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nanee lf.n. E2 • ll929 
Keaaroeaa craracrHxa B acnexrax cynepanre6pbl n. 

06cy*Ll8~TCK CBOACTB8 OpTOLlOKC8nbHOil KBBHTOBOA CTBTKCTHKB C KC­
DOnb3088HH9M MeTOLl8 cynepanre6p nH C Uenb~ B03MO*HbiX 0606IUeHHA 
a xeanroeoA reopaa H e reoperHqecxoA tK3HKe eoo6me. noKaaano, qro an­
re6pa, nopo*nennall neoAKaMH tePMH-HnH napa1jlepMH-oneparopoe K30Mopt­
Ha KnaccHqecKoA anre6pa na B. oproronanbnoil rpynnbl S0<2n+ll, e ro 
epeMll K8K n neoex 6oae- Hna napa6oae-onepa ropoe nopolKna~r npocry~ 
OpTOCHMnneKTH'!ecxy~ cynepanre6py B(o, nl. nepexon K 6eCKOHe'IHOMY 
'lacny oneparopoe polKneHHll H yna'lroJKeHBll <n~~> ne Menller cynepanre6-
paaqec([y~ crpyKrypy. TaKHM o6paaoM, o6bi'!Hoe 6oae- H tePMH-Keaaroea­
nae MOlKHO p8CCM8TpHB8Tb KBK KB8HTOB8HK9 DO onpeneneHHbiM nenpKBOilHMbiM 
npellCT8BneHBliM llBYX npOCTbiX cynepanre6p na. naaa Knell 0 TOM, KBK 
MOlKHO onpenenaTb onepaTOpbl pOlKileHBll H yHH'ITOlKeHHSI, KOTOpble YllOB­
neTBOpli~T nocrynaraM BTOpH'IHOro KB8HTOB8HHll H nopOlKil8~T HeKOTOpb19 
npyrHe xnacca'!eCKae npOCTbie cynepanre6pbl na. 

Pa6ora Bbmonaena B na6oparopaa reopeTB'Ie6KOA tii3BKK OH.HH. 

Coo6wenae 06benaaeaaoro aacraryra l!llepHbiX accneaoeaHall • .Uy6aa 1978 

Palev T.D. E2 · ll929 
Lie-Superalgebraical Aspects of Quantum 
Statistics 

The Lie-superalgebraical properties of the ordinary 
quantum statistics are discussed. It is indicated that 
the algebra, generated by n pairs of Fermi operators,is 
isomorphic to the classical simple Lie algebra B

8
, 

whereas n pairs of Bose operators generate the simple 
Lie superalgebra B(o,n). The idea of how one can introduce 
creation and annihilation operators that satisfy the 
second quantization postulates and generate other simple 
Lie superalgebras is given. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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In the present paper we emphasize certain 
Lie-superalgebraical properties of the ordi­
nary quantum statistics which seem to pre­
sent a natural background for a search of 
possible new quantum statistics. The main 
observation is that the Bose quantization 
appears as quantization according to a cer­
tain representation of the orthosymplectic 
Lie superalgebra, whereas the Fermi quanti­
zation is closely connected to the odd-ortho­
gonal Lie algebra. Both the Lie superalgeb­
ras are simple. The creation and annihila­
tion operators are root vectors generating 
the whole algebra. 

Nowadays all simple Lie superalgebras 
are fully classified/~ In view of the above 
mentioned properties of the Bose and Fermi 
operators it seems natural to ask whether 
one can satisfy the second quantization 
axioms, say, in the Lagrangian quantum field 
theory with new kinds of creation and anni­
hilation operators the main feature of 
which is that they are root vectors genera­
ting some of the others simple Lie super­
algebras. This question has been studied in 
detail in ref/21 only from a Lie-algebrai­
cal point of view. There we have shown that 
to every classical simple Lie algebra there 
corresponds a quantization that is logical-
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ly compatible with the main quantization 
principles. In this paper we shall give an 
example of creation and annihilation opera­
tors that generate a proper Lie superalgebra. 

