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The Phase Functions in the Nucleus-Nucleus
Scattering at High Energies

The meihod is developed for the summation of eikonal
series for amplitudes of elastic A A,~scattering as well as
for important characteristics of some inelastic processes in A[A,
interactions. The close expressions, convenient for numerical
calculations, are derived for these amplitudes, As an example,
we present a calculation of the phase function and corrections
to it.

The investigation has been performed at the Laboratory
of Nuclear Problems, JINR,
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1. INTRODUCTION

Many papers have been devoted to the theoretical
analysis of the nucleus-nucleus (below A A, ) elastic
scattering processes in the eikonal approximation 1/
The paper of I.V.Andreev 2/ where more or less
completed and closed expressions have been obtained
for the numerical calculation of the A A, elastic scat-
tering amplitude, pleasantly differs from others. Howe-
ver inelastic A{A, reactions have not so far been con-
sidered in the rigorous eikonal theory.

The aim of this paper and the following publications
is to develop the eikonal expansion summation method,
which allows one to obtain completed expressions both
for the A (A, elastic scattering amplitude and for the
important physical characteristics of some A A, in-
elastic processes. In particular, the excitation processes
of one and both incident nuclei, the elastic and the quasi-
elastic charge exchange reactions and the quasielastic
scattering are considered.

The Coulomb scattering problem in the A A, interac-
tion is described. The main results of ref/2/ “as inter-
mediate calculation are presented.

1. RELATION BETWEEN THE AMPLITUDES
OF THE NUCLEUS-NUCLEUS SCATTERING
WITH CORRELATED AND UNCORRELATED
NUCLEON DISTRIBUTIONS

We use well-known relation of the eikonal theory,
which connects the A A, scattering amplitude with the
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nucleon-nucleon scattering one and the ground state
wave functions ‘I'Al ,‘I’A2 of the colliding nuclei:
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We use the usual representation for the squared nucleus
wave function A1(2) in the expansion form

A
1(2)
'Y (r,,...,r 2
Agey 1 Al(e))! ,-Elpm(%)*
Agz)c Aq(g)
+ T:, r 1
iZk 1(2; ' )Zi ik p1(2>(r?) *
Ay
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+ % C (rirp,rp) 10
1 ' +
A T 1 o) e (2)

where p(r) is the so-called one-body density, C (12,) R
C 32) and so on are the second, third and higher order

correlatlon functions*

* The correlation, connected w1th the c.m. motion,
is taken into account in a usual way’/

4

One introduces the thickness functions T (s) ,TE(E)
by the usual relation

T af®) = Bya) [ P yefs)dz, @®3)

It is obvious that the profile function FA Az(b) is

the functional only of the thickness functions T; , Ty and
the nucleon-nucleon profile function y in the uncor-
related nucleon distribution (C,,50) approximation for
the colliding nuclei

(0) (0)

I“AIAz(b)_I“ A {T ,Tz,y}.

By executing accurate averaging over the uncorrelated
nucleon distribution of nuclei A; in relation (1) we obtain

() A 1-d1-1 —s.is Al
IA1A2{ 11,12,y¥ =1-41 __1f| Aéb S,{S})Il(S)] > . , “4)
where

el A s
LN rf(_T.z(_Zkldé“k ) 0{5}
= 2

- Ag -
I“Az(b—s,{s D=1 - £1=E1— y (b~s—s k)]'

The consideration of the pair correlations in A, reduces
to the correction term in the profile function

(2) A= @
A FA}A2=““2'K"“fC1 (ry,rg )r dr ,
* <I'(b-s; ISDI(b=s, EH[1- Lo [T (b=s, ) = ®)
Ay’ A,
T, (15,0 2 A [e® 5" TA " ,IT T, A
* S > =— = . d .
Agt o2 a3 O Cte 5T(s,)8T(s,, ) oy



Similarly, the effect of the three-body correlation in the
nucleus may be presented in the form

3O 1 T, 41
(r.r,,r.) Ajpp U727 d
=3 3T(s ) 8T(s )5 (s )

r 1dr2 dr3

and so on. (6)
Thus, if the concrete functional dependence T°, Ao on

Ty and T, is known, the consideration of the nucleon
correlation effects in the nuclei leads to a simple convo-
lution operation of correlation functions together with the
functional differentiation I“A(O)L\ over the thickness func-
tions T, ,. e

Such dependence is determined in the optical limit by
the atomic number of both nuclei (A ,A; - wa)’ 2. However,
the representation of this dependence in the double series
form is not quite convenient for the practical employment.
Below the closed formula for this series summation is
obtained.

