


E2 - 11929

T.D.Palev*

LIE-SUPERALGEBRAICAL ASPECTS
OF QUANTUM STATISTICS**

Q670 o, BYSTETVY
FA AN 4 apraeg wmEnd

3

# Address after October 12, 1978: Institute for Nuclear Energy,
boul. Lenin 72, 1113 Sofia, Bulgaria.
* % Most of the results were reported on the Conference on

~Mathematical Methods in Elementary Particle Physics * ,
Prag, 1978



NManes 4.[. E2 - 11929

KpanToBas craTecTeka B acmexTax cynepanrebpn Jlm

O6cyxnalTcs CBOACTBA OPTOAOKCANLHOR KBAaHTOBOA CTATHCTHKH C HC-
noiL30BaHEeM Meroaa cynepaare6bp JIE ¢ uenbo BO3MOXHBLIX O606weHHHA
B KBAHTOBOR TeopHH 8 B TeoperuyecKofi ¢u3uke Boobme. [lokasano, uro an-
rebpa, nopoxnexHas aBofixaME depMH-#NE NapadepMH-oONeparTopoB H3OMOPG-
Ha Knaccuyeckolt anrebpe Jlm B, oprorouanbmoit rpynnet $0(2n+1), B TO
BpeMs Xak N asoek 603e- uiH napabo3e-omeparopoB NOPOXKAAKT HPOCTYIO
OpPTOCHMIIIEKTHYECKY0 cynepaarebpy Bl(o,n). [epexon x BSeckoHeyHOMY
HYHClly onepaTopoB POXAEHHS W YHHUTOXEeHHs (n-+e) He MeHser cynepanre6-
paadecxyio CTpyKTypy. Takum o6pa3oM, ofbiuHoe 603e~ u PepMH-KBAHTOBA~
HHe MOXHO pacCMarpHBaTh KaKk KBaHTOBAHHE MO ONpefeNeHHbBIM HEeNPHBOAHMbIM
NpeAcCTaB/leHHsM ABYX NpocThIXx cynepanrebp Jlu., [auna unes o rom, kax
MOXHO ONpene/HTh ONepaTOPHl DOXAGHHS H YHHUTOXEHHS, KOTopble yOOB-
NeTBOPSIOT NOCTYy/laTaM BTOPHYHOrO KBaHTOBAHHS H MOPOXAAKT HEXOTOpbLie
Rpyrse xjaccHyecKks#e NpoOCThie cynepanre6psr J[lu.

Pa6ora sumoanena B JlaGoparopuu reoperuteexoft ¢puauxu OUAHU.

Coobmense OGbenmHeHHOro HHCTHTYTA AnepHniX uccienosaxuil. [y6ra 1978
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Lie-Superalgebraical Aspects of Quantum
Statistics

The Lie-superalgebraical properties of the ordinary
quantum statistics are discussed. It is indicated that
the algebra, generated by n pairs of Fermi operators,is
isomorphic to the classical simple Lie algebra B,,
whereas n pairs of Bose operators generate the simple
Lie superalgebra B(gn). The idea of how one can introduce
creation and annihilation operators that satisfy the
second quantization postulates and generate other simple
Lie superalgebras is given.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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In the present paper we emphasize certain
Lie-superalgebraical properties of the ordi-
nary quantum statistics which seem to pre-
sent a natural background for a search of
possible new quantum statistics. The main
observation is that the Bose quantization
appears as quantization according to a cer-
tain representation of the orthosymplectic
Lie superalgebra, whereas the Fermi quanti-
zation 1s closely connected to the odd-ortho-
gonal Lie algebra, Both the Lie superalgeb-
ras are simple, The creation and annihila-
tion operators are root vectors generating
the whole algebra,

Nowadays all simple Lie superalgebras
are fully classified’V. In view of the above
mentioned properties of the Bose and Fermi
operators it seems natural to ask whether
one can satisfy the second gquantization
axioms, say, in the Lagrangian quantum field

‘“theory with new kinds of creation and anni-

hilation operators the main feature of
which is that they are root vectors genera-
ting some of the others simple Lie super-
algebras. This gquestion has been studied in
detail in ref./2 only from a Lie-algebrai-
cal point of view. There we have shown that
to every classical simple Lie algebra there
corresponds a quantization that is logical-
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ly compatible with the main quantization
principles, In this paper we shall give an
example of creation and annihilation opera-
tors that generate a proper Lie superalgebra.