We first recall a few basic definitions 
(for more details see, for instance ref/1~. 
Demote by Z2 the ring with two elements 
(0,1) and multiplication 

0+0:~:0, 0+1•1, 1+1,.,0. ( 1) 

The algebra G with multiplication denoted 
as[,] is said to be a Lie superalgebra 
if it satisfies the following axioms: 

a) G is Z 2 -graded algebra, i.e., the 
linear space G can be represented as a di­
rect sum of two subspaces, 

G "" G0 + G 1 ( 2) 

so that if aE'Ga, b~ G{3 then 

[a, b] E Ga+{3 

b) 

a;· {3 E Z 2 ( 3 ) 

[ - a{3 - -
a, bj "" -(-1) [ b, a.JI 

c) 

for aEGa, bc;;;'Gf3; (4) 

[a,[b,cJ]..,[[a,b]c]+(-1)a{3[b,[a,c]], ac;;;Ga, bc;;;G(3 

(5) 
The elements from G0 and G 1 are called even 
and odd elements, respectively. 

The algebra A = A0+A 1 is said to be a li­
near Lie superalgebra if its elements are 
linear operators and ~ is a Lie superalgeb­
ra with respect to the multiplication 
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\: 

[a, b] .• · ab - (-l}afi ba a ~ ~A a , b E :A fi . (6) 

A representation p of the Lie superal­
gebra 'G is a linear map of ·G into a .linear 
Lie superalgebra so that the multiplication 
is preserved, 

p [a, b] ... [p ( a), p (b)], a, b~ G. (7) 

The concept of a subalgebra or ideal is 
defined in a natural way. The Lie superalgeb­
ra G is simple if it has no nontrivial 
ideals. The simple Lie superalgebras are 
known/1~ Since in our case the rank of the 
algebra is proportional to the number of 
the creation and annihilation operators, we 
list only those simple Lie superalgebras 
that can have an arbitrarily big rank. First 
of all, there are four well known classes 
of classical simple Lie algebras, 

An' B n' C n' Dn n'"' 1, 2, 3, ... (8) 

Moreover there exist six series of classical 
Lie superalgebras that are not Lie algebras, 

A (m, n), B (m, n), C (n), D (m, n), P (n), Q (n), m, n"" 1,2, ... ( 9) 

We now proceed to study the Lie algebrai­
cal properties of the ordinary quantum sta­
tistics. 

FERMI STATISTICS 

Let f 1
1 , ti , ... , f: be Fermi creation and 

annihilation operators, i.e., operators that 

5 



fulfil the anticommutation relations * 

Ire, r 71 l "'~<e- 71 ) 2 s 1i· c1o> 

we ask the question what is the Lie al­
gebra these operators generate. Since the 
Fermi operators can be represented as finite 
matrices, it is clear that such an algebra 
exists and it is finite-dimensional. From 
the identity 

[A E, C] "" :A I E, C l - I A, C } E 

and the defining relations (10) one obtains 

'TJ f l 2 t'l 2 1/ 
crrt,rj],rkJ ... 2<,.,-d otkrt -2<e-d sikrt, 

( 11) 
i, j, k '"' 1, .. , n. 

Therefore the set of all operators 

e TJ ( J 
fl ' [ fj 'fk i,j,k"" l, ... ,n ( 12) 

is closed under arbitrary commutations and 
hence the linear envelope of the operators 
(12) is a Lie algebra we are looking for. 

A more detailed analysis shows that this is 
the algebra En of the odd-orthogonal group 
S0(2n+ 1) and more exactly the representation 

with signature(~,~·····~). 
In quantum field theory the set of the 

Fermi operators is infinite. The Lie-algeb­
raical structure is however preserved. There-

*Throughout the paper e I ,., I ( , 8 "" ± or 
± 1; [ x, y]axy-yx and I x, y} "" xy+yx. 
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fore one can view the Fermi ~uantization as 
a quantization according to a certain, the 
so~called.spinor representation of the al­
gebra of the (infinite parameter) orthogonal 
group. 