A3
(3)
ATT, =--L(C
1 A1A2 31 f 1

1II. TRANSITION TO THE OPTICAL LIMIT
AND THE CORRECTION TO IT

So, the task to find F(O)(TI,T2 .y) comes to the ave-
raging of the binomial function (1+X/A)® . It is known
that the average value of any function < 4(X)> can be
expressed through the derivatives of this function
¢"(0) and the X,-central moments of the variable X

Xl-:. <X>

X, = <(X—<X>)n> n>»e.

One of the simplest expressions is that for the average
value of exp(X)

_ 1 1 2
<exp{(X)> = exp {Xl + —2-!X2 + :—;—-!~X3 + :11—!(X4 —3X5 M+

b ar(Xg— %X )+ ok (D

Since at A>>1
X A
(14 )" = exp(X) +0()

the optical limit may be considered as the reasonable ap-
proximation in the case of heavy and intermediate
nuclei and the atomic number must be taken into ac-

count as the correction of order _1__ i.e.,
Ayg)’
X A ¥  x°
(1+X) x(l——2—5—+ TR ) exp(X). (8)
Assuming that X - -fI'(b-s,{s )T (s)ds, we obtain
n
<X" exp(X)>= [ T (s ... Ty(s,)ds |...dsp ~——O___ cexp(X)x(9)

STI(SI)HSTI(SH)
Thus, the calculation of correction terms of any order

leads, essentially, to the functional I'{"), {T T}
28 2
J(0)

AuA (0D {«1—exp (—fII‘\(zb—s,{s%)Tl(b—s)dsbA l=

2

{T,, T, t= lim
1012 Agrn
= 18Xy 4T Ty b (10)

The integration variable replacement s -b-s is pro-
duced in eq. (10).

Using the averaging rule of exponent (7) we obtain
for the successive terms of expansion of the functional
x (T, T)) over the degree T,,, the following expressions

(T, Ty )= 3 2oy (11a)

X, = [ 8% T (0=9)(E  (9)-1) (11b)
N,= f d2sld232T1(b—S 1)T2(b—s 2)[E2(Sl,s 2) —E/(s)E 1(52)]'

(11c)
Xg = f d231 d232 d253 T1 (b—S1 )Tl(b—s ° )Tg(b_s3 ) *

“[Ey (5,85, 59— Ey(s . 85, )E (53)-Ep(s,53)E (s5)-

~E,(s,.8)E (5,)+2E (s 1)Iill(sg)lill(s:s)] (11d)



and so on, where
B (s eenis) )=exp(f dS Ty(s) H[1~y(s -5 )]-1}).

Since the values y,; are formed of the combinations of
expressicns of type rl{?’% (A= w,Ay=1,2,.1), the problem

Seems to be reduced to the initial. However, this is not so.

The structure of those combinations is such that
integrands in (11b), (11d), as functions of relative va-
riables s8; —sp | s; -s , substantially differ from zero
only in the limits of nucleon-nucleon interaction radius r,.
It is not difficult to be convinced of it expanding the
values Ep (s, sy ) in series by magnitudes of type

T -

J dsTy(s) .Hly (5-8; ) k »2 and considering the 3-like
1=

behaviour of the profile function y in comparison with

smooth change of thickness functions T, and T, .if
ra/R‘Q(A i)«l ( R is the radius of nuclei), that is

practlcaly always satisfied. Taking into account the
normalization
syds ~ & 5 = oot (1—; Ref0)
Jy)s = o= o Ui

we write y(s) in the form
=25
y(8) 5 0 (s)

5 (s) = _--- o (--- j’otb (X)dX =1 (2
0 0

P(X)<<1 at X >»1.
The concrete form of ®@(X) is determined by the
g-dependence of NN scattering amplitude f(q). The
5(5) -function at r§/R2 50 must be considered as
the 0 (s) -function in the integration using smoothly
variable functions T, ,T2 - So, for example

fy(s—s)T (s)ds = ——T (s).

