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Quantum Field Theory with a Momentum Space
of Constant Curvature (Perturbation Theory)
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that the S-+matrix elements are given by. convergent expressions, .
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1. Introduction

‘An essential polnt in the conventional procedure of the
S—matrix extension off the mass shell 1s the assumption that
the four~dimensional. momentum Space off the mass shell is a flat
pseudoeuclidéaﬁ space. In fact, this 1is an independent additio~
nal postulate of quantum field theory (Q.F.T.) . The analysis
of the axiomatic Q.F.T. has shown ./~ s that there exists an
alternative of local Q.F.T. in which the virtual 4-momenta
belong to the de Sittér spaoe
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Here P, . 1s the universal constant ( the fundamental length).
In what follows we put + = ¢ = 0 = M = 4.

The picture of elementary partiole interaotion with momenta
\P\ 2 fl_ differs essentially from that existing in the standard
Q.FeTe o For |Pl<< A the geometry of de Sitter p-space is
indistinguishable from the usual pseudoeuclidean geometTy.

In this report we consider another de Sitter space with '
metrilc

2 -2

R S [0 IE R S



K’L;0,4,2}3,(/ /‘ (?kl‘:d:aél (i,‘i,'f{"i,'i) .

Following reg,/1-11/ for the space (1l.1), we introduce
here, through the Fourler transformation on the group of motions
of the space (1.2), the configurational representation.
This representatlon 1s canonically conjugated to the de Sitter

p-space. The geometry of this new space at small distances differs
essentially from the pseudoeuclidean one, It 1is remarkable that at
the same time the new & -space possesses the "causal structure",

It splits in two irreducible regions: the time-like one (conti-
nuous) with the invariant ordering in time, and the space-like
one ( discrete). But the light cone, i.e.,the surface, which
divides in the Minkovsky space these two regions, does not exist
in the § ~space. Later on we shall convinoe ourselves of that
this fact influences essentially the problem of the multiplica-
tion of singular functions in Q.F.T.

On the basls of a natural generalization c¢f the Bogolubov

causality condition to the case of the new configurational repre-

sentatlon, we construct a perturbation theory w;th the local in

§-space Lagranglan density function., The obtalned S-matrix
obeys all the axloms of Q.F.T. /12= s including the require-
ment of translation invarlance,

2. The configurational §— representation

* In the conventional Q.F.T. with the flat p-space we have

two representatives of inhomogeneous pseudoeuclidean motiop group,

given by the transformation formulae:
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where /\ denotes the'hcmogeneous Lorentz transformations. The
relativistic invariance of Q.F.T . 18 formulated in temms of the
Poincare group (2.1), i.e., the motlion group of the configura-
tion space. The group (2.2) has no direct physical meaning; it
is not the group of invariance of the physical theory. To this

end, to show that vacuum 1s not invariant under the transforma-—
tions (2.2)

Nevertheless, certaln guantities in the framework of group
(2.2) have definite interpretation and, moreover, in the theory
they play the key role. The Casimir operator
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is the interval (proper time) operator. For the unitary represen—
tations of the group (2.2) we have the followlng spectrum of
eigenvalues of 6"t

1) 6*>c¢ the time-like region,
2) &%¢=¢ the light—cone,
D 62«eo the space-~like region.

In reglons 1) and 2) we have an additional discrete inva-—
rlant of the group (2.2), the sign of time.

When passing to the de Sitter p-space, the group (2.2) is
replaced by the de Sitter group 0(2.3), because the parallel
shifts ‘

:/> +~ & ) (2.4)
are replaced by the generalized shifts
pl=pBK - o (2.5)

The new operation of the parallel shift, which we denote by (+)
has the following form .

P/. &+Af(ﬂ 7 /f) | (2.6)
=Bﬁ4/“fﬂh.

These>trans£ormations are the pseudoeucllidean rotations
in the4hyperp1anes which contain the vacuum 4 —vector L{zé%,ij
and the § vector k . : . .
In the "flat 1imit" P A< {  shifts (2.5) transform to
the usual parallel shifts (2.4), a3 ) -
The generalization of the operator &  (2.3) to the case
of the de Sitter p-space is the Casimir operator of the group
S0(4.1):



: (2.7)
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Two series of unitary irreducible representations of the
group 50(4,1) exist which correspond to the following eigenvalues
of the operator S (2.7):

1) The continuous A —series

S= U‘(O'-*B):gv‘/\z 0""—‘-1'/“3/:}_’(7{/\(00 (2.9a)