We first recall a few basic definitions
(for more details see, for instance ref./Ui
Demote by Zj the ring with two elements
(0,1) and multiplication

0+0=0, 0+1 =1, 1+1 =20, (1)

The algebra G with multiplication denoted

as E,] is said to be a Lie superalgebra

if it satisfies the following axioms:
a) G is Z,-graded algebra, i.e., the

linear space G can be represented as a di-

rect sum of two subspaces,

so that if a€G_, bGGﬁ;then

Labl€Garp ., aBeZ,y; (3)

b)
[a,b] = ~(-D*P[b,a] for aeG,, beGg i (4)

c)

TaLb, 11 = [La,blc) + <D [, [a,c] ], a< G, b< G
5
The elements from G0 and G; are called évln
and odd elements, respectively.

The algebra A = Ay+A} is said to be a 1li-
near Lie superalgebra if its elements are
linear operators and A is a Lie superalgeb-
ra with respect to the multiplication
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[ab] =ab- 1% ba a€A, , behdg. (6)

A representation p of the Lie superal-
gebra G is a linear map of G into a .linear
Lie superalgebra so that the multiplication
is preserved,

plla,b] = [p(a), p(0)], a, be G. (7

The concept of a subalgebra or ideal is
defined in a natural way. The Lie superalgeb-
ra G 1is simple if it has no nontrivial
ideals. The simple Lie superalgebras are
known/)/, Since in our case the rank of the
algebra is proportional to the number of

the creation and annihilation operators, we
list only those simple Lie superalgebras
that can have an arbitrarily big rank. First
of all, there are four well known classes

of classical simple Lie algebras,

B D n=1,23, .. (8)

A Cn’ n

n’ n’

Moreover there exist six series of classical
Lie superalgebras that are not Lie algebras,

A(m, n), B(m, n), C(n), D(m, n), P(n), Qn), m,n=1,2,...(9)

We now proceed to study the Lie algebrai-
cal properties of the ordinary quantum sta-
tistics.

FERMI STATISTICS

Letfﬁ ,f;,n"ff be Fermi creation and
annihilation operators, i.e., operators that



fulfil the anticommutation relations *

(e, 671 = Lig-n)?s, - (10)

We ask the question what is the Lie al-
gebra these operators generate. Since the
Fermi operators can be represented as finite
. matrices, it is clear that such an algebra
exists and it is finite-dimensional. From
the identity

[ AB,C] = A{B,C} - {A,CIB

and the defining relations (10} one obtains

eef, ), 651 = dr-0®a, 65 -2eg-o)? s, 17,

(11)
i,k = 1,..,n.
Therefore the set of all operators
fl‘f,[fj”,fil iLj,k = 1,..,n (12)

is closed under arbitrary commutations and
hence the linear envelope of the operators
(12) is a Lie algebra we are looking for.
A more detailed analysis shows that this 1is
the algebra B, of the odd-orthogonal group
S0(2n+1) and more exactly the representation
11 1
g2 g ey)

In gquantum field theory the set of the
Fermi operators is infinite. The Lie~algeb-
raical structure is however preserved. There-

with signature (

* Throughout the paper ¢, n,€¢,8 = + or
t1; [ x, ylaxy=yx and {x, y} = xy+yx.
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fore one can view the Fermi quantization as
a quantization according to a certain, the
so~called spinor representation of the al-
gebra of the (infinite parameter) orthogonal
group.

The first question that naturally arises
is why this particular representation is re-
levant for the quantization. Is it impos-
sible to quantize according to some other
representations of the same algebra? The
answer is positive. It turns out the quanti-

-zation by means of other representations

leads to the paraFermi quantization. To
show this we recall/3 that the paraFermi
operators bfwu,b: satisfy by definition
the same system of three-linear commutation
relations (11), i.e.;

[[bf ’ l?] 1 lfk] = é(n-—c)28'k bfl —-lé(rf—c)zb‘lk b’% ; (13)

Hence the linear envelope of the operators
€
b',f,[b’g,bk] ik = L..,n (14)

is isomorphic to the algebra B,. The repre-
sentations of the paraFermi operators in

a space with single vacuum are labelled by
one positive integer, the order of the sta-
tistics., It has well defined Lie-algebraical
meaning. The corresponding representation

of Bn is finite-dimensional irreducible
representation with signature in an orthogo-

nal basis of the Cartan subalgebra(%}fgunqigh

So we see that the Fermi quantization and
its generalization, the paraFermi one, is
a quantization according to a certain class
of representation of the simple Lie algebra
of the orthogonal group.
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BOSE STATISTICS

Consider now n pairs Bi”u,Bj of Bose
creation and annihilation operators, i.e.,
operators defined with the commutation re-
lations

