons formed by the ordinary 
SU(3)-octets of hadrons and by the charmed particles. 
In order to generate weak and electromagnetic interac­
tions, we consider in the next step field transformations 
nonlinear with respect to the local gauge group 
SU(2) L x U(1) of the Weinberg-Salam model ·'21. A non­
linear unified hadron Lagrangian invariant with respect 
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to local SU(2) L x U(1) is then constructed by introducing 
gauge-covariant chiral derivatives. Finally, we derive 
an effective Lagrangian describing the weak and weak/ 
radiative decays of ordinary and charmed hadrons. The 
weak Lagrangian obtained is of the current x current 
type with charged weak currents having a generalized 
Cabibbo structure. The neutral weak current satisfies 
the famous rule i\S = 0 of the GIM-scheme /14/Jn the 
end, we give some illustrative applications of this model 
to the description of leptonic and semileptonic decays 
of charmed particles. 

The paper is organized as follows. In Sec. 2 we 
introduce the SU( 4) x SU( 4) invariant meson-baryon Lag­
rangian. In Sec. 3 we consider the gauge-covariant deri­
vatives for the group SU(2)L x U(l). Sec. 4 contains our 
chiral nonlinear Weinberg-Salam-GIM type Lagrangian 
together with the explicit expressions for the weak 
and electromagnetic hadronic currents. The resulting 
effective Lagrangian is contained in Sec. 5. For illustra­
tion and as a first application in Sec. 6 some two-, 
three- and four-body leptonic and semileptonic decays 
of charmed D- and F -mesons have been calculated. 
Finally, Sec. 7 contains a summary and a brief discus­
sion of the results. 

2. THE STRONG INTERACTION LAGRANGIAN 

In this section we shall apply the techniques of non­
linear realizations of symmetry groups to a phenomeno­
logical meson-baryon Lagrangian invariant with respect 
to the chiral group SU( 4) x SU( 4). In particular, we con­
sider the o-- mesons and 1/2+ -baryons belonging to the 
15- or 20-dimensional representations of the algebraic 
subgroup SU(4), respectively. Their corresponding fields 
are denoted by tl>i (i = 1.2, ... , 15) and B i (i ,= 1,2, ... , l!l) 
(cf. App. A). It is further convenient to consider the 
dimensionless fields e i = tl>i /f, where f is a para­
meter with the dimension of a mass the meaning of 
which becomes clear later on. The starting point of our 
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analysis is the following meson-baryon Lagrangian ex­
tended from chiral SU(3)x SU(3) 15,13/to SU(4)x SU(4) 

f2 -
L. (D f;; B, D B) == - D I;. D I; .+ B(iy D - M)B -

lUV f1 f1 2 f1 I 11 I 11 11 

-
- ByflDflCKiB, 

0 I 
K. ==[aD. +(1-a)F

1
.]y

5
gA; Y5 =-(1 0 ). 

I I (1) 

D 2 

D +F 3 
is the mixing parameter of the Here a ~ 

F-D couplings, g A "' 1.25 determines the renormaliza­
tion of the axial vector coupling and M is an averaged 
mass of the baryon multiplet. Further, F i and o i are 
20x20 matrix representations of the two possible sets 
of 15-plet operators of the group SU(4) (for definitions, 
see App. A), and o11 t; i , D11 B = ca + i8:Fk )B are 
the chiral covariant derivatives. They are given in 
terms of Cartan forms by (I; · A = I;. A. ) 

I I 

-ii;·A a e if;· A= i(A. D I; + V. 811 (I;)), 
e 11 f1 

(2) 

Ai 
where A i" 2 Y 5 ' 

A· 
Vi= -

1 
1 is the complete orthonor-

2 

mal set of the axial and vector generators of the chiral 
group SU(4) x SU(4). We use the normalization 

Tr A i Ak = Tr Vi Vk = 28 ik , 

TrAiVk =0, 
(3) 

where the trace is taken over internal and Lorentz 
indices. 
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Note that the chiral group is spontaneously broken down 
to the algebraic subgroup SU( 4) spanned by the vector 
generators Vi. The mesons I; i are just the massless 
Goldstone bosons associated with the broken axial gene­
rators Ai. To get massive mesons as well as baryon 
mass splittings, the chiral symmetry of the original Lag­
rangian (1) has further to be broken by adding a sym­
metry breaking term ~L to Linv· For convenience, i\L 
will be included only at the end of all calculations. 

Parametrizing the group elements g E SU( 4) x SU(4) by 
g= e ia ·A e iu · v , the invariance of the Lagrangian (1) 
under the nonlinear field transformations 

(I;. B)-. (I;', B ') c, g (I;, B) 

or, explicitly, 

ge if;· A== eit;'· A e iu'(f;,g)· v • 

B, = D(e iu 'cf;,g)·)B = e iu 'cf;,g)· FB 
(4) 

easily follows from the corresponding transformation 
laws of the chiral covariant derivatives 15/ 

(0 I;), = D (Ateiu '(I;, g)· v)D t: 
11 11"'' 

(5) 

(D
11

B)' = D(eiu'(f;,g)·V)D
11

B. 

Here D( .•. ) is a linear representation of the algebraic 
subgroup SU( 4) and D< A)( e i 11 '(I;, g)· v ~ , is the l~n~ar 
representation defined by A· (0

11 
I;)' = e Iu · v A. 011 t;e -Iu · v. 

Note that the field transformations (4) become linear if 
g is restricted to the algebraic subgroup SU( 4). 

