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Interactions for a Nonlinear Chiral SU(4) x SU(4) Theory
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We construct a nonlinear realization of the sauge group
SU(2)L)<U(1) by using a chiral §U1(4) x SU(4) Lagrangian of hadrons.
The obtained effective Lagrangian for the weak interaction of
hadrons has the usual current x current structure, The charmed
charged currents are of the Cabibbo type, the neutral current
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decays of D- and F-mesons are calculated.
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1. INTRODUCTION

It is now generally accepted that quantum chromody-
namics (QCD) 71/ - a Nonabelian gauge theory of coloured
quarks and gluons - is a promising candidate for a theory
of strong interactions. Weak and electromagnetic inter-
actions of quarks can easily be included by extending
this framework to a unified theory based upon a spon-
taneously broken gauge group (e.g., SU(2); xU(1) 72+ 3/

QCD is an asymptotic free field theory. It is able
to explain qualitatively many specific properties of high-
energy scattering processes as, for example, the weak
deviations from scaling behaviour in deepinelastic lepton-
hadron scattering, etc. As to the low energy behaviour,
however, some important problems still remain to be
solved within QCD. This concerns first of all the expla-
nation of the experimental non-observation of quarks
(quark confinement) and the calculation of the physical
hadron spectrum.

Looking forward to a solution of these complicated
questions we recall that the low energy hadronic world
has also successfully been described in the framework
of phenomenological chiral Lagrangians /4~6/_ In this
approach, the hadrons are considered as approximately
structureless objects which are described by their own
fields. A field theory with a chiral-invariant Lagrangian
has been first proposed by Gursey /7/ and Gell-Mann and
Levy 8/, Further the connection of current algebra with
chiral Lagrangians including partial conservation of axial
vector currents (PCAC) has been clarified on the basis
of tree diagrams 4/,



The quantum chiral field theory gives us a possibility
to obtain low energy expansions for the amplitudes of
different hadron processes. Thus, using the tree” and
”one-loop” approximation many important low energy
characteristics of hadron physics (e.g., scattering phases
and lengths, interaction radii, decay probabilities and
form-factors, etc.) have been calculated 10

In the following we are interested in the nonlinear
(nonpolynomial) version of chiral Lagrangians 5.6 pe-
cause they do not contain spurious “’v’"-particles (re-
call that linear SU(4)~ SU(4) ¢ -models contain, for example,
15 o -particles 14 As is well known, the nonlinear mo-
dels are nonrenormalizable. One can, however, obtain
quite reasonable results also for such theories by using
special regularization methods (e.g., the superpropaga-
tor technique '12°). It is worth mentioning that for the
case of a nonlinear SU(3)xSU(3) Lagrangian most of the
one-loop diagrams could be handled by applying standard
renormalization techniques. This concerns, e.g., the
calculation of almost all decays of the SU(3) meson oc-
tet /10, As has been found there, the small number of
loop diagrams requiring special regularizations yields
as a rule only small contributions negligible in compa-
rison with other diagrams. All these facts certainly
illustrate the usefullness of investigating nonrenormali-
zable chiral Lagrangians.

The aim of this paper is to construct a unified mo-
del for the weak, electromagnetic, and strong interac-
tions of hadrons based on a nonlinear chiral Lagran-
gian. Taking into account the recent discovery of charmed
particles it is quite natural to extend first the SU(3)xSU(3)

meson-baryon Lagrangians ®13 to chiral Su(4) = SU(4).

The new Lagrangian contains the 15-plet and 20-plet
of 07 -mesons and 1/2'*—bary0ns formed by the ordinary
SU(3)-octets of hadrons and by the charmed particles.
In order to generate weak and electromagnetic interac-
tions, we consider in the next step field transformations
nonlinear  with respect to the local gauge group
SU(2) |, = U(1) of the Weinberg-Salam model 2/ A non-
linear unified hadron Lagrangian invariant with respect
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to local SU(®); xU(1) is then constructed by introducing
gauge-covariant chiral derivatives. Finally, we derive
an effective Lagrangian describing the weak and weak/
radiative decays of ordinary and charmed hadrons. The
weak Lagrangian obtained is of the current « current
type with charged weak currents having a generalized
Cabibbo structure. The neutral weak current satisfies
the famous rule AS-=90 of the GIM-scheme 14/In the
end, we give some illustrative applications of this model
to the description of leptonic and semileptonic decays
of charmed particles.

The paper is organized as follows. In Sec. 2 we
introduce the SU(4) x SU(4) invariant meson-baryon Lag-
rangian. In Sec. 3 we consider the gauge-covariant deri-
vatives for the group SU(R); x U(1). Sec. 4 contains our
chiral nonlinear Weinberg-Salam-GIM type Lagrangian
together with the explicit expressions for the weak
and electromagnetic hadronic currents. The resulting
effective Lagrangian is contained in Sec. 5. For illustra-
tion and as a first application in Sec. 6 some two-,
three- and four-body leptonic and semileptonic decays
of charmed D- and F -mesons have been calculated.
Finally, Sec. 7 contains a summary and a brief discus-
sion of the results.

