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Elementary Proof of the Extremu~ Property 
of the Real Nodeless Solution of the 
Schrodinger Equation 

A simple proof of the extremal property (3) of 
the real nodeless solution n0 <xl of Schrodinger equation 

(li is given. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JIHR. 
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The real nodeless solution n0 <~ of the 
Schrodinger equation in the nonrelativistic 
quantum mechanics 

Hno Eo no, 

1 a2 
---- + V ( x) , 

2 a x2 
H 

is well known (see, 
chapter VI) to give 
the ene:::-gy 

e • g • , 

to the 

dn) J n* H n d x 1 f n* n d x 

its minimal value Eo: 

dn) > Eo f( n 0 ) 

if the function U(x) 

u < x ) = n ( x) I n0 < x) 

( l) 

( 2) 

/I/ ref. , volume 
functional of 

( 3) 

( 4) 

( 5) 

is not constant.The proof/1/of this proper-

I ' 

ty ,though being not very complicated, is 
not simple enough to be included in the text
book of quantum mechanics. 

we give here the elementary proof of 
inequality (4). 
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1. From (5), (2) and (1) it follows 

1 iu au aoo --0----
2 O a X2 a X ax ( 6) <H-Eo>O 

and 

2 * I d U 0 0 > - E 0 I J 0 0 U U dx = 

( 7) 

- J d [ 1 n 2 u * a 2U n u * a u an 0 ] 
- - X 2u0 ~ + uO dx (I X • 

Integration by parts here gives 

2 au* au 2 * 
d 0) = Eo + ~ f dx00 ax ax I J dxOo U U , ( 8) 

this equality results in (4). 

2. Let us now take as 0 0 the real solution 
of eq. (1), which has zeroes. Then (8) gives 
that dO) > d00 ) if functions 0 and 0·

0 
have 

the same zeroes. If, on the contrary,00(Xo)=0 
and O(Xo)"O for some x0 , then the function 
U(x) has a singularity at the point x=x 0;now 
the transition from (7) to (8) is incorrect 
and so may be eq. (4). 
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