


E2 - 11930

T.D.Palev*

ON A CERTAIN FOCK TYPE

REPRESENTATION
OF THE LIE SUPERALGEBRA A(0.1)

Submitted to ”International Journal of Theoretical
Physics”

5w

* Address after October 12, 1978: Institute for
Nuclear Research and Nuclear Energy, Boul. Lenin 72,
1113 Sofia, Bulgaria.



F2 - 11930

06 onnoMm npelcTaBineHnd (OXKOBCKOro TENA cymnepaarebps
Nz A(O1)

Manes 4.A.

Moctpoeno mpocTpaHcTBo $Poka RBYX nap oGoGUIEHHBIX ONepaTopOB
POXACHAS B YHAYTOXKEHHMA., DTH ONEPATOPH NPHHARNENKAT HEYeTHOR 4acCTH
cynepanre6bpel /lu  A(0,1) » nopoxpaiwTr Bcwo aareGpy. B npocrpancrse doka
oneparophl pOXAeHHS H YHHUTOXEHHA 3a4aloT GecKoHeuHOMepHOe HeNpHBO-
AEMOe NpeacTaB/leHEe anreGphl

Pa6ora smnonnena B JlaGopaTopram Teoperudeckofl duaukn OH AU,

Mpenpuur O6benuAeEHOTo WHCTHETYTa slepHbIX HcclenopaHuit., [y6ua 1978

Palev T.D. E2 - 11930

On a Certain Fock Type Representation of the Lie
Superalgebra A(0,1)

A Fock space of two pairs of generalized creation and
annihilation operators is constructed, These operators belong to
the odd part of the Lie superalgebra A(),1) and generate the whole
algebra. The creation and annihilation operators define in the FocH
space an infinite—-dimensional irreducible representation of the
algebra AQD .

The inv-est.igation. has been performed at the Laboratory
of Theoretical Physics, JINR.
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In the present note we study one particular infinite-
dimensional representation of the Lie superalgebra A0, D
in the Kac notation’!/. The method we use is similar
to the one applied in the quantum theory of bosons and
fermions. For instance, n pairs of Fermi operators
generate the Lie algebra B, of the group SO(2n+1).There-
fore the Fock space of these operators determines an
irreducible representation of B . In a similar way the
Fock space of Bose or, more generally, of para-Bose

‘operators defines a class of infinite-dimensional repre-

sentations of the. orthosymplectic Lie superalgebra 2/,
The operators we introduce are neither Bose nor Fermi
operators. Their representation space, however, pos-
sesses all main features of the ordinary Fock space. In
fact it is generated out of a vacuum vector by means of
polynomials of creation operators. We were led to
these operators in a search for some generalizations of
the quantum statistics. The present paper is an investi-
gation along this line. It should not be considered as an
attempt to develop a representation theory for the Lie
superalgebras. Our main purpose is to study the Fock
space of the operators we introduce by the simplest
available example, so that later on it will be possible
to generalize the results to the case of several and even
infinite number of creation and annihilation operators.

The relations between the generators of the algebra
A(0,1) can be derived through its three-dimensional exact
representation. Denote as ¢,8 , a,83=-1,0,1, a 3x3 mat-
rix with 1 on the intersection of the a-th row and B-th
column and zero elsewhere. Let L. and L, be subspaces
of A(0,1) with the basis written in the brackets, namely
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The multiplication [ , 1 in A(0,1) is defined as follows:

[a,bl = {a, bl = ab + ba a,bc Ly,
@)

[ a bl =1 a, bl

ab -~ ba aox-bGL0

and it is extended by linearity to the other elements.
In this case

AW = L+ L, 3)
and L0 , L are the even and odd part of A(0,1)resp.

The representation independent structure relations of
the generators can be derived from (2) and the multi-
plicative law of the matrices €af >

€u8 " ©y5 = aﬁyeaﬁ . “)

Define the operators

+ +
Ay = ey Ay =-eo1 »

5
AT = e AT = e ®

1 01 -1 -0 °

These operators constitute a basis in L, andgenerate the
whole algebra. Indeed, using (4) we obtain

oAt

+ -
{‘Al ,'Al } = e + € {Al ’ —l} = _el,—l’

11 00

(6)

{A ,A_ll e,

Let now A , £&,n=1: or :1, be the representation inde-
pendent generatogs of the Lie superalgebra A(0,1) cor-
responding to A° . Using the equality (4) we find the
following structure relations between the operators as ™

n
& - € €
[{ag,an"}, a_] = 715,,681? - n5§,7 a_ ,
& - -
[{a‘f , an"}, a-:] = —68& an" + 778& a_: , O
Eny (& oy
iag,ani—{a_f,a_ } = 0.