2. THE STRONG INTERACTION LAGRANGIAN

In this section we shall apply the techniques of non-
linear realizations of symmetry groups to a phenomeno-
logical meson-baryon Lagrangian invariant with respect
to the chiral group SU(4) x SU(4). In particular, we con-
sider the 0"-mesons and /2% -baryons belonging to the
15- or 20-dimensional representations of the algebraic
subgroup SU(4), respectively. Their corresponding fields
are denoted by ®,(i=12,..,15) and B;({=12,.., 20)
(cf. App. A). It is further convenient to consider the
dimensionless fields ¢ :(I)i /f, where f is a para-
meter with the dimension of a mass the meaning of
which becomes clear later on. The starting point of our
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analysis is the following meson-baryon Lagrangian ex-
tended from chiral SU(3)x SU(3) ®+13/to  SU(4)x SU4)

2

f -
L. D . == ————— . i — —
inv © &B8.D,B)=—D, & D, &+ Bliy,D,~ MB

—By#DufiKiB,
K =[aD +(1-a)F. ]y g ; =~(O I) ¢))
i i i V58 A" Vs 107"
D 2
Here a = ——— =— is the mixing parameter of the
D +F 3

F-D couplings, g, = 1.26 determines the renormaliza-
tion of the axial vector coupling and M is an averaged
mass of the baryon multiplet. Further, F, and D, are
20x20 matrix representations of the two possible sets
of 15-plet operators of the group SU4) (for definitions,
see App. A), and D, ¢;, D,B =(g, +i8,F,)B are
the chiral covariant derivatives. ‘i‘hey are given in
terms of Cartan forms by (£-A-= £A)

e“if‘A a#eif'A - i(A. Dy‘g + V. 9#(5)), 2)

. X,
where A= ?1 Ys » Vi= —-23-1 is the complete orthonor-

mal set of the axial and vector generators of the chiral
group SU(4) x SU(4). We use the normalization

TeA A, =TrV, V, =25, ,

)
TrA in =0,

where the trace is taken over internal and Lorentz
indices.

6

Note that the chiral group is spontaneously broken down
to the algebraic subgroup SU(4) spanned by the vector
generators V;. The mesons ¢; are just the massless
Goldstone bosons associated with the broken axial gene-
rators A;. To get massive mesons as well as baryon
mass splittings, the chiral symmetry of the original Lag-
rangian (1) has further to be broken by adding a sym-
metry breaking term AL to L, ,. For convenience, AL
will be included only at the end of all calculations.

Parametrizing the group elements g < SU(4)xSU(4) by
g=e'@ A e I1°V " he invariance of the Lagrangian (1)
under the nonlinear field transformations

(&, B)~ (&5 B =g(¢& B)
or, explicitly,

geif-A el A Jing)v

’

’ . rr 4
B’ ue iu (f,g).‘SB - elu (é—ag)'FB ( )

easily follows from the corresponding transformation
laws of the chiral covariant derivatives /5/

(DIJ.{_—); - D(A)(eju (§9g)'V)D# g,
(5)
. iu’(§,g)V
(D#B) = D(e )D# B.

Here D(...) is a linear representation of the algebraic
subgroup SU(4) and DAxen&e)-V) = s the lingar
representation defined by A-(D, &)’ - eV A.D, ge”""V,
Note that the field transformations (4) become linear if
¢ is restricted to the algebraic subgroup SU(4).

3. GAUGE-COVARIANT DERIVATIVES
FOR THE GROUP SU(2)L>< (1)

Let us now introduce the weak and electromagnetic
interactions into the chiral meson-baryon Lagrangian

7



(1). For this aim, we require the unified Lagrangian for
the strong, weak and electromagnetic interactions of had-
rons be invariant with respect to the local gauge group
G, =SU(®_xU(1) of the Weinberg-Salam model ?/. To
find the (nonlinear) transformation laws of the hadron
fields (& B) with respect to the gauge group G, of the
weak and electromagnetic interactions, we shall embed
G ,into the global chiral group. Let us first consider the
following 4x4 matrix representation of the generators
of G_:

w

~ 1+y C . 0
SU@ 6 -—2b A ¢ (7 )
L 1 2 2 1 0 o .0 o1
1 1
(6)
Y oy lew Gy o X
wy - Yw T V3 G, ——] -0,
e 55 "5 5 Gy

where o, are usual Pauli matrices and y , denotes the
weak hypercharge. The operator of the electromagnetic
charge may be expressed by the operators of the weak
isospin and the weak hypercharge C;, Y/2 or by the
operators of the ”strong” isospin, hypercharge and

charm I, Y., C respectively. We have

~ ‘} CS Yw
Q=+ C_ 4-ms =S T 7
372 2 2 (7
or
Q b2
S s (8)
where
1 1 T
Y =——x, C= -(1-y6A ).
S V'-?;- 8 4 v 15