The same concerns the integration of the products of § -
function, arguments of which are not overlapped. When
integrating the products of &(s) functions with the over-
lapping values of the arguments, as for example, in the
simplest case

- - —s YT (5 YT (8 )o(s -5
f Tl(b Sl)Tl(b sz)Tg(s 1'T2(82)5(Sl s ) *
+8(s _”sz )5(s2-‘s‘1 ) (52—§2 )<1sl<1§2d§201§1

= [ Tl(h—s 1)T1 (b—sg)T(b—sg)'Fz(sl)T2(52)T2(S 3)5(s1—sl)*
"8 75,08 (s,=8,)8(s, =5, ) (s, =5,) (s, ~5 )ds ds,+

]

;vydsgdsl d52 ds3

in order to obtain final results one must use the concrete
form of the function @¢(X). It is obvious that only

with the accuracy of the term of the order of r02 /RQ1

N
I, = =2 [ T (b-5)T, ()17 d%s,
- 2

nl‘o’“

N 5
Inarr SUT (b=s)T, 1 : (14)
0
The exact values of the coefficients N, , N3 . as well as
the relation between them, depend on the form of the
function $(X) or on the differential cross-section form
for NN scattering. Using the above-mentioned properties
of expressions (11b), (11d) and their structure and ac-
counting for the dimension considerations we obtain

x,(0) = = | 425 x [exp(-y) -1

g

x, (P) = -;2-] d®sx exp (—y)]2¢n(y,r0) n>»2, (19)
ag



and so on, where
B (s s )=exp(f dS T,y(s) H[1~y(s -s )]-11).

Since the values y,; are formed of the combinations of
expressicns of type ré?)% (A= w,A,=1,2,.0), the problem

seems to be reduced to the initial. However, this is not so.

The structure of those combinations is such that
integrands in (11b), (11d), as functions of relative va-
riables s; —sp , s; —s , substantially differ from zero
only in the limits of nucleon-nucleon interaction radius rj.
It is not difficult to be convinced of it expanding the
values Ek(s1 oSy ) in series by magnitudes of type

T -

[ dsTy(s) ,Hly (5-8; ) k »2 and considering the 3-like
1=

behaviour of the profile function y in comparison with

smooth change of thickness functions T, and T, .if
re /R2(A i)) <1 ( R is the radius of nuclei), that is

practlcaly always satisfied. Taking into account the
normalization
s)ds ~ & 5 = otot (q_; Rel(0)
[yE)s =5, o= o (=i

we write y(s) in the form
)/(S): %—&((S (S‘

5(s)= Lo (55 F o)X =1 (12)
m n 0

P(X)<<1l at X>>1.
The concrete form of ®(X) is determined by the
g-dependence of NN scattering amplitude f(q). The
5(5) -function at r§/R2 - 0 must be considered as
the 0 (s) -function in the integration using smoothly
variable functions T, ,Tg. So, for example

fy(s—s)T (s)ds = ——T (s).

The same concerns the integration of the products of é -
function, arguments of which are not overlapped. When
integrating the products of &(s) functions with the over-
lapping values of the arguments, as for example, in the
simplest case

= [ T1(b_s1)T 1(b—52)T2(s 1)T2(s o )8(51 —s1 ) %

# (:(S1 -s, )5(52—51 )6 (52—82 )dsld52d52d51

= [ Ty(b=s DT, (0= ) T(b=s_) TSN T,(5,) T, (S )5 (s <5 )+
%5 (s 1—'5“2)5(52—%3)5(82 ~;2 )F)(S3 _§8)$~(S3 —gl)dslds2*
+dsgds, ds, ds,

in order to obtain final results one must use the concrete
form of the function ¢ (X). It is obvious that only

with the accuracy of the term of the order of ro’z /R21

N
Q- (I I (b- S)T()(s)] ?42s,

I L [[T.(b-)T (s)1°

T T R ' (14)
The exact values of the coefficients N, ,N; . as well as
the relation between them, depend on the form of the
function $(X) or on the differential cross-section form
for NN scattering. Using the above-mentioned properties
of expressions (11b), (11d) and their structure and ac-
counting for the dimension considerations we obtain

x, () = = f a2s x [exp(~y) 1]
g

Xn(b)= —~2-f dzs[x exp (—y)]2¢n(y,r0) n>»2 (1%
ag



where x , y , r, denote the dimensionless combina-
tion of the values

X = 12 T1 (b—s), y = -g- Tz(s), Ig= _477—F(?_ (16)
The concrete form of ¢  isdifferentfor various paramet-
rization ®(X) because of the above-discussed dependence
of coefficients Ny, and N; on the form of (X).

