ОБЪЕАИН̈НЕННЫЙ ИНСТИТУТ
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

$$
2-36
$$

L.G.Zastavenko
$869 / \begin{aligned} & 2-79 \\ & \text { ELEMENTARY PROOF }\end{aligned}$
OF THE EXTREMUM PROPERTY
OF THE REAL NODELESS SOLUTION
OF THE SCHRÖDINGER EQUATION

L.G.Zastavenko

ELEMENTARY PROOF
 OF THE EXTREMUM PROPERTY
 OF THE REAL NODELESS SOLUTION OF THE SCHRÖDINGER EQUATION

Submitted to
"Communications in Mathematical Physics"

Элементарное доказательство экстремального свойства безузлового решения уравнения Шредингера

Дано элементарное дохазательство эхстремального своһства безузлового решения уравнения Шредингера

Работя выполнена в Лабораторяи теоретической физики ОИЯИ.

Препринт Обвединенного института ядерньх исследований. Дубна 1978

Zastavenko L.G.
Elementary Proof of the Extremum Property of the Reai Nodeless Solution of the Schrödinger Equation

A simple proof of the extremal property (3) of the real nodeless solution $\Omega_{0}(x)$ of Scincödinger equation (1) is given.

The investigation has been performed at the Laboratory of Theoretical physics, JIIVR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

The real nodeless solution $\Omega_{0}(x)$ of the Schrödinger equation in the nonrelativistic quantum mechanics

$$
\begin{equation*}
H \Omega_{0}=E_{0} \Omega_{0} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
H=-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+V(x) \tag{2}
\end{equation*}
$$

is well known (see, e.g., ref./', volume I, chapter $V I$) to give to the functional of the energy

$$
\begin{equation*}
\epsilon(\Omega)=\int \Omega^{*} \mathrm{H} \Omega \mathrm{~d} \mathbf{x} / \int \Omega^{*} \Omega \mathrm{~d} \mathbf{x} \tag{3}
\end{equation*}
$$

its minimal value E_{0} :

$$
\begin{equation*}
\epsilon(\Omega)>E_{0}=\epsilon\left(\Omega_{0}\right) \tag{4}
\end{equation*}
$$

if the function $U(x)$,

$$
\begin{equation*}
\mathrm{U}(\mathrm{x})=\Omega(\mathrm{x}) / \Omega_{0}(\mathrm{x}) \tag{5}
\end{equation*}
$$

is not constant. The proof/l/of this property , though being not very complicated, is not simple enough to be included in the textbook of quantum mechanics.

We give here the elementary proof of inequality (4).

$$
\begin{align*}
& \text { 1. From (5), (2) and (1) it follows } \\
& \left(H-E_{0}\right) \Omega=-\frac{1}{2} \Omega_{0} \frac{\partial^{2} U}{\partial \mathbf{x}^{2}}-\frac{\partial U}{\partial \mathrm{x}} \frac{\partial \Omega_{0}}{\partial \mathrm{x}} \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
& \left\{\epsilon\left(U \Omega_{0}\right)-E_{0}\right\} \int \Omega_{0}^{2} U^{*} U d x= \\
& =-\int d x\left[\frac{1}{2} \Omega_{0}^{2} U^{*} \frac{\partial^{2} U}{\partial \mathbf{x}^{2}}+\Omega_{0} U^{*} \frac{\partial U}{\partial x} \frac{\partial \Omega_{0}}{\partial \mathrm{x}}\right] . \tag{7}
\end{align*}
$$

Integration by parts here gives

$$
\begin{equation*}
\epsilon(\Omega)=\mathrm{E}_{0}+\frac{1}{2} \int \mathrm{~d} x \Omega_{0}^{2} \frac{\partial \mathrm{U}^{*}}{\partial \mathrm{x}} \frac{\partial \mathrm{U}}{\partial \mathrm{x}} / \int \mathrm{dx} \Omega_{0}^{2} \mathrm{U}^{*} \mathrm{U}, \tag{8}
\end{equation*}
$$

this equality results in (4).
2. Let us now take as Ω_{0} the real solution of eq. (1), which has zeroes. Then (8) gives that $\epsilon(\Omega)>\epsilon\left(\Omega_{0}\right)$ if functions Ω and Ω_{0} have the same zeroes. If, on the contrary, $\Omega_{0}\left(x_{0}\right)=0$ and $\Omega\left(x_{0}\right) \neq 0$ for some x_{0}, then the function $\mathrm{U}(\mathrm{x})$ has a singularity at the point $\mathrm{x}=\mathrm{x}_{0}$; now the transition from (7) to (8) is incorrect and so may be eq. (4).

REFERENCES

1. Courant R., Gilbert D. Metody Matematicheskoi fiziki, Vol. I, Gostekhteoretizdat, Moscow, 1951 .

> Received by Publishing Department on October 51978.