In order to get the (generalized) Cabibbo structure of
the weak interactions, we next rewrite the Lagrangian
(1) in terms of the Cabibbo rotated fields

c -
& - i& A —1
el‘)f A = Ue i U s
. (9)
B - DU)B,
where U - ¢'2?V7 and 0 is the Cabibbo angle.
Let us now consider the nonlinear realization of the
(global) group G, defined by the following field trans-
formation laws (cf. eq. (4))

({f(” BC) *(‘f,c, B’ ~ h(«fc, B c>'

10)
Yw 1=y, Cg
1M —5— =5 g ~
2 2 2 ..
h - e e e"c\,—G,
w
where”
Yw
et 13/ R ARG
. . .V
he‘f A_g ® [el‘f A iu & Sh 1.
1)

B,c:D(eiu'(fc,h)~V>Bc

We next use coordinate-dependent gauge transformations
(10). As usual, the construction of a Lagrangian invariant
under local group transformations requires a set of gauge
fields W', B, associated to the generators 61 ,?/2 of
the local group G _. Let their transformation laws be

given by

«Strictly speaking, the group G, must be embedded
into the enlarged group U(4) x U(4) since the generator
Y/2 contains the unit matrix. The unit matrix gives
here, however, an irrelevant phase factor only which
drops out in the transformation law (11). The embedding
of more general "weak” groups Gy into a global ”strong”
group UN) x U(N) has been discussed by Weinberg 15/



(12)

The new unified Lagrangian L (D#.fc:BC,D 3 °) inva-
riant with respect to the gauge transformations (11) and
(12) follows now from eq. (1) by replacing the chiral
covariant derivatives _by gauge-covariant ones, i.e.,

nt -co :
D& +D,é7, DB - D,B®- (g, 4 1(;)#}?%))B°, The gauge-

covariant Cartan forms D, EST, élt (& are defined
by
~iE %A . S Y %A
e [(7# + 1gW# -C +ig B# -2-]e =
~i(AD & %+ V.8 (¢9) +ig’B T 1
B u W T (13)

The invariance of L, (D,¢“B°D,B") with respect
to the local group G, immediately follows from the fact
that the gauge-covariant derivatives 5, ¢¢, D, B ° obey
the same transformation laws as the old ones (cf. eq.
(5))- (On the other hand, the original SU(4) x SU(4) sSym-
metry of the theory will now intrinsically be broken by
order g2 g’2 perturbations arising from the emission
and absorption of virtual gauge bosons).

For subsequent considerations it is convenient to
introduce the fields W; , 2, and A, of the charged and

© .
neutral vector bosons and of the photon, respectively,

+ 1 1 _ .2
W# = ——_—_—_(W# ¥ 1W#),
V2
3 . (14
Z, = COS@WW#—SIIIHWB#, )
. 3
A# = smeww#+co'56wB#,

10

where 0 is the Weinberg mixing angle defined by
tanf = g°/8. Introducing the physical fields (14), into
eq. (13) and reexpressing the Cabibbo rotated hadron
fields in terms of the unrotated fields (£, B) we finally
get the explicit formulae

6# {:10 "120\77 ) Dp, fj
i ¢ = (e

. » . el
0, &) b 1e,¢

/7 A , . - A
‘ 13“_ Si) . 3 Df‘,f‘) . N<\(2C,(0)W;+h.c.) ( i(‘f)) >4
| ©, ® (&) 2y V, (&)

L S/ <(2CA3~zsin20wQ) . ADY +
2008 0y v, (&

Ai(d) .
s EA/I. < Q i . (15)
v, (O

Here C, () (C,=C +162) are the Cabibbo rotated charged
w

+ + 10 .
generators of the weak isospin group SU(2)

~ _ln ~ ~
C,(0)=U C,U, C,0=-C, (16)
and e = gsind,, is the electromagnetic charge. For

convenience, we use henceforth the notations

<o = }—Tr(...)
2

X (@-e Pt x e xS,V

It is worth remarking that eq. (15) provides us with

a generalized minimal substitution rule (D, ¢ D, B) -
- (D#fc, D, B for introducing the unified" weak and

1"



electromagnetic interactions into the strong interaction
chiral Lagrangian (1). Our result (15) containes, as

a special case, the minimal substitution rule of ref. /16

for introducing electromagnetism into the group SU(3)<SU(3).