Taking into account that the hadron-nucleus scattering
amplitude depends only on the forward nucleon-nucleon
scattering amplitude (y(b) =%~ 5(b) at rf/R%(A,,)>0,
it is improbable that the appearmg in the nucleus nucleus
scattering phase dependence on the NN amplitude beha-
viour at the different from zero transverse momentum
affects essentially the A A, scattering characteristics.

This means that the dominant contribution to y; must
introduce ”the model- independent” part determined by
¢n(y,y0)1yo -o- We expand the function ¢, into a series

by the parameter y,

, (k) (k)
b2 yg) = Z by 17)
and consider first of all, “model-independent” part.
It is not difficult to test that values ¢ (¥)(y) (n.2)
are the polynomial of the degree n:k —1 by the variable y.
In particular
n-1
(0) .- (0) ¢ .
Pu Tz, Fa0Y meR (18)
It is easg to obtain the concrete expressions for coeffi-
cients a V) by using direct calculation. However, it
is not necessary to make, since the symmetry of the task
relatively to the rearrangement A <A, the structure
of expression (18) and the condition a§) -0 at / »n
in (18) uniquely determine all coefficients a{?) . Indeed,
according to (15),representing x(b) in the form

x® = 2 [fxy)d2s
g

(19)
-y

txy)=xe " -1+ 2 1 xe™) g v
n=2 I n
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in consequence of the symmetry (Al“ A2 ) we have

f(x,y) - f(y,x).. (20)

We present the function f(x.y ) in the double series
expansion:

f(x,y) = S g x"y", (21)

m,pe-1 M

where, according to (20),

Emn ™ #am * Emn o B («‘/0 ) ‘ (22)

Then, taking into account (21) and (22) for the zeroth
coefficients over Yo Aapproximation, one obtains

m

m—{
. , (23)
nm n? (m_ f))y

Taking into consideration (22), we obtain successively

A0 o, o
=2¢° =2g° -1
21 s-'1 élE

Agp = BBy = By = 24)

N _(_1)m 2m-1
2m” o
m~1
__q+3 3 m?
By =D e (25)

..............
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This is the result obtained by Andreev in the frame-
work of the generating function method which allows one
to calculate the phase function y(b) as the double
series of the convolutions

2 /a0 m g o n42

;r.l (E— T (b-s)) ig’— Iy(s) d=s .
Since the values (0’2 T, ) are not small for a majo-
rity of nuclei and the coefficients g, at large m and
a (m -n)donot tend to zero, it is questionable to limit

oneself to several lower terms of expansion (21) at
the calculations of nucleus-nucleus scattering charac-
teristics. Therefore, it is important to find the closed
expression for the series sum.

1V. SERIES SUMMATION

Assume that x and y are real values. This cor-
responds tc the neglection of the NN scattering am-
plitude real part in comparison with the imaginary one.

We write the values m"-! and n"-! formally so
that
mn—X:_ [ 5(11-12Z)e~mz dz . nm~1:; J~5(111~1{u) e~ 4y (26)
and substitute them to the series
~ min Mottt ym-t
foxy)- 2 (=1)" LB AN 27
m,n- 1 m:n:!
Taking into account, again purely formally,
R m
S (~xe™™) 8 (B _ 5z xe " )
m=1 m!
] m—1 X
> (-xe “)-5-7;'—(—2-)—- =[5 (z-xe”" Ydx’ o
' ° (28)
= 60 (z—xe"" -0 (2)
- (n-1
> (=ye™" 5" V) -z
b : = - -
net =3 0 (u-ye ) ~9(u

12

Y

— —

we obtain for f°(x.y) the expression in the double
integral form
f(xy)= [dzdu[6 (z—xe" ™ -9 (2)[0(u-ye )= g(u)].

This integral is expressed through solutions u and z
of the system of equations
—-u

{ Z = xXe
u-=-ye % (29)
so that

k ¢
[(xy)=x 1y FVZ (=1 (up4zp rupzy)

if their numeration is taken in accordance with condi-
tions

2122, and U, <u, < u,

The analysis shows that the maximal possible number of
real roots uy,zy (for real X and y ) of the system
of equations (29) is equal to 3 (k=3). However, this
possibility is realized only at the (x,y) -e.If one of the
values of x (or y ) is smaller than e , the system of
equations has a single solution, which we denote by u, z.
In this case

Pxy)=x+y-u—-z-uz=2(e" -1) yue? —1)-uz. (30)

At ,,[1:1)?1 = 40 mb and standard Fermi distribution parame-
ters for the one-particle density
r-¢

p:po(l +e "T»)—l
with ¢ =1.12A""% and a =0.545 the condition x (or y )<e
Is satisfied, if the atomic number of one of the colliding
nuclei is smaller than 64, which covers sufficiently wide
class of reactions.