3. GAUGE-COVARIANT DERWATIVES 
FOR THE GROUP SU(2)L x U(l) 

Let us now introduce the weak and electromagnetic 
interactions into the chiral meson-baryon Lagrangian 
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(1). For this aim, we require the unified Lagrangian for 
the strong, weak and electromagnetic interactions of had­
rons be invariant with respect to the local gauge group 
G w = SU(2) L xU( 1) of the Weinberg-Salam model 121 

. To 
find the (nonlinear) transformation laws of the hadron 
fields (,f, B) with respect to the gauge group G w of the 
weak and electromagnetic interactions, we shall embed 
G winto the global chiral group. Let us first consider the 
following 4x4 matrix representation of the generators 
of G · w' 

ci a· 0 
-1 ) 

1+y5 
c = ( I SU(2) : C. ~ --~--- -2- ' 

I 0 a1aia1 L I ~ 

(6) 

U(1): 
Y Y w 1- Y5 C 3 ~ y _ 
--- = --- + ----- --- , [C. , --]- 0, 

2 2 2 2 I 2 

where a i are usual Pauli matrices and y w denotes the 
weak hypercharge. The operator of the electromagnetic 
charge may be expressed by the op~rators of the weak 
isospin and the weak hypercharge C3 , Y / 2 or by the 
operators of the "strong" isospin, hypercharge and 
charm I 

3 
, Y s , C respectively. We have 

Q 
~ Y C3 Yw 
C + ------ '' ------ 1" -- ----

3 2 2 2 
(7) 

or 
ys 2 

Q = I I --- i --C 
3 2 3 ' 

(8) 

where 
1 1 ~-

y ~ -- .\ , C = -( 1- \ 6 A ). 
s -;--3 8 4 15 

v· 
In order to get the (generalized) Cabibbo structure of 

the weak interactions, we next rewrite the Lagrangian 
(1) in terms of the Cabibbo rotated fields 
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c 
i( · A if,· A --1 

e ~ Ue - U , 

(9) 
c 

B ~ D(U)B, 

where U - e 12cJv7 and fJ is the Cabibbo angle. 
Let us now consider the nonlinear realization of the 

(global) group Gw defined by the following field trans­
formation laws (cf. eq. (4)) 

([,<:,Be) .. (.;' c, B'c) = h(,fc, B c). 

h e 

where< 

\' ·W 
171-2 

1-y5 cs 

iii-- 2 2 if. c 
e e 

Yw 

G , 
w 

t c i lf --- t, c , t l' 
heis ·A= e 2 [eis ·A eiu (s ,h)·V], 

B, c = D( e iu 'ce ,h)· v) B c 

(10) 

(11) 

We next use coordinate-dependent gauge transformations 
(10). As usual, the construction of a Lagrangian invariant 
under local group transformations requires a set of gauge 
fields W ~ , B 

11 
associated to the generators Ci , Y /2 of 

the local group G w· Let their transformation laws be 
given by 

*Strictly speaking, the group Gw must be embedded 
into the enlarged group U( 4) x U( 4) since the generator 
y /2 contains the unit matrix. The unit matrix gives 

here, however, an irrelevant phase factor only which 
drops out in the transformation law (11). The embedding 
of more general "weak" groups Gw into a global "strong" 
group U(N) x U(N) has been discussed by Weinberg /15~ 
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~ 

igW'. c = e if (x)·C [a + igW . C) e -if (x)·C 
~ ~ ~ 

B' = B - _ _!__a ry(x). 
~ ~ g' ~ 

(12) 

The new unified Lagrangian Luuif (i)1l~c:Bc.D~B c) inva­
riant with respect to the gauge transformations (11) and 
(12) follows now from eq. (1) by replacing the chiral 
covariant derivatives by gauge-covariant ones, i.e., 

- c - c -k c 
Dll~i ~ D11 ~ i , DI*B • D~~ ·(all_, ~(·)~F'b)B . The gauge-
covariant Cartan forms DJL ~ ~ , e~l (~ ) are defined 
by 

~c ~ cC -is ·A ~ y ic. ·A 
e lr! + igW .c + ig'B --]e · 

~ ll ll2 

- c - c Yw 
= i(A·D I; +- V .E) (/; )) + ig' B --. 

~ ~ ~ 2 (13) 

The invariance of L nnif (I)~~ c: B c ,Dil B e) with respect 
to the local group Gw immediately follows from the fact 
that the gauge-covariant derivatives f5 ~ 1; c, 5 ~ B c obey 
the same transformation laws as the old ones (cf. eq. 
(5)). (On the other hand, the original SU(4) x SU(4) sym­
metry of the theory will now intrinsically be broken by 
order g 2, g '2 perturbations arising from the emission 
and absorption of virtual gauge bosons). 

For subsequent co~siderations it is convenient to 
introduce the fields W ~ , Z ll and A of the charged and 
neutral vector bosons and of the photon, respectively, 

± 1 w 1 _ -w2) w =----( t-1 • 
ll -ll ll 

,i 2 

Zll = oos8wW:-sin8wBil' 
(14) 

All = sinew w ~+cos e WB/l. 
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where 8w is the Weinberg mixing angle defined by 
tan8w= g'/g. Introducing the physical fields (14), into 
eq. (13) and reexpressing the Cabibbo rotated hadron 
fields in terms of the unrotated fields (~. B) we finally 
get the explicit formulae 

r ( D" < ~) -i20v, D ll ~ j 
-i c =D(e ) __ e ~ cl;l} · E) ([ ) IJ 
~ . 