2) The discrete /. -series

S :o’(o*+3) & = L:-l/ 0/1,21 (2.9p)

In the flat limit the /\ —series turns into the time-like
region of the usual Minkowskian x-space ( O‘Z:>o), the /, -éeries
into the space-like region. Later on we shall see, that in the

N ~series the additional discrete invariant { the "sign of time")
also does exist. Let us emphasize that there 1s no analog of
the 1ight cone for the curved p-space. The new time-like and space~
like regions are divided by the finite interval,

Let us consider the eigenfunctions <2 1p> of the Casimir
operator(2.7) in the time-like /\ -region

M M" .<§'f>> =[(5)Z+AZJ<§'PV>' (2.0

The flat 1limit of this equation is

9, . . : ’
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Let us soive now the important problem of parametrization
of the quantity ; y l.eey0f the point of the new configuratio-
nal space. Consider the set of S5-vectors /QZ belonging to the
cone:

gkz_.‘/l/k/l/é

L
It 1s easy to see that the quantity

tlp> = (/VA/DZ);_A

(2';12)

satisfies equation (2.9). The subscript + in expression

(2.12) means that we should treat {3/p> as a generalized
function x) ( comp. 715/ )+ Bach of the poles of the cone (2.11),
corresponding to the positive and negative signs of the time
component /@Q iz 0 is transitive under de Sitter group trans-
formations., We conclude from here that 1n;A —-series a discrete
invariant (the sign of the time) exists.

x) Later on when analysing the matrix elements of S-matrix-

we shall see that in theQ.F.T. with the curved p-space the ultra-
violet divergences are absent and the problem of regularization
of the field-theoretical objects, propagators, does not arise,

It looks like that this problem in the developed scheme 'is
transferred to the plane waves L3p> » It is important to
stress, that here this problem is solved uniquely with the help
of group~theoretical considerations and the requirement of the
proper flat 1limit ( see (2.16) ).



The quantities {3/P> serve as kernels for the Fourier
transformation on the de Sitter space. By the point of the confi-
gurational g -space we call the set of 4 variables

i:(/l,(lj‘_ ) , (2.13)

where /{/ is the four —dimensional part of the five—dimenslonal

1sotropic vector belonglng to the "contour - ./_' which crosses all

generatrices of the cone’(2. 11) ( cf. /157 ). We choos: the
equation of the contour I 1in the fomm

= { (2.14)
hence it follows that A/ ‘s the unit time-like 4-vector
2 72
M -pN=1. (2.15)

In the flat 1imit we have )

t 3
<zl,>>]M=_i = = )2(

e (2.16)
: /ah:/V'k}/\ . ; Ml“
a4 =¢ %
(Qk =AN)

The ' region M = +1 has no analog in the usual theory. When

2—)0 its contribution vanishes. .

Let us introduce in the de Sitter p-space (1.2) the coordi-
nate system ‘

:SLX ) ' . B’
E:" :c/;,('s{hu,\-/—‘z): : O/—Qp :L’A }J/ﬂ//(‘thlk‘”/"""'.’“%ﬂg"/ql .
=ch X cosw ' (? 17)

(50D sl Sind SmS” Cos 7 ) )
-=-o<x<»o , o<w, 8w, oL&¥<U

‘Separating the variables in this coordinate system, we
obtain the solutions of (2.7), the matrix elements of the con-

- tinuous series of unitary irreducible representations of the /de

Sitter group:

</\;h.e.w\{~1.¢;), 9@ =<ARL nlimlwF ey (1

<A WLE (04'-3() /1 ,M‘, (4- Li) (2.19)

20+4 9132 1
=227 - (2D (nad)
{h,e,mkw,ﬁ,t€> I (e+n+72) '
(2.20)

(smw) C ww) Y (3 w) Yhem(w,ﬂ‘e),

where P\) fs the Legendre function of the first kind, C;
the Gegenbauer polynomial, \_(e,,, CAMEE the spherical
function, & = + - sgh Mo

The basic functlons (2.18) obey the orthogonallty condi-

~ tlon:

CcAmbomlw, 9% dQ, <L S04 R E W'Y, =

20’{\17/\' CU"_A S(A A ) ggg é\ h:gee Xluu"(z.z‘l)i

The expansion of the "plane wave" (2.12) over the bas:l.c
functions (2.18) has the form:
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The para.meters g 3’,\/ 9 (.P ~are connected with the
four-vector A/ : Co o
/V 0058
> (2,23 )
J= s
n = (sinQ,Co5s%, SinT, S, o5 )
m = ASh R Ty 2N A P T TP

The plane waves (2.22) submit to the following orthogona-—
lity cordition

' </ > - 3(;
@y §<;/f>c/@ P f)

C,IHHI/\ 8(/\ A) 8(/1/ /V/) (2.24');'."