4. THE NONLINEAR UNIFIED LAGRANGIAN

4.1. Currents

Taking into account the explicit expressions for the
gauge-covariant derivatives (15) the unified Lagrangian
may be written in the form

D £%B% D B - D ,D By -
anit B, € ,BO=L (D &BD B
g g Z A
- M—ﬂ(w +hc) e T —eA
2\/“2" “ 2cos6y, s Aﬂ #
Lo (4, W~ Z,)- (17)

Here jx , i z and j;\ are the weak hadronic charged
and neutral currents and the electromagnetic
current, respectively. The term Lb. contains expressions
bilinear in the vector fields. With the definition *

*These expressions for j agree with the expres-
sions obtained from the standard definition .8/
——SL/bduf There, the hadron fields (¢ ¢B°) have to be
varied "according to eq. (11); W/ ,B“ have to be
varied as in eq. (12) with derivative terms excluded.

12

. W 25 Yo -
J“ o f D“ §i<20+(0)Ai(§)> +

' Ey“«zégmvi(g)\pi +<2C (9)A (&K B, (18)

Z

. 2 ~ .2
J, -1"D, &<(2C; - 2sin "0 QA (O +

' By#«(z(”:3 - 2sin®0_QV, (&)°F, +
+<(2C 4~ 25in®0, QA (&K |)B. (19)

A 2n .
i °D £ 08 (9

i
+ i_i,yu«c;)vi (&-F,  <QA (&K )B. (20)

As we observe from eq. (18) the weak charged current
exhibits the generalized Cabibbo structure of the GIM-
scheme /14 Indeed, taking into account the representa-
tion

C (¢) - é cosO(V 1+i2 + A 1ri2 )T(V13—-il4+A13r-114)]+

. B » -i1
Csing[(V AT A 4TIy TITHE QTR
- B [
vERL g s ! e 21
we get
W S1:i2 .13 114 4115 . 11-112
y 6 T ; sind - . 22
I, cos [J“ I, |+ sin l] Iy ] (22)
The currents jk“ i have the usual V : A -form. They
are defined by a formula an?,logous to eq. (18) where
2C,(6) is replaced by (V PIJ: *2‘ ). By a{lflogy w1th
i - .

the quark model, the currents i“ j
and jl}l‘im describe weak transitions w1tﬁ the followmg

13



changes of the strangeness and charm, respectively:
AS- AC =0, AS=AC-1, AS 1:£AC-0and AS 0+ AC-1.
Finally, the neutral current obeys the well-known relation

i 2 ;(2Cg) in2g i A
b, iy 3/~ 2sin F)WJ# (23)
of the (linear) Weinberg-Salam-model with ‘](2 q) the
current belonging to the third component of the weak
isospin. For illustration and further applications, we
quote in Appendix B the first terms of a power series
expansion in ¢ of the mesonic part of the weak currents.
It should be mentioned that (after having added a sym-
metry breaking term AL cf. eq. (35)) the total axial
vector currents can be shown to obey the PCAC-relations

w e 2 - P
aﬂjﬂzv/m‘cos()(mﬂn +mpk ) +
(24)

- 2 - 3
+ \/2fsin€(m§K - mDD Y+ 0(&7),

7, 1 2
3,3~ HmEn® + —=my ~ y= m,, 7 )+ 00, (25)
V3

As we now see from egs. (24), (25) the parameter { in-
troduced in eq. (1) for dimensional reasons is recognized
as an averaged meson decay constant (from pion decay
we have f-f_  ~-95 MeV).

4.2. Discussion of Bilinear Terms

In this section we quote an explicit formula for the
expressions bilinear in the vector fields that appear in
Lumr (note that we include here also contributions ari-

sing from the currents). After some algebra we get
Cl 102
(C + :-~72-~——

14

bil. r 2
e =B wE B )? z

Vv 2 2cos6

2 Cy iof. YN
+( ~~——) Z (2sm GV)«« H(———) 2sin 6 Qe i2 A]{Q,e i28-A

1~1-
e2A:f~f—« qe. elzf-A a.e -ig€-A -

ce(-E )_éw(A w H(C,) + h.c.) +

2,2
¢ 2
)Py 2sin®,, ——(Z,WH(C )« hc) -
2y 2' 2cos6,
, 2 C Do L joft.
,‘e(w’i.m)wz AMHS) — asin B, (el A Qe 2 A |y,
9@05()

(26)
Here the function H(X) describes the coupling of the vec-
tor bosons and pseudoscalar mesons. It reads

i2gf-A izf-A]" y,)iX.e 12§-A1 )4

HX) 1@ )(X.e ,

l (yS.A) *(—y5, - A).

As we observe from eq. (26) there appear mass terms
for the W and Z Dbosons due to their interactions with
the hadron sector *

“ Note that this generation of vector meson masses
arises from the inherent mechanism of the spontaneous
breakdown of the gauge group G, embedded into the
spontaneously broken chiral group — SU(4)x SU(4).