~- ) I ( ) g - ' t ll;l) ' DIL ~ i = D~ I; i 
+- - _ ·.(2C 1 {())W~ -t h. c.) i >+ 

\ 8 ~ (/;) 8 ~ (/;) •l •) v (I;) 
-\ - I 

+-
g ~ 

2 oo-;()- - zll <:( 2C 3 -- 2 sin 2 8 Q) (A i (/;)) 
w w . Vi(/;) >+-

' e A /L < Q (A i (~) ) . ~ 
vi (/;l ~ . 

(15) 

Here C + W) ( C + = c 
1 

± i<\) are the Cabibbo rota ted charged 
generato-rs of tne weak isospin group SU(2)L 

~ -1~ ~ ~ 

c ± (()) = u c ± u . c 3(()) = c 3 (16) 

and e = g sinew is the electromagnetic charge. For 
convenience, we use henceforth the notations 

1 < ... > = -- Tr(. .. ) 
2 

i/;· A -if;· A 
xi(/;)= e xi e . xi =(A i • vi). 

It is worth remarking that eq. (15) provides us with 
a 1ener~ized minimal substitution rule (D 1;, D B) ... 
-• (Dil ~c. Dll B c) for introducing the unifiedll wea~ and 
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electromagnetic interactions into the strong interaction 
chiral Lagrangian (1). Our result (15) containes, as 
a special case, the minimal substitution rule of ref. :w 
for introducing electromagnetism into the group SU(3)'<SU(3). 

4. THE NONLINEAR UNIFIED LAGRANGIAN 

4.1. Currents 

Taking into account the explicit expressions for the 
gauge-covariant derivatives (15) the unified Lagrangian 
may be written in the form 

L ·r (D ~c; Be. D Be)~ L {D ~. B,D B) 
um f1 f1 inv f1 f1 

g + w 
---- (W J. h ) g Z A -- f1 f1 + .c. - --·------ Z j A. · 
2y'2 2cos() f1 11-e.1df1+ 

+ 
+Lb.l (A ,w-, Z ). 

1 11f1 f1 

w 

(17) 

W Z A 
Here j f1 , j f1 and j f1 are the weak hadronic charged 
and neutral currents and the electromagnetic 
current, respectively. The term Lbil contains expressions 
bilinear in the vector fields. With the definition * 

j f1 

we get 

oLunif 

0<1> fl 
<I> -( g + f1 - ------W-. 

2I2" f1 • 

g 

2cos0 zfl ; eA ) w f1 

*These expressions for j agree with the expres­
sions . obtained from the st~ndard definition /8/ ju -~ 
=-oL!Odfl <· There, the hadron fie~ds (~ c,B c) have to be 
variea according to eq. (11); Wl!-1 , Bfl have to be 
varied as in eq. (12) with derivative terms excluded. 

12 

· w ~ -- r 2o ~. < 2c W)A. (D·· t 
Jfl f1 1 t I 

- ~ ~ 

" By k2C (O)V (~)'-F. -r <2C ,(O)A .(t)>K .)B, f1 ~ I . I ,_ I -. I 
(18) 

z 2- ~ 2 
ifl -f Dfl C<(2C 3 - 2sin OwQ)Ai(,;)·· ~ 

- - . 2 
+By k(2C

3
- 2sm (} Q)V (c)·F. ~ 

fl , W I • I 

t-<(2C 3 - 2sin 20wQ)Ai(~)>Ki)B, (19) 

1. A = - f 20 E ·.QA (E) · r-
. fl fL· I I · 

+ By (<..QV (~) ·F I <.QA (~)·K )B. 
f1 I I I I 

(20) 

As we observe from eq. (18) the weak charged current 
exhibits the generalized Cabibbo structure of the GIM­
scheme .14/. Indeed, taking into account the representa­
tion 

c t ((}) 1__ cos 0 l ( v 1+ i 2 + A 1 ti 2 ) T ( v 13-i 14 f A 13-- i 1 ~] + . 
2 

, -}· sinO[(V 4t-i5 1 A 4t i5 ) (V 11-i12+ A 11- i12)]. 

v k ±if V k ·vr - ± 1 etc. (21) 

we get 

.W n[·1·i2 .13 i14l . 0[.4•i5 .11-i12] ( 22) J cos u J T J T Slll ] - J . 
f1 f1 fl f1 f1 

k · iC The currents j f1 · have the usual V ' A -form. They 
are defined by a formula an~logous to eq. (18) where 
2 C 

1 
(0) is replaced by (V k 

1 i , Ak' if). By analogy with 
the quark model the currents 1· 

1 ' 12 J. 13-11 4 1· 4+l5 
. ' f.1 ' th ' . f1 and j J 1-112 describe weak transitions wi the following 
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changes of the strangeness and charm, respectively: 
~S ~C ~ 0, ~S --~ ~C 1 , L'\S 1 r 1\C 0 and 1\S 0 ,, AC .- 1. 
Finally, the neutral current obeys the well-known relation 

. z 
J /1 

2 . A . ( 2 c 3 ) _ 2 sin fJ w J 11 
J /1 (23) 

'2C ) 
of the (linear) W einberg-Salam- model with j ~ 3 the 
current belonging to the third component of the weak 
isospin. For illustration and further applications, we 
quote in Appendix B the first terms of a power series 
expansion in t; of the mesonic part of the weak currents. 
It should be mentioned that (after having added a sym­
metry breaking term !\L cf. eq. (35)) the total axial 
vector currents can be shown to obey the PCAC-relations 

w -- 2 - 2 --
a/lj/1 = y'2fcos0(m 17 17 + mFF ) + 

(24) 
- 2 -- 2 - 3 

-t\/2fsinO(mKK --mDD )+0(1; ), 

a . z t'( 2 0 1 2 2 2 ) 0 ( c 3) J •• m 17 + ---- m Tf- y- m Tf + c,. • 
/1 /1 17 -- 1f 3 1f c 

y3 
(25) 

As we now see from eqs. (24), (25) the parameter f in­
troduced in eq. (1) for dimensional reasons is recognized 
as an averaged meson decay constant (from pion decay 
we have f -- f 

17 
• 95 MeV). 