[ﬁf,ﬁ;’] - 3=, . (15)

Clearly the space spanned on these operators
is a Lie algebra, the so-called Heizenberg
algebra. What is more interesting, however,
is that Bose operators can also be considered
as generators of a simple Lie superalgebra

G =0G,+ G, and more exactly they are elements
from the odd part of the algebra. Indeed
suppose that B* €G. and ask what is the Lie
superalgebra thesé operators generate. From
(15) we obtain

[BF, B]1, BL) = (5-m)opBl + G=dy B+ (16)

Let us denote by'Gothe linear envelope of all

operators {35,3?} and let G, be the space
spanned on the creation and annihilation
operators, It follows immediately from (16)
that with respect to the multiplication (6)
G = Gy + Gy is a linear Lie superalgebra. It
turns out/% G is simple and in the Xac
notation/V this is the algebra B(0,n).The even
part of B(0,n) is isomorphic to a direct sum
of the symplectic algebra G, and one-dimen-
sional centre.

In this case it also turns out that the
other representations of B(0,n determine
new kind of creation and annihilation opera-
tors, the so-called paraBose operators/&a
The representation of these operators in

a space with single vacuum are labelled by
one positive integer p, to order of the
statistics. Putting this result in a Lie
superalgebraical language we can say that
a large class of infinite-dimensional re-
presentations of the superalgebra B(0, n)
was found by Green in 1953. We point out
this result since at the present day there
exists no satisfactory representation theory
even for the finite-dimensional representa-
tions of the Lie superalgebras.

We summarize the results we have obtained
so far.

Simple classical
Lie superalgebra

Kind of the statistics
(quantization) they

determine
B, Fermi, paraFermi
C, Bose, paraBose
A,,C,,D,,
A(m,n), C(, D(m,n), ?

P, Q).

Now we are ready to formulate the main
problem we are going to discuss.

Problem. Is it possible to define crea-

.tion and annihilation operators that satisfy

the second quantization axioms and generate
some of the Lie superalgebras from the third
group in the above table ?



To answer this question we recall that
the commutation relations between the crea-
tion and annihilation operators are usually
derived from the infinitesimal form of the
translation invariance of the field W(x),
namely/6/ :

[(P"  ¥(x)] = -id™¥(x) m=01023. (17)

It is convenient to pass to discrete no-
tation in momentum space considering the
field ¥(x) with mass m to be locked in cube.
In this case the relation (17) reads as

CLP™, x = kP oxt, (18)

where j stands for all discrete indices;

kT is the 4-momentum of the particle in

a state i. The solutions xf of the operator
equation (18) are by definition creation
and annihilation operators. Indeed in spite
of the fact that the commutation relations
of these operators are still unknown, it is
clear that the state x{|q> carries momentum
qtk; if|q> is a state with momentum g
and xﬂq) 0.

As we mentioned, it is possible to define
operators that satisfy (18) and generate any
of the classical Lie algebrayhﬂ We know how
to construct creation and annihilation ope-
rators corresponding to the Lie superalgeb-
ras A(0,n) and C(n). The quantization corres-
ponding to the simple Lie algebras is cal-
led A-, B~, C- or D-quantization depending on
the algebra the operators generate. The cor-
responding creation and annihilation opera-
tors are denoted as af ’ ﬁ ’ cf and df.

For all mentioned statistics the opera-
tors xf can be considered as root vectors.
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Moreover the ordering in the Cartan subal-
gebra can be fixed in such a way that the
creation (annihilation) operators are nega-
tive (positive) root vectors.

Definition. The quantization is said to
be simple if the creation and annihilation
operators xf'satisfy the translation inva-
riance (18) and any finite number of pairs

t

+ ; , _
Xi 5 oeees Xq generate a simple Lie super
.|

1
algebra.

In all cases we known, the momentum ten-
zeror M™® and the 4-vector P" expressed in
terms of the fields satisfy the commutation
relations of the algebra of the Poincaré
group.

In order to preserve the main properties
of the ordinary theory one has to consider
those representations, leading to a natural
particle interpretation. Therefore we give
the following definition.

DEFINITION OF A FOCK SPACE

Let xf,".,x:“" be creation and annihila-
tion operators. The representation space is
said to be a Fock space of the x -operators
if it fulfils the conditions

l. Hermiticity condition

+ % -
(x])* = x (19)

Here * denotes hermitian conjugation ope-
ration.