15



bil
The remaining terms in Lulnif describe the interac-
tion of the pseudoscalar meson 15-plet (7, K, 7, F. Doy o)
with the gauge bosons. Our model contains the following

3-particle vertices

+ , 2 +
AW £-vertex:ie(—-E ) Lo <0, ([Q V-] AW,
T oy 2 ) m

2

+
i B g o2t *

ZW £-ver S S | (S, ) i G (NI /

ZW _¢-vertex 1<2\’,,~2_><2ms G SOy 5= GO Q V-7, W

(27)

It should be remarked that the bilinear expressions (26)

contain no ”seagull” terms of the form W' !2F(& for
" :

the charged vector boson.

9. THE EFFECTIVE LAGRANGIAN

Our final aim is to obtain from eq. (17) an effective
Lagrangian describing weak and weak/radiative decays
of ordinary and charmed hadrons to_first order in the
weak interaction constant G . 10 "5,’nsf,. In order to get
leptonic and semileptonic decays of hadrons we must
also include the leptonic charged and neutral currents
of the standard Weinberg-Salam-model. They are given
by %1% (cf. Appendix C)

1
e

W 0 IR o
(‘]p.)lept = [’)/“(ZC+)i , f = ( u/) ,

17

(28)
; 0. (96 . osin?
(J:‘)lept < 0y, (26 - 2 Q)F.

The effective Lagrangian describes processes with W -
and Z-boson exchange in second order of weak perturba-
tion theory. In a general (R,B) gauge the vector propa-
gators read (cf. Appendix C)

16

4
W d k —1kx k k..
D (%) - [ (- o (1m ey ]
" (27) 4 / B M2 K2 M2
k2 - W W
B
(29)
s : d4k -ikx, 1, kuk!/ 1
T e G I B
/ (27)° 2 Yoo M3 pand,
k- 2.4 Nz

where the total masses of the vector bosons get contri-
butions both from the hadron sector and the Higgs mecha-
nism of the lepton sector. We have

L2 2 RN
MW (Mw) Higgé.’( (;) .
\ Pt
(30)
s : fg 2
2 2
M2 M3, s 2 ) E
z z'iggs 2cosd
Using the approximations D . (X - X L valid for

M2
large masses of the intermediate vector bosons we, fi-
nally, obtain

LLH' Lweu]& ' Lweuk/elm,' (31)
where
é‘ Z Z WQ_ W, (32)
Lweak - - “7::7 %J# (X)J#(X) t J# (X)J“(X)L
0
\ &
G t? ow " )
[ N ( i +h.c) +
Lweak elm. __#_e 8 A#(X){(H(C+)(J“, N pest
v 2
C i2f A i2&

ik 0z
; (H(E?—) - 4sin®, Qe lt@e 28 A b Daest (33)

17



Here
LGRS ICPREE W C (34)

is the sum of the leptonic currents (28) and of the "free”

hadronic currents jg = Jue-g-0. G-\ 2g28ME is
a corrected Fermi 8onstant which coincides up to a neg-
ligible term O( *( 2. )?) with the usual expression

Ve
G- Vég 2/8M§rln writing down eq. (33) we have omitted
terms describing purely leptonic weak/radiative
processes.
Note that the effective weak Lagrangian (32) has the
current x current form of the conventional weak inter-
action theory. Some of its hadronic SU(3) x SU(3) or

SU(4) x SU4) substructures have previously been de-
rived only empirically !0:17:18/ Fipally, the expression
LiGeak elm describes ”inner” weak/radiative proces-

ses with participating mesons (in addition, perturbation
theory yields also "bremsstrahlung” contributions arising
from the interaction of photons with “external” hadron
lines). '

We remark that the Lagrangian L ye,y /61, could also
be obtained empirically from the Lagrangian L,.,. by
applying the minimal substitution rule 9 -9 +ieA Q
to the currents*, oo #

Up till now the pseudoscalar mesons of our model
are to lowest order in the coupling constant ¢, G mass-
less. (Mass corrections of order e< G arising from
the emission or absorption of virtual vector bosons lead
to an intrinsic breakdown of the global SU4) x SU(4)
symmetry 15/). Disregarding the small electromagnetic-

* Considering the charged current, such an independent
treatment of the weak and electromagnetic interaction
must, however, fail in higher order processes with an
internal W-W-y vertex. Recall that the W -boson of the
unified theory possesses an anomalou§ magnetic moment

arising from a nonminimal term F, W, W=

18

weak mass: corrections, finite meson masses may easily
be included into the model by adding a SU(4) x SU(4) -
breaking term AL. In the scheme of Gell-Mann, Oakes
and Renner -19:207 AL transforms according to the re-
presentation (4.4% + (4¥ 4) of SU(4) « SU(4). We use the
explicit expression
.2 .
AL = Lo vy bV ey el A (35)

where the parameters a b, ¢ have to be chosen in such
a way that the physical meson masses are reproduced * .
Similarly, baryon mass splittings can be taken into ac-
count by adding matrix elements of the following baryon
mass operator ?1/to the Lagrangian (17)

AM = (b'Vg +cVy,.). (36)