4.2. Discussion of Bilinear Terms 

In this section we quote an explicit formula for the 
expressions bilinear in the vector fields that appear in 
Lunif (note that we include here also contributions ari­
sing from the currents). After some algebra we get 

C 1 ± iC 2 
(C = -------.) 

± 2 

14 

bi!. 
L unif 

fg 2 ~ 2 gf 2 2 
~·C--) I w I + <--------) z + 

v -2 11 · 2rose w 11 

g 2 2 . 2 t
2 

C3 . 2 i2f;·A -i2f;·A 
+(-----) Z (2sm 0 L--!H(---)-2sm 0 <(Q e )fQ e ]·,l-

2cos0w /1 vi 8 2 w ' ' • 

2 
_ e 2 A,:_! __ <[ Q, e i 2!; · A Jl Q, e - i 2!;. A ]> _ 

8 
9 g r~ ~ 

-e(------)---(A W H(C) t h.c.) t ----- 8 /1 /1 t 
2y 2 

t
. 2 

g g . 2 -t 
+(------)(---------)2sm () ----(Z W H(C) 1 h.c.)-

----- 2 e w 8 11 11 + 
2v' 2 oos w 

g f 2 c 
-e(2~~~(;- -)8--Z/lAI!lH(-;-)- 4sm~w [Q,ei2f;·AI[Q,e-i2(A ]>! 

w ~ • 
(26) 

Here the function H(X) describes the coupling of the vec­
tor bosons and pseudoscalar mesons. It reads 

H(X) ·.IQ,ei2(A]([X,e i2(A) Y l X e i2f;· A 
5 

. l ) t 
-+ 

t ( y" ,A) • ( -y , - A) ·. 
,) 5 

As we observe from eq. (26) there appear mass terms 
for the W and Z bosons due to their interactions with 
the hadron sector " 

·· Note that this generation of vector meson masses 
arises from the inherent mechanism of the spontaneous 
breakdown of the gauge group Ow embedded into the 
spontaneously broken chiral group SU( 4) x SU( 4). 
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. bil 
The remammg terms m L unif describe the interac-

tion of the pseudoscalar meson 15-plet (rr, K, rJ, F. D. r1 ,J 
with the gauge bosons. Our model contains the following 
3-particle vertices 

2 ± . g f . :t: 
AW t-vertex: w(----) --- <C+\O)[Q.V-tJ A W --- ---·--------- ·~ 2 - - 11 11 

2\ 2 

•) 

+ g g 2 1- :r 
ZW-J:-vertex:·-i(--·--::..-.:::)(------)2sin fiw-.-- .C+W)[Q.V-[]·Z 

1
W 

1
. 

-----"'------- 2\ 12 ?.cos &w 2 - · I I 

(27) 

It should be remarked that the bilinear expressions (26) 
contain no "seagull" terms of the form w · ', 2F((l for 

IL . 
the charged vector boson. 

5. THE EFFECTIVE LAGRANGIAN 

Our final aim is to obtain from eq. (17) an effective 
Lagrangian describing weak and weak/radiative decays 
of ordinary and charmed hadrons to first order in the 
weak interaction constant G - 10 --s /n! ~ . In order to get 
leptonic and semileptonic decays of hadrons we must 
also include the leptonic charged and neutral currents 
of ,the standard Weinberg-Salam-model. They are given 
by' 2,14, (cf. Appendix C) 

I' 

w 
(j

11 
)lept r Y. c 2c l I' 

/L + 

e 
/( ) ' 
I' 

(28) 

(j 11~ lept 
r y c zc . 2 sin 2e Q) r. 

11 3 w 

The effective Lagrangian describes processes with W -
and Z -boson exchange in second order of weak perturba­
tion theory. In a general (R {:Y gauge the vector propa­
gators read (cf. Appendix C) 
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I 
I 

\ 
1 

w 
D (X) 

fll' 

ct\ -ikx 1 k k 
1

. 1 
(- -=-4 e (-gIll'+ ( 1- --)---"Jl-.:: 2-- ) 2--.:::2-~~--

(2,) f3 2 Mw. k Mw~l' 
k ·- -- t-lt 

{3 

(29) 

4 . 1 kfl k II - - ---- 1 d k -Jkx , -(1---)------=-;:--) . --2 
D Z(x) i -·-; e (-gfll' y . M~ . k 2_Mz'lt 

ILl" (2;r)1 k2--)~-+-lt . 

where the total masses of the vector bosons get contri­
butions both from the hadron sector and the Higgs mecha­
nism of the lepton sector. We have 

•) 

M~ 

- 2 
Mz 

tg 2 
2 + ( • .:.J ' (Mv) l!iggs \ 2 

fg 2 
•) :J( - ------- -- ) . 