Since the possibility of using formal relation (26) for
the series summation of the generalized functions may be
a subject to doubt of it is necessary an independent test
of the accordance of analytical expression (30) for fo(x,y)
and its form in series (27).
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Performing accurate summation over m in (27), on
the one hand, and expanding (30) in series by the degree,
on the other hand, it is easy to infer that both expressions
(27) and (30) may be presented in the form

o1 d -1 —-ny

= 20 5 g @D
and equal each other.

So, the problem of the double series summation is re-
duced, essentially, to the solution of the system of equa-
tions

z -xe " (31a)

u=ye " ? (31b)

for two variables u,z or of one equation In % +ye "% . g
X

for the variable =z with the subsequent determination
u through (31) which is very simply performed by com-
puter calculations.

V. CORRECTION OF THE ORDER OF o

We consider now the question about the “model-depen-
dent” component of phase function y (b).

The direct calculation’?’ of the corrections of the
order y with k - 4 to the coefficients & mn M+n <9 in
the model with Gaussian parametrization of the NN scat-
tering amplitude

~ 2
b
b=_9___ - 2 -
y(b) 477[‘% exp( 2[‘§ ), v(0) = Yo

shows that these corrections are small for the lower
coefficients, but they increase with (n+m), So, for example,
: (1) (0)

if g22/g22 = —0.063 Yo

(D (9)
then 8,5 /8, =-0.621y,,

(32)
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i.e., for the larger coefficients g,, the corrections
turn out to be comparable with the main effect. Hg))wever,
taking into account that in the calculation of X( (b) the

contributions of the higher terms to the alternating se-
ries (27) are mutually cancelled, it is impossible to draw
the definite conclusion about the quantities of the order
yo on the basis of (32). o
It is desirable to obtain the closed expression similar
to (30) at least for the contribution of the order y, to
x (b) and to compare them with the contribution of the
zeroth approximation (¥ (b).
Since values 05(“1) ) are the polynomials of degrge
n  (see (18), the structure of the expression. for x, in
(15) and condition (20) do not define unambiguously all
the coefficients a‘&} , but allow one to express them
through the magnitudes b, = yod ) . This allqw\./s one
to connect the coefficients g(1) with the quantities b,

o0 —-V Hl-—g
(D) _ (_qgyn m'T'n N7
& mn = (=1) EEQC?(n_g)!(m_g)!
f—1 e?-k
C = b - E ——————— C ’ C, = b
¢ ¢ k=2 (f —~k)! k 2R

Employing the same formal approach of the double series
summation as above it is not difficult to obtain

S e xmytmetant e
m,n=F (n—0)! (m -0 1-uz
and finally
f(l) )= 2 (l)xn o § d (uz)y dy -YZ C (33)
(x,y ="‘gmn y —-?;2 [ » a4y ~k_=2 kK -

The direct and somewhat cumbersome calculation is re-
duced to the result

1 a 2[7 o
dy=- EYR N [TIyN(@ /Ty (O] d*q |
from which one determines " f(q) -dependence’ of the main

correction term to the phase yx(0)(b).

15
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x(o) t

N e YHe + $4Cy
N\ ——— 4He + “Opq
\ | — “He+ 2pq

Fig, 1

" 4ue+ llacd
“He + %Ly

— C‘CL"" 208p8

— “Ca + %y

\
\
\-
\.
— -
8 8
Fig 2

Assuming for the estimate

_I&aR
f(Q)/f(0) =e 2

we obtain
dp=y,/ 40"

ey

Y
(x,y) =~ -f~[ uz + 0]' —S—t—— In (1~ uzt)].

(34)
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The results of the numerical calculations are shown in
Figs. 1,2.

The values of x(o)(b) are given in fig. 1 and
[xD®)/ xOXb)]. 100 is plotted in fig. 2. It is obvious
that the value y(lb) indeed is the correction to y(b)
and this correction is so small that its consideration
could exceed the precision, due to infiniteness in the
initial magnitudes, in particular, in the nuclear density
parameters. Thus, we would not consider the correction
of the higher order of v .

The authors are grateful to Prof. L.I.Lapidus and
I.V.Andreev for useful discussions and interest to the
present work.
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