In this notation
L, = Fin.env.{an [ & = 21,

& .,
é—’an Hfﬂl— -}'

8)

Ly = lin.env. {{a

Definition. We call the operators aé creation( & = 1)
L. . Y]
and annihilation (£ = -) operators.
By representation of the creation and annihilation
operators we understand a mapping

. € =<
0: a, = ) )]
of the operators a‘f onto a set of linear opearators 3% ,
that preserves the relations (7). Since the creation dnd
annihilation operators generate the Lie superalgebra
A(0,1), to every representation of the operators a‘f there
corresponds through (8) a representation of A((?,l) and
vice versa. Moreover both representations are simulta-
neously reducible or irreducible. Thus the problem of
finding the representations of the algebra A(0,1) reduces
completely to the problem of finding all representations
of the creation and annihilation operators.

* Throughout the paper & 7n,¢ =+ or :1; [x,yl = xy-yx
and {x, y} = xy+yx.



Let W be the representation space we are looking
for. We assume that the space contains a vector |{0> c W
called a vacuum such that

10> = - .
a77| 0, 7§ *, (10)

In order to obtain a space generated out of the vacuum
by means of the creation operators we postulate that

-+
a, allO> = p|0>,

_ 1)
a_ a, 0> = ql0>,

This requirement is a natural generalization of the equa-
tion

- 4+

used in the parastatistics/ 3/ in order to single out an
irreducible Fock space. In our case '
-_— + = — + -
{al,a_li—{a_l,al}—O 13)
so that the equations (11) are enough.
The scalar product in % is determined in the usual
way:

a) (at at ...a 0>, at ...a%k |0>) =
Ny Ty Tm TR

= <0|a ..a a ay ..ay|0>,
K Ny M & £,

m

(14)

b) <0lat = 0
) lan

It is not clear from the beginning whether the defi-
nition a-c) together with (7) and (11) gives a metric
in W. In fact, this is not the case for arbitrary p and
q (for instance p=—q=1). The requirement

(a,a)>0 0 £acW (15)

appears as an additional restriction on the constants p
and q.

In this paper we shall consider the simplest nontrivial
case p=1,q=0 , i.e., we require*

810> = a_ 10> = &' |0> = 0. : (16)

Lemma 1. The representation space W is a linear
envelope of all vectors

{atl,a;-{la*i |0>9 {ai]’a+ }ni0>, n = 0,1, 2, .en (17)

1

Proof
The representation space W is spanned on all pos-
sible vectors

afl a'f2... ag'" 10>5 m=01,2.:&,7 =:. (18)
oMy g

To prove the lemma, we have to show that every vector
(18) is a linear combination of the vectors (17). For this
purpo§e we shall use the Poincare-Birkhoff-Witt theo-
renY ¥  which in our case can be formulated in the fol-
lowing way. Let L=1, +L,be a Lie superalgebra, Apy ey
a, bea basis in L, and by, by,-.., b, a basisin L.

* A similar representation for the case of several
creation and annihilation %t/nators generating the Lie
algebra :A, was studied in/".

7



Then the elements

k) . 9) k k, 09 0
a bl a2 am"‘ b2 bn“ R kiz_ 0,0i = 01 (19)

form a basis in the universal enveloping algebra of L .
For the Lie superalgebra A(01) the theorem gives
that the monomials

(n,Om ,m ,m ,0 ,0 ,0 ) =

0 m m 0 0 0
= {af a1 () {af,aﬂml{a:l,af} 28y} 3(a_+l) l(a:l) 2(aT) 3
(20)

define a basis in the universal enveloping algebra of
:A(0,1). Hence the monomial

agl afz afm (21)
oM My
is a linear combination of vectors (n, 0,....05). Therefore
3 '3
afla 2. am™ 0> =
Mg Ty
B (22)
= 2 anm@(n,(’,ml,mz,m3,91,02,03),
n, ...,03 3
where a 0., are number coefficients.
. n...0Ug
Since

(n,60,m,,...,00)]0>£0 only if my =mg = 0, =0,=6=0 (23)
and

7 0
(n,@,ml,O,...,O) = {ail,aT } (al) | 0> (24)

we conclude

4 4 n .0
anl... ann [0> = Eean’eiajl,ar} (aT) 0>, (25)

1 n
This completes the proof.

We now proceed to find the transformation properties
of the vectors (17) under the left multiplications with
creation and annihilation operators. It is convenient to
represent the space as a direct sum of its even and odd
subspaces, W, and W, respectively,

W = WO + Wl , (26)
where

Wy = Ulin.env. ! {a+l , aJlr p [0> |n = 0,1,2,... 1,

(27)

W, = finenv.{fal,a) 1"a} |0> |n=0,1,2,... 1.