(Mzllliggs' ~ 2cose w 

g 
Using the approximations D

111
, (x) . 8(x) -:.f1

'­

M2 

(30) 

valid for 

large masses of the intermediate vector bosons we, fi­
nally, obtain 

LL!f L weak 

where 

Lweak -

Lweak elm 

L . . 
weakt elm, 

G 

\ 2 

1-

l z z w w 1 J
11 

(x)JIL (x) + JIL (x)J11 (x), 

(31) 

(32) 

_ G f 2 
---- e ----

8 
AIL (x)l(H(C+ )(j ~w'(x))mes+ h. c.)+ 

v 2 

cs . 2 i2t'·A -i2t·A. . oz 1 T (H(-2·-)- 4sm ew<[Q,e ][Q,e - p)(J IL (x))mes . (33) 
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Here 

J 
11 

(x) ·· (j 11 (x) lept 1 j 0 (x) 
J1 

(34) 

is the sum of the leptonic currents (28) and of the "free" 
hadronic currents j ~ = j 11 (e · g. 0). G -- v 2-g 2, sK'1 ~·- is 
a corrected Fermi Constant which coincides up to a neg­
ligible term O(f 2 (-~:.~- ) 2 ) with the usual expression 

v'2 

G v-2g 2>sM! In writing down eq. (33) we have omitted 
terms describing purely leptonic weak/radiative 
processes. 

Note that the effective weak Lagrangian (32) has the 
current x current form of the conventional weak inter­
action theory. Some of its hadronic SU(3) x SU( 3) or 
SU(4) x Sll(4) substructures have previously been de­
rived only empirically 10 •17 •18 / _ Finally, the expression 
Lweak:et 111 describes "inner" weak/radiative proces­
ses with participating mesons (in addition, perturbation 
theory yields also "bremsstrahlung" contributions arising 
from the interaction of photons with "external" hadron 
lines). 

We remark that the Lagrangian L weak/elm. could also 
be obtained empirically from the Lagrangian Lweak by 
applying the minimal substitution rule J -• a + ieA Q 
to the currents*. IL J1 ll 

Up till now the pseudoscalar mesons of our model 
are to lowest order in the coupling constant e. G mass­
less. (Mass corrections of order e 2, G arising from 
the emission or absorption of virtual vector bosons lead 
to an intrinsic breakdown of the global SU(4) x SU(4) 
symmetry '15/ ). Disregarding the small electromagnetic-

*Considering the charged current, such an independent 
treatment of the weak and electromagnetic interaction 
must, however, fail in higher order processes with an 
internal W~ W-y vertex. Recall that the W -boson of the 
unified theory possesses an anomalou.f magnetic moment 
arising from a nonminimal term F 

11
v W11 wv--

18 

weak mass corrections, finite meson masses may easily 
be included into the model by adding a SU( 4) x SU( 4) -
breaking term L'.L. In the scheme of Gell-Mann, Oakes 
and Renner :19 -201 ~L transforms according to the re­
presentation ( 4A ~) + ( 4 ~. 4) of SU( 4) x SU( 4). We use the 
explicit expression 

f
2 

- i; A ~L "" - 4- <(aV0 ' bV8 _,_ cV 15 )e 12 . >, (35) 

where the parameters a, b, c have to be chosen in such 
a way that the physical meson masses are reproduced * . 
Similarly, baryon mass splittings can be taken into ac­
count by adding matrix elements of the following baryon 
mass operator ~'.Zl/ to the Lagrangian (17) 

~M = (b'V
8 

, c'V 
15

). (36) 

6. SOME APPLICATIONS: LEPTONIC 
AND SEMILEPTONIC DECAYS OF CHARMED MESONS 

It has been shown in ref. 1101 that the SU(3)xSU(3) part 
of the effective Lagrangian (31) provides us already in 
the tree and one-loop approximation with a satisfactory 
description of the leptonic, semileptonic and radiative 
decays of the SU(3) meson octet (rr, K, TJ). Analogous 
results may now be obtained for the decay of charmed 
particles, too. For illustration and first applications, 

;--------.----2-- a b c . 2 a b c . 
One gets. m = (---- +- ---- + -----) • m =(---- ---- + ---), 

1T -- --- -- k -- -- --
y2 y3 y6 y2 2y'3 y6 

m2 = (-::__ - -~- + -~- ); 
Tf v/2 y-3- v6-

2 a b c 
mF = (-==- -~- --=-); 

v2 v'3 y'6 

m 2 "" (~ _ f2 
TJc /2 v'3 c); 

a b -- -~). 
1113 = <-;

2
- + -2v 3 v'6-

v 
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we shall give in this section a few typical calculation 
examples for the leptonic and semileptonic decay rates 
of F -and D -mesons. A detailed investigation of charmed 
meson and baryon decays including tree and one-loop 
contributions will be given elsewhere 

i) De 2 '. Fp 2 dec_ays . _ , _ , 
Let us fust consider the leptomc decays F ·11v , D • 11i· • 

The relevant part of the effective Lagrangian (32) is 
given by 

- Wt 
L 1~ Gf(cosea

11
F sinea

11
D )(j ll ) Jept. (37) 

From eq. (37) we obtain the decay amplitudes (S- l-iT) 

T =iGfcosOp f(+), T 
F11 11 D •11zJi 

( t) 
- i G f sin 11 p Dll I' 11 ' ( 3 8) 

F ·•11v' 

(+) where e 11:. • u(11 ) y
11 

(1 + y 5 )u z;, and p F 11 are 
of the F- and D -mesons, r:espectively. 

the momenta 
The charged 

meson rate for the decay X , 11 z~-, is 

(Gfm 11 )
2 sin 2e 

--------- Ill ( ~ ) 
4rr X cos 8 

(39) w .. 
X •Ill/' 