The first question that naturally arises 
is why this particular representation is re­
levant for the quantization. Is it impos­
sible to quantize according to some other 
representations of the same algebra? The 
answer is positive. It turns out the quanti-
zation by means of other representations 
leads to the paraFermi quantization. To 
show this we recall/a/ that the paraFermi 
opera tors b f, ... , b! satisfy by definition 
the same system of three-linear commutation 
relations (11), i.e., 

e11 ( 1 2 e 1 2 11 
[ [ bt ' bj ];· bk] .. '2(7J-E) OJk Ot - "]<e-£) olk bj . ( 13) 

Hence the linear envelope of the operators 

' ,., ( bt ' [ bj ' b k ] i, j, k ... 1, ... , n ( 14) 

is isomorphic to the algebra En. The repre­
sentations of the paraFermi operators in 
a space with single vacuum are labelled by 
one positive integer, the order of the sta­
tistics. It has well defined Lie-algebraical 
meaning. The corresponding representation 
of E is finite-dimensional irreducible n 
representation with signature in an orthogo-

nal basis of the Cartan subalgebra (£.., £.., ... , £..). 
2 2 2 

So we see that the Fermi quantization and 
its generalization, the paraFermi one, is 
a quantization according to a certain class 
of representation of the simple Lie algebra 
of the orthogonal group. 

7 



BOSE STATISTICS 
+ • 

Consider now n pairs f3i , ... , {:3: of Bose 
creation and annihilation operators, i.e., 
operators defined with the commutation re­
lations 

e TJ 1( ) [ {:3 i , /3 j ] "" '2 TJ - c 8 lj • ( 15) 

Clearly the space spanned on these operators 
is a Lie algebra, the so-called Heizenberg 
algebra. What is more interesting, however, 
is that Bose operators can also be considered 
as generators of a simple Lie superalgebra 
G = G0 + 'G 1 and more exactly they are elements 
from the odd part of the algebra. Indeed 
suppose that 13C E'G and ask what is the Lie 
superalgebra thesJ operators generate. From 
(15) we obtain 

U{3l,f3jl,{3t] .. (8-rJ)otkf3t + CB-e)Btk f3iTJ' (16) 

Let us denote by G0 the linear envelope of all ,_ - - . 

operators 1{3.<;, /3~ I and let 'G 1 be the space 
spanned on the ~reation and annihilation 
operators. It follows immediately from (16) 

that with respect to the multiplication (6) 
'G "" G0 + 'G 1 is a linear Lie superalgebra. It 
turns out/57 G is simple and in the Kac 
notation/l/ this is the algebra 8(0, n).The even 
part of 8(0,~ is isomorphic to a direct sum 
of the symplectic algebra Gn and one-dimen­
sional centre. 

In this case it also turns out that the 
other repre sen ta tions of 8<0, n) determine 
new kind of creation and annihilation opera­
tors, the so-called paraBose operators/3/, 
The representation of these operators in 
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l 

a space with single vacuum are labelled by 
one positive integer p, to order of the 
statistics. Putting this result in a Lie 
superalgebraical language we can say that 
a large class of infinite-dimensional re­
presentations of the superalgebra 8(0,~ 

was found by Green in 1953. We point out 
this result since at the present day there 
exists no satisfactory representation theory 
even for the finite-dimensional representa­
tions of the Lie superalgebras. 

We summarize the results we have obtained 
so far. 

Simple classical 
Lie superalgebra 

8n 

en 

An,Cn,Dn, 

A (m, n), C (n), D (m, n), 

P(n), Q(n). 

Kind of the statistics 
(quantization) they 
determine 

Fermi, paraFermi 

Bose, paraBose 

? 

Now we are ready to formulate the main 
problem we are going to discuss. 

Problem. Is it possible to define crea­
tion and annihilation operators that satisfy 
the second quantization axioms and generate 
some of the Lie superalgebras from the third 
group in the above table ? 
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To answer this question we recall that 
the commutation relations between the crea­
tion and annihilation operators are usually 
derived from the infinitesimal form of the 
translation invariance of the field lP(x), 
namely/6/ . 