6. SOME APPLICATIONS: LEPTONIC
AND SEMILEPTONIC DECAYS OF CHARMED MESONS

It has been shown in ref. 1%/ that the SU(3)xSU(3) part
of the effective Lagrangian (31) provides us already in
the tree and one-loop approximation with a satisfactory
description of the leptonic, semileptonic and radiative
decays of the SU(3) meson octet (7, K, ). Analogous
results may now be obtained for the decay of charmed
particles, too. For illustration and first applications,

“One gets: p ?- ( ai_ . if C__); m2=(_§___£:+_(_i__);
NG VE 23 6
L T SR SN
i T Cc
SO S S S ST S T
V2 V3 V6 Ve 2/8 B
19



we shall give in this section a few typical calculation
examples for the leptonic and semileptonic decay rates
of F-and D-mesons. A detailed investigation of charmed
meson and baryon decays including tree and one-loop
contributions will be given elsewhere

i) Dy, > Fy, decays

Let us f1rst consider the leptonic decays F -y D™ > puir”.

The relevant part of the effective Lagrangian (32) is
given by

- . - Wi
Llr- Gf(cos(jauﬁ - sm()au[) )-(J " )lept. . (37)

From eq. (37) we obtain the decay amplitudes (S- 1-iT)
(+) - (+)

T _ =iGfcosgp ¢ ', T _=-iGfsingp ¥
Foure Fu u D-spv? Du
(38)
where f’( ) u(#) Yy (L+yg)u,- and pp are the momenta
of the F— and D - mesons, respectlvely The charged
meson rate for the decay X - y» is
N 2 )
(Gfm ;) sin “@
W R , .
e e my Cogetg ) (39)

With - f, - 95 MeV, 6 -0.22, myp - 1.87 GeV and
mp ~2.03 GeV we have

W . =2.108s"1 W -3109s 1. (40)
D -t F - !

ii) Dyg, Fpy decays
We now estimate Dy; and Fp; decays described
by the following part of the effective Lagrangian

L ~-1-—-~{c050(13°a K~ +V na F)+
2 N

- > 1
+sin#(-D°d 7 + =19 5 D +KO(7 FOHlG Nept,
[ N H pt. (41)
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(605; K -D° 7, K- a#ﬁO- K™, etc.).

The amplitudes of the Cabibbo favoured reactions D¢ SK'er
and F . qper follow from eq. (41) to be

G (+)
T_ - —ecosdp v ) 1 (42)
D> K er v2 B
] (")
2 { .
TF‘ Taqper 3 oS0 Py + pfi)u 1 (43)
\
We have
4
() mMm,, Cos 0
S ST (49)
D+ K ev 127 3 D.K

where

K
()~ [ ds(x®- 1)3’2:—}1—[x\/’x 2_ xR0 ) ¢ ~§ In (k +/x 2~ 1))
1

m2+ m?
and k) 7o Thus, we predict
. ZmeD
W_ ., _-1.0101s71, (45)
DC»K el/

The same estimate can be obtained for the decay D K.
Similarly, we have™

* Since the function I(x) 1is appr0x1mately constant
for the decays D°>K* ey, F~opep  and K° -z 'er the fol-
lowing approximate relations

W _ ~ D( K)"‘ctgz()wx ,
D°- kKer mK m, Ko > nter
mp
W R L I .
F ~»nev 3 mg Mgy K®»m ev
are valid.
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B 11, -1
wp_mef 110t 7, (46)

lj‘inally, we estimate the Cabibbo forbidden decays
D°»>7 ev, , D sper and F~ ,K°er. These decays are
suppressed by a factor tan?4 =~ 0.05 relative to the

favoured reactions. We have

Woo 4+ - =12.10104-1

D">sn ev '

W~ =1.1-10%"!

b v ned . "

W - o =z . 101
F KOEI/ 1.2 10" s ,

The above predictions are in agreement with earlier
results obtained by using the quark currents of the GIM-
scheme /2?2’ Analogous results have also been obtained
within a chiral SU®4)x SU(4) meson theory /18/ using,
an empirical current x current Lagrangian.

1ii) Dy, , Fyp, decays _

The Dy, and Fy, decays D° - K‘)n+e:7, F KK ey
can be calculated in the tree approximation from the ef-
fective Lagrangian

Geosd o _o - “'—o —o - o _o
L3=—§——-[(2DKaﬂn -7 Da#K -7 KauD)+
(48)
-, - + ot - - + ~1.: W
+(2F K a#K F K auK -K'K a#F )](]# )lept'.
The amplitude of the Dy, decay is
. Gcosd +)
T =—i—Z"p £ , 49
D° > Konter T (49)
where

p = p‘ﬁo +2p"+"pKo =3p"+ +pg'
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Here D¢ denotes the momentum of the lepton pair.
From eq. (49) we obtain