With f- f 77 95 MeV, e o. 22 , rn D .= 1.87 GeV and 
m F = 2.03 GeV we have 

w = 2. 10 8 s - 1, w • 3· 10 9 s - 1 . 
n ~ • 11;;• F , 11 ,~, 

(40) 

ii) Dp 3, F r3 decays 
We now estimate D1' 3 and F rs decays described 

by the following part of the effective Lagrangian 

20 

c - ~.... - '2 ·-· 
L = -i--.=-1 cosO(Doa K + y-- 1J a F ) + 

2 \/2 11 3 11 

- ..--~ 

+ sine(-Doa rr 
11 

1 <---+ -- ~-• - W1 
~ ---:.=- 1J a D +K 0 rJ F )l(j 

v 6 11 11 11 ) lept. (41) 

- +---Jo - - r-

(D0a K ..,ooa K--a 0°·K-, etc .. ). 
il 11 11 

The amplitudes of the Cabibbo favoured reactions 0° ... K+ev 
and F-. 1Jev follow from eq. (41) to be 

G (+) 
T -- ---- cos8(p + p ) P , 

-r + - -- D K 11 11 n· ... K ez· ,. 2 
(42) 

(+) 
= _ g ___ co se (P F + P 

17 
) / 11 (43) T 

F _, 1J e ~· \3 

We have 

U
2 4 20 

mDmKcos w = ----- ----- ---- - I(K ) 
Do, K , ei/ 12rr 3 D 'K ' 

(44) 

where 
l(K)-- r dli(X 2-1) 312~_1-[K\~:.:-2-=-1(A: 2--~) l-__g-lll(K+y~2~-=-1)J 

4 2 2 

2 2 
mD' m_!< 

2mKmD 
Thus, we predict and KD.K 

w_ _ _- l.O-lo11s-1. 
C' ' D .., K e11 

The same estimate can be obtained for the decay D 
Similarly, we have* 

--------------------

(45) 

... K 0 eV. 

*Since the !!!nction l(K) is approximately constant 
for the decays oo,K+ ei/ , F- ->7JeV and K 0 -->rr +ei/ the fol­
lowing approximate relations 

W_ 
0 l- -· 

D -> K ev 

mD mK 4 2 W , _____ C-----) ctg e _ o + _ 
mK m 17 K ... rr ev 

w 
2 mF m7J 4 .2 
- - - - ( ----) ctg e w -

3 Ill K Ill 17 K0
-+ rr + ev F--->7JeV 

are valid. 
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w F- -+TJeii= 1·10 118-1 . (46) 

Finally, we estimate the Cabibbo forbidden decays 
D'' • r/ ev, ' D- -+TJ8V and F--+ K0 e;-;, These decays are 
suppressed by a factor tan 2 0 "' 0.05 relative to the 
favoured reactions. We have 

W-o + - .= 1.2 · 10 108- 1 
D -~ 77 e v • 

w -D -.TJev.:::l.l·l098-1, (47) 

w ·-F -+ i<'ez~- ..::· 1.2. 10108-1 
' 

The above predictions are in agreement with earlier 
results obtained by using the quark currents of the GIM­
scheme 1221. Analogous results have also been obtained 
within a chiral SU( 4) x SU( 4) meson theory 1181 using, 
an empirical current x current Lagrangian. 

iii) Dr 4 , F p 4 decays _ + _ _ + _ _ 
The De 4 and F f 4 decays Do ... Ko rr e 1/ , F _. K K e v 

can be calculated in the tree approximation from the ef­
fective Lagrangian 

L = _G ~~!_[(2 0°K0 J rr-- rr -l)oa K0 
3 3f J1 f.l 

-77 K 0 a D0
) + 

f.l 

(48) 

+ (2F-K-~1 K +- F-K+ a K-- K-K+a, F-)](j W+)
1 

• 
r f.l r f1. ept, 

The amplitude of the De4 decay is 

T =- i_Qco_s_fp e (+) , 
j)o_.Ko77+ev 3f J1 J1 

(49) 

where 

P = P-o + 2p +- P o = 3p + +Po • 
D 11 K rr r. 
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Here P£ denotes the momentum of the lepton pair. 
From eq. (49) we obtain 

G2 co8 20m 4m 6 m 
W rr K D 

-c o - = ------------ I(---- ), (50) 
D --> K rr+w 24(4rr) 5 f 2mb mK 

where 

(1\-1) 2 -~------------~ 3 2 
I(~)= I dxv(~2 -1) 2 -2(A2 +1)x+x (x -8(x -1)-f-+12xlnx). 

1 

(51) 

With eq. (50) we predict 

w_o _') ' D __. Korr+ev- ..,.1. 1068-1 (52) 

Analogously we have 

G 2co82em ~p m F w = ---------- --1(---) . 
F- -+ K + K-e z7 24 ( 477) 5f 2 m ~ m K 

(53) 

This yields 

WF--+K+K-ev = 1.1· 10 9
8-·1. (54) 

7. SUMMARY AND DISCUSSIONS 

The main purpose of this paper was the construction 
of a non-linear realization of the Weinberg-Salam-model 
starting from a phenomenological chiral SU( 4) x SU( 4) 
meson-baryon Lagrangian. The Lagrangian we have used 
consists of a chiral symmetric main part and a small but 
important mass term which breaks chiral SU(4) x SU(4). 
The weak and electromagnetic interactions were then 
introduced into this "strong" Lagrangian by a principle 
of minimal coupling using gauge-covariant derivatives 
of the gauge group SU(2) L x U(1). The chiral unified model 
thus obtained provides us with an effective current x 

x current Lagrangian for weak processes as well as 
with a Lagrangian describing weak/radiative processes. 
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In particular, our effective weak Lagrangian involves 
SU(3)xSU(3)110 •171 and SU(4) x SU(4) substructures '18,' that 
have previously been derived only in a heuristic way. 