Denote as
+ 0

In,60> = fa’,,a} 1"} ) 10> 6-01; n=012,.. (28)
From the structure relations (7) we have

]y ay a1 = 0, (29)
Therefore

a’ [n,0> =t a) z"a;|0> (30)
and taking into account (16) we obtain

& [n,0> = |n,1>, ailln,0> = 0. (31)
. +  +

- 0,

Since a, a,

aTIn,1> = 0. (32)
For atl we have

a+l In, 1> = {a+l , aT i a+l a+l {0> = |n+1,0>. (33)



To calculate the transformation properties with respect
to the annihilation operators, we use the identity

[a; f-l,a l]—n{a ,Tln—la:’. (34)

We have

- - + 4+ %0 = N
a n,0> = [an, {a_l, all |0>—n{a_1, a) } a_n|0>. (35)

Therefore

alln,0>-0, a_|n0> = nfn-1,1>. (36)
Similarly

a:lln,1> = [a__l,{ } ]a 10> =

= n{a’:l,a+l ln(at)2i0> = 0

37

a_l'ln,1> = [aI,{a’:l,a’;ln] a:|0>+

+ iail,a+l }n a_l a+110> = (n+1)|n, 0>.
We summarize the results

ajlwo = a; W = a’;Wl = a_ W, =0,

a} |n,0> = |n1> atyIn1> = |n+1,0>, (38)

a_j|n0> = n|n-1,1> a;|n1> = (n+1) [ n,0>.

We are now ready to calculate explicitly the scalar pro-
duct in W,

Lemma 2. The vectors
{n, 6>, n = 0,1,2,...; g =0,1 (39)
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define an orthogonal basis in the representation space W,

Proof.
We make use of the following relations,

_.\0 .
(a)) 1|n,02> = (l—Gl)ln,02>+0l 02(n+1)]n,0>, (40)

n! (n + O

i -— m
0> =
tay, a, Vln, (n-m!(n+60-~-m!

In-m,0>, m<n, (41)

!a‘_l,a‘l}mln,6> =0, m>n. (42)

The first equality is an immediate consequence of (38).
The second one can be proved by induction. From (38)
we have

faj,ajtIn 0> = n(n+6)|n-1,6>. (43)

Suppose (41) holds. For mi1<n we have ’

- ! (n+ !
{ y ,0) = n .
apal i (n-m! (s 0-m!

ta_, a llngm, 0> =

_ n! . (n+0)
[n-(m+ D! [n+0-(m+ D!

i.e., for m+1 the formula (41) also holds. The relation
(42) is evident since

iIn-(m+ 1), 0>, (44)

{a:l , a_1 }“+l|n,0> =n!n+ 6)! {a:l, a'l'}|0,0> = 0, (45)

Using the definition (14) we calculate the scalar product
between the vectors |m, 0, > and |n, 0y > .
S = (Im.g >, [n,0,>) = <0G} ) ey, o] 1"In,0, > (46)

If m >n according to (42) S=0. Let m < n. Using first
(41) and then (40) we obtain

1"



n!(n+ 6,)!
S= {(1-6,)<0[ n-m,0,> +

(n-m!n+6, -m!

+0102(n—m+1)<0}n-m,0>}. 47

If m<n then S vanishes since

<0]fat, at "

' = 0. (48)

For m=n the expression in the brackets of (47) is non-
zero only for 6, = &, Therefore we obtain

(lm, 6, >, |n, 8, >) = 5““‘59102 n'(n+ 0, )! (49)

This proves the lemma. The orthonormal basis is
+ N+
{al , a_l} (al )
vl (n+ o)
In terms of this basis we have

In, 8) = |0>; n = 0,1,2,...; 6=0,1(50)

W - aW o= at W = - - 0
a_IWO— alW0 = alWl .a_lWl ,

a+1|n,0) = vn+1|n1) a+l|n,1) = Vn+1lln+1,0),

& 1n,0) = Valn-1,  alnD = Vn+1[n0). (5D

The formulae (51) determine an infinite dimensional re-
presentation of the Lie superalgebra A(0,1). In the metric
(49)

(! Y= A, (52)

where * means hermitian conjugation. The matrix ele-

ments of the even generators can be easily calculated
from (51) taking into account (8).
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In this paper we have not tried to ascribe a physical
meaning to the creation and annihilation operators. Re-
mark, however, that in the ”particle” terminology the
vector |n, 0> corresponds to the (2n+6) -particle state
since it is obtained from the vacuum by means of a homo-
geneous polynomial of order 2n+ 6. The operator

H = {aJ; ca t o+ {a":l,a:ll -1 (53)

has the properties of a free Hamiltonian. The spectrum
of H is positive definite

Hln, 0> = (20+6)|n, 0>. (54)
Moreover
[H,a;’] = ra, . (55)

Therefore if |E> is a state with energy E and
a'flE‘) 40, then a;} (resp,, ay )increases (decreases)
ch energy by 1. Hence a3 can be interpreted as an
operator creating (annihilating) a particle of sort 7.
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