[Pm,lP(x)]- -iam'l'(x) m = 0, 1, 2, 3. ( 17) 

It is convenient to pass to discrete no­
tation in momentum space considering the 
field 'I'(~ with mass m to be locked in cube. 
In this case the relation (17) reads as 

[ pm , x/:1 • ki xt· , ( 18) 

where i stands for all discrete indices; 
k~ is the 4-momentum of the particle in 
a state i. The solutions xf of the operator 
equation (18) are by definition creation 
and annihilation operators. Indeed in spite 
of the fact that the commutation relations 
of these operators are still unknown, it is 
clear that the state xflq> carries momentum 
q ± k 1 if jq> is a state with momentum q 
and x:jq> -1- 0. 

As we mentioned, it is possible to define 
operators that satisfy (18) and generate any 
of the classical Lie algebras!~. We know how 
to construct creation and annihilation ope­
rators corresponding to the Lie superalgeb­
ras A<O, n) and C(n). The quantization corres­
ponding to the simple Lie algebras is cal­
led :A-, B-, C- or D -quantization depending on 
the algebra the operators generate. The cor­
responding creation and annihilation opera-

± + + ± tors are denoted as a 1 , b-1 , C( and d
1 

For all mentioned statistics the opera­
tors x~ can be considered as root vectors. 

I 
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Moreover the ordering in the Cartan subal­
gebra can be fixed in such a way that the 
creation (annihilation) operators are nega­
tive (positive) root vectors. 

Definition. The quantization is said to 
be simple if the creation and annihilation 
operators xf satisfy the translation inva­
riance (18) and any finite number of pairs 

± ± t ' 1 L' x 1 , ... , Xt. genera e a s~mp e ~e super-
1 a 

algebra. 
In all cases we known, the momentum ten­

zeror Mmn and the 4-vector P 8 expressed in 
terms of the fields satisfy the commutation 
relations of the algebra of the Poincar~ 
group. 

In order to preserve the main properties 
of the ordinary theory one has to consider 
those representations, leading to a natural 
particle interpretation. Therefore we give 
the following d~finition. 

DEFINITION OF A FOCK SPACE 

Let xi, ... , x!, ... be creation and annihila­
tion operators. The representation space is 
said to be a Fock space of the x-operators 
if it fulfils the conditions 

1. Hermiticity condition 

( + * -Xi ) • x1 ( 19) 

Here * denotes hermitian conjugation ope­
ration. 
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2. Existence of vacuum. There exists 
a vector I 0 > from the representation space 
such that for all i 

X~ I 0 > - 0. 

3. Irreducibility. The representation 
space is spanned on all positive vectors 

+ + + IO xi x 1 ••• x 1 >, 
1 2 m 

m • 0, 1, 2, ... 

( 20) 

( 21) 

For the Lie-algebraical statistics the 
first condition is equivalent to the anti­
hermiticity of the generators of the compact 
form. Therefore the Fock representations of 
finite number of operators are finite-dimen­
sional irreducible representations, and they 
contain a highest weight. The Fock spaces are 
characterized by the following theorem/2/. 

Theorem. Up to a multiplicative constant 
the vacuum is unique and coincides with the 
highest weight vector. The representation 
space is a Fock space if and only if 

- + x 1 xi IO> .o v: if.j. (22) 

We now proceed to give some examples. 

A-STATISTICS 

In this case any finite number of opera-
tors ai , ... , at generate the Lie algebra :A • 

I n n 

The initial quantization equation (18) does 
not determine uniquely the a-operators as 
elements of the algebra. Here we shall men­
tion two realizations which lead to quite 
different physical properties. 