The weak charged currents of the above nonlinear 
model exhibit the generalized Cabibbo structure of the 
GIM-scheme first derived in the framework of the quark 
model. Furthermore, the weak neutral current does not 
c<:_n!_<:in+ strangeness changing ter,ms ~li~e . _ := f fJl K~, 
K all TT ' etc. Thus' the decays K~ _, J1 J1 ' K ~ TT e e etc' 
are forbidden in agreement with the experimental data. 

As has been shown in ref. to , the SP(3)"SG(3) sub­
structure of the effective weak Lagrangian (31) ensures, 
even in the tree and one-loop approximation, a satis­
factory description of the leptonic, semileptonic and 
radiative decays of the S1'(3) meson octet (rr, K, r1). In 
order to show how these ideas work for the larger group 
SU( 4) x SU( 4). we have calculated some typical leptonic 
and semileptonic decays of charmed D and F-mesons 
in the tree approximation. The predictions agree as 
a rule with similar calculations based on the quark mo­
del, the PCAC hypothesis and certain assumptions on the 
behaviour of form-factors 1'~2/. 

Finally, let us comment on the non-leptonic part of 
the weak interaction Lagrangian (32). It can easily be 
seen from the explicit expression of the neutral current 
that in the GIM-scheme the decay K'S -~ rr

0
rr

0 cannot be 
described by a current x current Lagrangian. This decay 
can, however, in principle proceed in our model via a ba­
ryon loop with exchange of a W -boson. Similarly, two­
point weak vertices, e.g., ooi{o, required for explain­
ing the decay 0° • K0 7T + 7T- !18/ may in principle be generated 
via a baryon loop. 

There is also the old problem of the IAII ~ L~ rule 
in non-leptonic decays according to which ~s I o tran­
sitions with I/\II = lt2 are strongly enhanced in com­
parison with i~II = 312transitions. Usually such an enhan­
cement is taken into account by multiplying the 1~11=112 

X- ___ 1 __ An explanation of amplitudes by a factor 
sinO cosO 
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this enhancement factor requires, however, additional 
dynamical assumptions (e.g., octet or 20-plet 
dominance 12 2 •231, inclusion of renormalization effects 
from the strong interaction 1241 , etc.), a discussion of 
which is outside the scope of this paper. In a forth­
coming publication we shall present a comprehensive 
investigation of weak and weakjradiative decays of charmed 
mesons/baryons on the basis of tree and one-loop cal-
culations. 
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APPENDIX A 

The 15-plets of the 20x20 matrix operators F i , 

0 = J.. d F F satisfy the commutation relations 
2 ijk j k 

[Fi ,F.i]=ifijk Fk' (A1) 

LD i . F.i ] "' if ijk Dk, (A2) 

where f i.ik and d i.ik are the antisymmetric or symmet­
ric structure constants of the group SU( 4). respectively. 
The F and D matrices are defined by the relation 

_-!_(B a (,\ )b 8[m,n]+B m 8 [a,n] (,\.)b) = 
2 [ m, n] i a b - [ b, n] m 1 a 

~. -
~BDiB(orBFi B). (A3) 

Here B[~. b] is a tensor representation of the 1/2+ -ba­
ryon quark wave functions in the representation of mixed 
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symmetry 20m of the group SU( 4), and B is the wave 
function in the vector representation. Using the notations 
of ref. /21/ we assign the vector B to the representation 
20

01 
as follows 

a) octet (C = 0): !Bi } .... (p, n, A,~ (+,o,-;-)g (O,-)) (i"' 1.2 .... ,8) 

b) triplet (C = 1): !B i l .... (A ~O,+~ A~) (i"' 9,10,11) 

c) sextet (C., 1): !B i l ~. (B (~,+,H), B ~,-'-), B <~)) (i = 12, ... ,17) 

d) triplet (C"' 2): l B i l --+ (C ~+,++), C t) (i = 18, 19, ID). 

(A4) 

For completeness, we quote also the explicit expression 

a 15 a 1 
for the 4x4 meson matrix P b co i ;: 

1 
(\ )b <Pi --~::;; 

\· ,., 

a 
pb"' 

flo 'I 'I c 
-+-+-

--+ - -
.J2 .J6 .Jl2 

fT 

K_, 

00 

APPENDIX B 

fT+ 

_L+_!l_+~ 
.,;2 .,;6 ..}12 

Ko 

o+ 

K+ 

K' 

2 'lc 
- J6"+ ..}12 

F+ 

j)o 

D-

F-

.,;a 
-2'1c 

(A5) 

We collect here some useful formulae for the meson 
currents obtained by expanding them in powers of the 
g field. We restrict ourselves to zero order contribu­
tions in e and g. Using some simple algebra the meson 
currents may be put in the form 
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( . O,W ) _ . f
2 

2C~ (()) i2t· Aa -i2t·A J - -1--< e e > 
ll mes 2 + ll ' 

(Bl) 

. 0, z . f 2 ~ . . 
(J ) =- 1-- <(2C _ 2 sin 20 Q)e 12t·A.:1 -12e- A 

ll mes 2 3 w u fJ. e ·;,. , (B2) 