G cos *gm,m & m
So | gor ez 5755 M=), (50)
D" » K'7'ev 24(4m) me mye
where
A-1? 2 375 . 2 1
A = [ dx /(A" -1~ - A +1)x + x“(x"-8(x =-1)- + +12xlnx).
1
(51)
With eq. (50) we predict
=2.1-10%"1,
20 gortep™ 217 10°s (52)
Analogously we have
G2c0s?emld m
W - Ky Ey (53)
F +kK*KTei  24(4n) % ®md mg
This yields
= . 10971 54
Wom |t = L1+ 109571 (54)

7. SUMMARY AND DISCUSSIONS

The main purpose of this paper was the construction
of a non-linear realization of the Weinberg-Salam-model
starting from a phenomenological chiral SU(4) x SU(4)
meson-baryon Lagrangian. The Lagrangian we have used
consists of a chiral symmetric main part and a small but
important mass term which breaks chiral SU(4) x SU4).
The weak and electromagnetic interactions were then
introduced into this ”strong” Lagrangian by a principle
of minimal coupling using gauge-covariant derivatives
of the gauge group SU(2); xU(1). The chiral unified model
thus obtained provides us with an effective current x
x current Lagrangian for weak processes as well as
with a Lagrangian describing weak/radiative processes.
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In particular, our effective weak Lagrangian involves
SUSIxSU3Y0 17/ and  SU(4) x SU(4) substructures 18’ that
have previously been derived only in a heuristic way.

The weak charged currents of the above nonlinear
model exhibit the generalized Cabibbo structure of the
GIM-scheme first derived in the framework of the quark
model. Furthermore, the weak neutral current does not
con}_ain strangeness changing terms like - fauKi
K- 5.z* ., etc. Thus, the decays K°»pu'n~, K »n"ee’etc,
are forbidden in agreement with the experimental data.

As has been shown in ref. 10 the SU(3)-SU(3) sub-
structure of the effective weak Lagrangian (31) ensures,
even in the tree and one-loop approximation, a satis-
factory description of the leptonic, semileptonic and
radiative decays of the &8U(3) meson octet (n, K, ). In
order to show how these ideas work for the larger group
SuU(4) x SU(4), we have calculated some typical leptonic
and semileptonic decays of charmed D and F-mesons
in the tree approximation. The predictions agree as
a rule with similar calculations based on the quark mo-
del, the PCAC hypothesis and certain assumptions on the
behaviour of form-factors 2/,

Finally, let us comment on the non-leptonic part of
the weak interaction Lagrangian (32). It can easily be
seen from the explicit expression of the neutral current
that in the GIM-scheme the decay K§ -#"7° cannot be
described by a current x current Lagrangian. This decay
can, however, in principle proceed in our model via a ba-
ryon loop with exchange of a W-boson. Similarly, two-
point weak vertices, e.g., D°K°, required for explain-
ing the decay D°-K°r'r~ /18/may in principle be generated
via a baryon loop.

There is also the old problem of the [All =12 rule
in non-leptonic decays according to which AS#0 tran-
sitions with |Al] =1/2 are strongly enhanced in com-
parison with |Al| = 3/2transitions. Usually such an enhan-
cement is taken into account by multiplying the |Al|=1/2

amplitudes by a factor x~~——1—f--—~. An explanation of
sing cosé

24

this enhancement factor requires, however, additional
dynamical assumptions (e.g., octet or 20-plet
dominance 722:23/,  inclusion of renormalization effects
from the strong interaction 24/, etc.), a discussion of
which is outside the scope of this paper. In a forth-
coming publication we shall present a comprehensive
investigation of weakand weak/radiative decays of charmed
mesons/baryons on the basis of tree and one-loop cal-
culations.
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APPENDIX A

Ttlle 15-plets of the 20x20 matrix operators F; ,
D =—d. Fi Fk satisfy the commutation relations

i 2 ijk
[F,  F )=if 5, Fyo (A1)
(D, . F;1=if 0 Dy, (A2)

where f,,  and d;;jx are the antisymmetric or symmet-
ric structure constants of the group SU(4), respectively.
The F and D matrices are defined by the relation

1, na bplmn) g m [a,n] by _
vg—(B[m,n](A i )aBb tB[b.n]Bm A i ) a)

~BD, B {or BF, B). (A3)

Here B[g' b]  js a tensor representation of the 1/2+jba—
ryon quark wave functions in the representation of mixed
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symmetry 20, of the group SU(4), and B is the wave
function in the vector representation. Using the notations
of ref.?1/ we assign the vector B to the representation
20  as follows
a) octet (C-0):{B}-(p, n, ATz Oy (1 19, .8
b) triplet (C= 1): {B } - (Afzo'ﬂ, A7) (i=9.10,11)

0,+,4 0,+ 0), ,.
c) sextet (C= 1): 1B} (B, B0 By (19 17)

d) triplet (C=2):1B 1~ {"*, ¢}y (= 1, 19, ).