12 

In the first realization the a -operators 
satisfy the double commutation relations/2/ 

[ [a~ , aj ], a: ] "" 8ik a; + 81i a: 

[[a~,ajl,ak] 8 - 8 - ( 2 3) "" - "k a. - .. ak 
I J IJ 

+ + ] [ - ] 0 . a 1 , ai = a. , a. .. 
I l 

The representation space is a Fock space if 
and only if 

a- a+ I 0> "" p8 I 0 > , 
i j ij 

p = l, 2, 3, ... (24) 

The same relation holds for the parastatis­
tics of order p. Therefore we call P an order 
o f the ,A - s t a t i s t i c s . The r e q u i r em e n t ( 2 4 ) 
together with the commutation relations (23) 
determines the representation of the a -ope­
r at or s o f order p . The 'A - s tat i s t i c s can be 
defined by the relations (23). The represen­
tations are determined by the equation (24). 
All calculations can be carried out without 
referring to any Lie-algebraica! properties. 

The order of the statistics p has a well 
defined physical meaning. It turns out that 

+ el + e2 + em 
(a 1 ) (a 1 ) ••• (a

1 
) IO> f. 0 (25) 

I 2 m 

if and only if f1+···+fm~P· This is actually 
the Pauli principles for the A -statistics. 
If the order of the statistics is p then the 
number of any ensemble of particles cannot 
exceed p. 

13 



As an orthonormal basis one can choose 
the vectors 

IP; 1
11

, •.• ,1
1 
>. j ( p-:Ef tl! I •i 1 lt ... ( •i )fo 

n I n I p. .If I o- 0>, 
Vfj ... t-i! 

n 

( 2 6) 

where for definiteness 0< i1 < i2< ... <in. For 
the matrix elements we have 

a; lp; .. , fi , .. > = Jai+l>(p-~fi) lp; ... , fi + 1, ... >' 
J 

a:-lp; .. , f., ... > =jf
1
(p-If

1
+ Ulp; .... ,f.-1, ... >. 

I I j 1 

( 2 7) 

To distinguish from the above realization, 
we call the second realization A - sta tis­
tics/7/. The creation and annihila'iion opera­
tors in this case are labelled with three 
indices. The operator a( creates (~ = +) or . TJI 
annihilates (~ =-) a particle with charge TJ 

and other characteristics i. The a -opera­
c 

tors satisfy the commutation relations 
(~. TJ= ±' i, j, k = 1, 2, ... ). 

[[ ~ ~ TJ ~ a~i ' a~j1 ' a.,.,k 1 ,. o~j,7Jka~i 

[[ ~ ~ TJ ~ 
a~i, a~i 1, a-flk 1 = -o~i,-flka-{ 1 

( 28) 

[[ a~i 'ai ], a~k] = o~l·77k a~i + oij aTJ 
TJk 
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I 

[[a~i ,ail,a~k1 -8 TJ 
~ i, -TJ k a...:.,., j 

TJ o .. a_nk IJ •t 

(28) 

~ TJ 
[a~i ,aTJi 

~ TJ 
a t:· , a . 1 = 0 --.,I -TJ J 

The Fock spaces W(p, q) in this case are la­
belled by two nonnegative integers. 

The Pauli principle. In the Fock space 
W(p, q) there cannot be more than p + q par­
ticles in a single state. The charge of 
an arbitrary ensemble of particles cannot 
be more than p and less than -q. 

Remark that the Ac -statistics does not 
put limitations on the total amount of 
particles in the ensemble. The current cor­
responding to the Ac -statistics is a local 
operator. 

A-SUPERSTATISTICS 

In this case the creation and annihila-
+ + 

tion opera tors a1 , a2, ... generate the Lie 
superalgebra A(O,nlThe structure relations 
of the operators read as follows/81: 

(I a: , a -:-1, a~ ] - 0 + - 0 + 
I J - kj ai ij ak 

(I a~ , a ~I , a~ ] 0 - 0 -= (29) 
1 J ki ai + ij ak 

I + + I a~, a~ I a. , a. I = = 0. 
I J 
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The Fock space of the a-superoperators 
puts limitations on the total amount of 
particles in an ensemble. The current cor­
responding to a charged field is not local 
operator. Elsewhere, we shall consider 
another realization of the a-superoperators, 
that leads to local currents and does not 
restrict the number of particles. 
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