(j O,A) = _ i-~~ <Qei2t·Aa e -i2e·A > 
ll mes 2 ll ' (B3) 

or using 

ei2(A a e-i2t·A = -~-[-ifa <l\y5 +if iJ'k<Pi aii<Pj],\ k+ O(<P3), 
ll f2 fJ. r 

(
. 0, w. 
J ll )mes 

- ;- <P 1+ i<l> 2 - <I> i<l> 
- coset.-fv2a ---------- f /2a 13"' 14 ll -- \ ll --------- + 

v2 v2 
+ cr ijt +if ij2 )<I>i at.J. <Pj + cr ijt3- if tj 14 )<l>i all <I>j + O(<P 3)1 + 

<P4+i<P5 -- <Pl1-i<Pl2 
+sine [-f-12a ------- + fv2a ----------

v fJ. -.- ll -v 2 y2 
+ 

+ cr ij4 + if ij5 )<Pi all <I> j - cr i.i11- if ij 12 )<I>i a 11<P j + O(<I> 
3

)], 

. (Bl') 

(j o • z ) = _ ra c <I> + --~-<1> _ . 1 ~ <P ) + 
11 mes 11 3 v3 8 v <) 15 

+ ( 1- 2 sin2 ew)(f ij3 + __ !_ f ij8 - y-~ f ij 15 )<l>i all <l>j + 0(<1>3 ), 

v 3 (B2') 

(j ~,A)mes = (f ij3 + ~1

3 f ij8 - V: f ij15 )<l>i afJ. <l>j + 0(<1>
4

). 

(B3') 
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APPENDIX C 

For completeness, we include in this appendix the 
lepton sector of the Weinberg-Salam-model written in 
a compact four-dimensional notation. Using the genera­
tors (6) the covariant derivatives of the lepton and Higgs 
multiplets e , <DL 

I v \ (</;+ \ 
r = { e ) <P = ~-~!~- cPo ) 

.11 ,L 2 ,~ 
\ v' '~-'O 

cP+ 

(Cl) 

may be written as 

v (e;<I>L) =[a + igW .cS + ig'B X1u ; <D 1 ), 11 11 11 . 112 ~ 

(C2) 

where y w takes the values - 1 or + 1 for p and <D L , 
respectively. The Lagrangian of the Weinberg-Salam-

model then reads 
1+ynn 

(f L = -2 

1 2 1 2 1 <h ) +( <h ) L = - --(W ) - -- ( B ) + -- T r ( V '~' V '~' -
WS 4 k11v 4 1111 4 11 L 11 L 

+ - 1 - +-
-V(ct>Lct>L) + i£ y11V11r - "2 Tr(r LAct> L + ct> LA f L )., (C3) 

where W k 
1111 

, B
1111 

are the usual covariant curls of the 
gauge bosons wk

11
, B J1: respectively. The Higgs po­

tential may be cast mto the form 

+ )\ + 1 +y 5 2 2 
V(ct> ct> ) = - Tr (ct> ct> - ----- v ) . 

L L 8 L L 2 
(C4) 

The last term in eq. (C3) generates the lepton masses. 
Using the expression 

I 0 ) .. f1 eR ' 
A= ( 0 f

2
11RI 
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1 0 
I=<o1) (C5) 

and 

I 0 

v 

I \ 2 
1. y ;, ( (<I> ) - --- ---- v 

L 0 2 --=. 
') 

\ \0~ 

(C6) 

we get m . f --''--- , m f __ v___ In addition, there arise 
e 1 -;-:· 11 2 -~j-

v2 '~ 
the following vector boson masses 

2 gv 2 2 2 v 2 
(M ) . (- -) . (M ) . · (g +- g •2)(----) . (C7) 

W I11ggs 2 Z H1ggs 2 

Let us consider the quadratic part of the Lagrangian (C3) 
( .+.. c __ 1_-v . (u ' i X)). Yo --

v 2 

L quadr 

9 1 2 2 -2 + 2 
'~ Ia chi- c-[(cJ o) +(cJ x) ]+MwiW I t 

11 -+ 2 11 11 11 

1-2 2 ' -- - + 
-- M Z - iM [a ¢ W - a ¢ W ] - M a X Z . 
2 Z11 W11 1111 11 Z11 11 

(C8) 

In eq. (C8) we have included the mass terms of the vector 
bosons arising from their interaction with the o- -mesons. 
To get the vector propagators in the R -gauge we choose 
the gauge co-nditions 

1 2 + Mw + 2 1 fg 2 + 2 
L ----<a A ) -{3\a w + i-- --e/Y 1 -- <----) le/Y I -

g 2a 11 11 11 11 {3 {3 y/2-

Mz 2 1 fg 2 2 
- L ca z + ---xl · -- (------) x · 

2 11 11 y 4y cosew 
(C9) 
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This yields the standard expressions 

iD w = (-g 
f.LV f.LV 

k" kv ) ____ i ------, 1) r --
+ ( 1 - ---;; --- t\f2-- k 2 _ M ~ + ic 

t-' 2 w . 
k ---- + lf 

{3 

m<P+ 
---M-2-- , etc. 

k2 - w 
{3 

(ClO) 

-2 
2 Mw 

As usual, the ghost pole at k ~ -13- in the vector pro-

pagator cancels the pole in the Goldstone (¢ _,_) propagator. 
Note also that the gauge condition (C9) leaves the 

("pseudo") Goldstone mesons of the strong interaction 
unaffected (they become massive at the end of our 
calculations). 
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