ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> *19/11-7-9* E2 - 11935

L.G.Zastavenko

869 2-79

2-36

ÉLEMENTARY PROOF OF THE EXTREMUM PROPERTY OF THE REAL NODELESS SOLUTION OF THE SCHRÖDINGER EQUATION

E2 - 11935

L.G.Zastavenko

ELEMENTARY PROOF OF THE EXTREMUM PROPERTY OF THE REAL NODELESS SOLUTION OF THE SCHRÖDINGER EQUATION

Submitted to "Communications in Mathematical Physics"

067.0211.0	TANKS PROPERTY
SECONDAX	
	10000000000000000000000000000000000000
Eris J	MOLEKA

Заставенко Л.Г.	E2 - 11935
Элементарное доказательство экстремального сво безузлового решения уравнения Шредингера	ойства
Дано элементарное доказательство экстремального безуэлового решения уравнения Шредингера,	свойства
Работа выполнена в Лаборатории теоретической физ	ики ОИЯИ.
Препринт Объединенного института ядерных исследован	нй. Дубна 1978
Zastavenko L.G.	E2 · 11935
Elementary Proof of the Extremum Pr of the Real Nodeless Solution of th Schrödinger Equation	operty ne
A simple proof of the extremal propert the real nodeless solution $\Omega_0(\mathbf{x})$ of Schrödz (1) is given.	ty (3) of Inger equation
The investigation has been performed a Laboratory of Theoretical Physics, JINR.	at the

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

The real nodeless solution $\Omega_0(\mathbf{x})$ of the Schrödinger equation in the nonrelativistic quantum mechanics

$$H\Omega_{0} = E_{0}\Omega_{0}, \qquad (1)$$

$$= -\frac{1}{2} \frac{\partial^2}{\partial x^2} + V(x), \qquad (2)$$

is well known (see, e.g., ref. , volume I, chapter VI) to give to the functional of the energy

$$\epsilon(\Omega) = \int \Omega^* H\Omega \, d\mathbf{x} / \int \Omega^* \Omega \, d\mathbf{x}$$
(3)

its minimal value E_0 :

Н

$$\epsilon(\Omega) > \mathbf{E}_{\mathbf{0}} = \epsilon(\Omega_{\mathbf{0}}) \tag{4}$$

if the function U(x),

 $U(\mathbf{x}) = \Omega(\mathbf{x}) / \Omega_0(\mathbf{x}) , \qquad (5)$

is not constant. The proof/1/of this property , though being not very complicated, is not simple enough to be included in the textbook of quantum mechanics.

We give here the elementary proof of inequality (4).

3

1. From (5), (2) and (1) it follows

$$(H - E_0)\Omega = -\frac{1}{2}\Omega_0 \frac{\partial^2 U}{\partial x^2} - \frac{\partial U}{\partial x} \frac{\partial \Omega_0}{\partial x}$$
(6)

and

$$\{\epsilon(U\Omega_0) - E_0\} \int \Omega_0^2 U^* U \, dx =$$

$$= -\int dx \left[\frac{1}{2} \Omega_0^2 U^* \frac{\partial^2 U}{\partial x^2} + \Omega_0 U^* \frac{\partial U}{\partial x} \frac{\partial \Omega_0}{\partial x} \right].$$
(7)

Integration by parts here gives

$$\epsilon(\Omega) = \mathbf{E}_{\mathbf{0}} + \frac{1}{2} \int d\mathbf{x} \Omega_{\mathbf{0}}^{2} \frac{\partial \mathbf{U}}{\partial \mathbf{x}}^{*} \frac{\partial \mathbf{U}}{\partial \mathbf{x}} / \int d\mathbf{x} \Omega_{\mathbf{0}}^{2} \mathbf{U}^{*} \mathbf{U} , \qquad (8)$$

this equality results in (4).

2. Let us now take as Ω_0 the real solution of eq. (1), which has zeroes. Then (8) gives that $\epsilon(\Omega) > \epsilon(\Omega_0)$ if functions Ω and Ω_0 have the same zeroes. If, on the contrary, $\Omega_0(x_0)=0$ and $\Omega(x_0)\neq 0$ for some x_0 , then the function U(x) has a singularity at the point $x=x_0$; now the transition from (7) to (8) is incorrect and so may be eq. (4).

REFERENCES

 Courant R., Gilbert D. Metody Matematicheskoi Fiziki, vol.I, Gostekhteoretizdat, Moscow, 1951.

> Received by Publishing Department on October 5 1978.

4