(A4)
For completeness, we quote also the explicit expression
) a 15 a 1
for the 4x4 meson matrix Pb = S A)Vd Lo i
i=3 1'bi NES
S, V. [ .t K* B
V2 V6 Y12
P- n LA B I 'S D
V2 ve 12
— - 2 N -
K ° - g —C F
K ey
3
D° D* F* -5 e
(A5)
APPENDIX B

We collect here some useful formulae for the meson
currents obtained by expanding them in powers of the
¢ field. We restrict ourselves to zero order contribu-
tions in e and g Using some simple algebra the meson
currents may be put in the form
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2 . (o £, —ig&-

D I P I (BL)
mes 2 + ®

2 -
oz _ . f? Coain 2 i2&-A,  —igd B2
G 2" peg == 5 <(2C, - 25in % Qe 9, A (B2
. 0,A _ 12 iz{- A ~izg-A
(J# )meSMNI—é_ <Qe a#e > ®9)
or using

o125 A a#e“‘zf"‘ =—f1§[-if8#<bky5+ifijkd>i 3, @1+ 0@,

— O.+id — &, id
(% Dpes = CoSO-1y2Y, L2 155, —1T171 .
N NE
. 3
+ (fij1 +if 0 )P d, o, + (T4 ~ if i 14 )P, 8#4)] + O(® 9] +
; . O +id — by -id,,
+sin 0 [-ty2d, B fv2d,—— —
V2 NP

‘ _ : 3
+ (f ija * lfij5 )(Di ()#’(Dj - (f ij11~ 1fi_jl2 )@ia#d)_j + O(® )],

(B1’)
. 0,2 1 —2—
(J# )mes :—f(?# ((D3 +”::—(D8—\/—3-(D15)+
V3
P RENTOE  e 2l Vg T rs 005 6,9 0@,
| v3 (B2’)
. 0,A 1 ,—»2—- 4
a ® Dmes z(fijs +—\/§—'fij8 —V?s_fijls )(I)ia#(l)j +0(@7).
(B3’)
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APPENDIX C

For completeness, we include in this appendix the
lepton sector of the Weinberg-Salam-model written in
a compact four-dimensional notation. Using the genera-
tors (6) the covariant derivatives of the lepton and Higgs
multiplets ¢, &

/v ?
0 ={ e o -1 [ o (C1)
Lou , L2
‘\ V’ ;60
O
may be written as
) R ST
V“(ﬂ,(DL) = [a# + 1gW“-C +ig B“ 5 1¢8 cDL), (C2)

where y  takes the values -1 or +1forf and &,
respectively. The Lagrangian of the Weinberg-Salam-

1+
model then reads (= __2_’5_(2)
__1 2 1 2 1 i )
Lys = 4(WkuV ) A (Buu) + —;Tr( v, ® ) (qu)L)

V@) +ily ¥l -5 Tr(I LA+ @ TR, (C3)

where W, ,, , B, are the usual covariant curls of the
gauge bosons W, B respectively. The Higgs po-
tential may be cast into the form

1+
V@, o)) = %— TH@, @, - —__zli_v 22 (C4)

The last term in eq. (C3) generates' the lepton masses.
Using the expression

f,e.l 0 10
0 fougl
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and
0
/
v
H \72—
l'v v
- 5 (C6)
oot
\ A2
\ o
we get m - f NYoooom [ . In addition, there arise
e 1 72“ u 2 . 5
\ [~

the following vector boson masses

£V . %

2 (T e 2 (02 Loy ()?

(MW)Higgs ( 2 ) '(MZ)}liggs (87 g )(2) : (&)
Let us consider the quadratic part of the Lagrangian (C3)

(¢0 s ‘*}jo:v Ao - IX))-

v~
- 21 2 2 -9 4 2
L quaar = 1()“96*1 »—2f~~[(0“a) + (d“x) ]+Mw1w“\ +
1-2,2 . R -
P - Wo-g & W-M,a xZ -
oMz Myld, & W, -9 @ M x 2y (C8)

In eq. (C8) we have included the mass terms of the vector
bosons arising from their interaction with the 0" -mesons.
To get the vector propagators in the R-gauge we choose
the gauge conditions

1 2 oMy ez 1 fBy2 R
Ly =g 0,A) -ma#wu+1-fﬁ¢ \ B (\/_2) b |
Yy Z +E“]:X)2., A L (C9)

2 UM y 4y cosfly,



This yields the standard expressions

D"~ e-byEr I
n 2 M2
k2——1\f——+lr k —MW+16
B
+ .
1D¢ R , etc. (CIO)
M‘?.
w
k2 FRA
B

e
As usual, the ghost pole at k*- —B—“L in the vector pro-

pagator cancels the pole in the Goldstone (¢ ) propagator.
Note also that the gauge condition (C9) leaves the
("pseudo”) Goldstone mesons of the strong interaction

unaffected (they become massive at the end of our
calculations).
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