1



2. Existence of vacuum. There exists
a vector |0> from the representation space
such that for all i

xl-10>-0. (20)

3. Irreducibility. The representation
space is spanned on all positive vectors

x? xf ".i: 10>, m=0,1,2 .. (21)
1 2 m

For the Lie-algebraical statistics the
first condition is equivalent to the anti-
hermiticity of. the generators of the compact
form. Therefore the Fock representations of
finite number of operators are finite-dimen-
sional irreducible representations, and they
contain a highest weight. The Fock spaces are
characterized by the following theorem/?/.

Theorem. Up to a multiplicative constant
the vacuum is unique and coincides with the
highest weight vector. The representation
space is a Fock space if and only if

X X 10> =0V oi4j. (22)

We now proceed to give some examples.

A~-STATISTICS

In this case any finite number of opera-
+
tors a‘,...,at generate the Lie algebra A .
iy L n

The initial quantization equation (18) does
not determine uniquely the a-operators as
elements of the algebra. Here we shall men-
tion two realizations which lead to quite
different physical properties.
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In the first realization the a -operators
satisfy the double commutation relations/ﬂ

y - +1 . + +
(L a), 8 1, a 1 Sik a] + Sii a,
+ - — - -
Ll ay, d l,all = =8, 8 - Sii al (23)
[ at,a 1 =1{ a ,a 1 =0
i i i j

The representation space is a Fock space if
and only if

& at 0> =pd 0>, p=1,23.. (24)
i 1j

The same relation holds for the parastatis-
tics of order p. Therefore we call P an order
of the A ~statistics. The requirement (24)
together with the commutation relations (23)
determines the representation of the a -ope-
rators of order p. The ‘A -statistics can be
defined by the relations (23). The represen-
tations are determined by the equation (24).
All calculations can be carried out without
referring to any Lie-algebraical properties.
The order of the statistics p has a well
defined physical meaning. It turns out that
+ 0y 4 +

(a, ) au) ...(al

gm
i )™ (0> £ 0 (25)
1 m .

if and only if fy+...+f_ <p.This is actually
the Pauli principles for the A-statistics.
If the order of the statistics is p then the
number of any ensemble of particles cannot
exceed p.
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As an orthonormal basis one can choose
the vectors

6, 4
_3got €at YL (at )yn
I3 8y ooy > = =2ty —L‘r______‘; 10>, (26)
n

p! g.1... 2.1
\/ 1 lu

<i . For

where for definiteness O<i1<i2<"'. n

the matrix elements we have

a‘;- ‘p;"9 zi e > = J‘z“"l)(p—zzi)'p;..., gi + 1,...) B
]
(27)

= \/21 (p—?fﬁ 1) Ip;....,li-— 1,..>.

%ip;“,%v">

To distinguish from the above realization,
we call the second realization A -statis-
tics/wc The creation and annihilation opera-
tors in this case are labelled with three
indices. The operator a creates (£ =4+) or
annihilates ((=-) a partlcle with charge g
and other characteristics j. The ac-opera-
tors satisfy the commutation relatlons

& n=2+,1i,4,k =1,2,...\

£ & £
[[8.‘5_-i , a_{_-,] 8—€Mka§i
¢ E 3
(Cag, a5 loal ) = -8y a7,
(28)
& om0y £ n
[[ aé-i ) aé-i ], aﬂk] - afiynk afl + aij ank

14

& £y on 4 _ U] U]
e afi ’ Ejl’ a—nk] - _851,—qka—ﬂi - 5ii Ak
(28)
& '3 U
[afi’aﬂi] = [a—fi’{mj] = 0

The Fock spaces W(p,q@ in this case are la-
belled by two nonnegative integers.

The Pauli principle. In the Fock space
W(p, q) there cannot be more than p+ q par-
ticles in a single state. The charge of
an arbitrary ensemble of particles cannot
be more than p and less than -q.

Remark that the A, -statistics does not
put limitations on the total amount of
particles in the ensemble. The current cor-
responding to the A, ~-statistics is a local
operator.

A-SUPERSTATISTICS

In this case the creatlon and annihila-
tion operators al,az, generate the Lie
superalgebra A(0, anhe structure relations
of the operators read as follows/wQ

+ -, o+ + +
[ a , ajf, a, I = 8ki a - Bij a,
+ — -— — —
[{ ai,ajE,ak] = 5, a, + Bii a, (29)
{a? ,ail = fa. ,a.} =0
15




The Fock space of the a-superoperators

puts limitations on the total amount of
particles in an ensemble. The current cor-
responding to a charged field is not local
operator. Elsewhere, we shall consider
another realization of the a-superoperators,
that leads to local currents and does not
restrict the number of particles.
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