A CAEH+ 1)

The plane waves in the discrete space—time region are
constructed in a similar way. The orthogona.lity condition for
them has the form

(QT)V S‘<5”)\7c}ﬂf’<f)|§ > '{'WSLL, 8[/1//1/) (2.25)
where A/, /V’ | e.re unit ope:cc-like ;ectors.‘»‘ )
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We can construot the Fourier analysis on.the-de Sitter
group, expanding the.functions _ﬁ(P) given on-the space (1.2) -
over the orthogonal system of plane waves <§IP> o A:detalled
treatment of this scheme requiring the analytic continuation
in- components of the A/ —vector, is outside the scope of this
report. We only mentlon here that the representation of 'the
function l(P) in terms of its images - ?(;) on the : 3 -
space contains both the integral over the continuous spectrum and
the sum over.the .discrete one:

¥<P>'<z.>fa.§d;«(A>d—Q <P £(s>+
g‘z}«u AQ <,0I§> P (;_);*

.;L (21:)’/2- ‘ SOy !
= o, <>ty
= AR )= (B L) 2)

/‘\(Az + Y )

‘We can p'é,éé from the summation over A ' in (2 26)
to the integration over the complex variavle = &
along the contour which goes nea.r the real axis and encloses
points of thevdiscrete spectrum in the positive direction with
the measure. :

(o) = —cigre‘ (r+% )(«ru)(m,,z)dc— |
/ e S (2.27)
possessing the simple poles at points of discrete snectrum (2. ij.

Concluding this section, we write down the differential-

difference equation in the f- space whose solution is the .
plane wave ’

’c)
N 2 32 A TR
K<3lp> = [2chss * 533, ,SL"‘?' (e R)E ) 08

= 4p, <FIp>

11



(63
where A/v 1s the angular part of the dfAlambert operator

corresponding to the space like or time like case.
In the flat limit

2]&, - ,24-,02

2
K—? 2"'{72)5/,_)

K 1s an analog of the Klein-Gordon
$ -space.

(2. 29)

i.e., the operator
operator in the
3. The theory of free fields

Let bus consider the free scalar fields withv mass m /9/.
In the p-gpaoe they are on the three-=dimensional mass shell

2_ 2 = .
P m’ =0 (3.1)

This equation does not contradict the equation (1.2). Con-
sequently, the mass shell could be embedded into the 4~dimensio-
nal de Sitter space. ‘ ’

Let us denote by  +the non-Buclidean distance between
origin and point (m, 2", Vi+m* ) of the de Sitter space, i.e.,

GZ/L=V1+*"‘ =My, -54/“—‘#1 . (3.2)
Basing upon equation (1.2) and the fact that to each value of ,0

there correspond two values of P-( , which differ only in sign, we
come to the two conditions

Cﬁjk ~f =0,
rcL/« +Py

In what follows we suppose that the free fields obey the equa-
tion which 1s a consequenoe of (3.3a):

2 (C’Aj* “Pq)‘MP/PV) =o0.

(30 33)

(3.4 )

12

o . (3.3.5)
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.mensional p-space becomes significant.

In the flat 1limit equation (3.4) turns into the Klein-Gordon
equation

(MZ—PZ)SP(,D) =0. (3.5)
On the mass shell (3.1) the equality 737,
Yipm) = 9Py (3.6 )
holds, where A
e (pp) = S(2p, ~2m, 7 A ), (3.72)
wip) 8(/02452) Plp) - (3.75)

There 1s no connection between Sﬂ(f,ﬂ) and {/(/0)

off the mass shell, and the role of the geometry of the 4-di-

From (3.6) we obtain the commutator of free fields

[€ipa, p), CR)] = -8 (P pIeRIBCR ) 5

and the normal pairing

| =,(',_2 00)8 (2p-2imy) =
P ) FlpoBe) = 8CPL-RITCP) 8 (2= Limy)

—8()01, Pz ;b( )(P,
S(F‘,Fz) dﬂf‘ S(Pc Fz)d F ~ .

It follows frop (3.6) that the operator of 4-momentum P
could be defined also 1n a usual way r

‘P)‘ Lp(/;ﬁ,)@ = B pp, )

Let us consider now .the scalar ﬁ.eld ?(3’)
gurational § ~representation:

(3.9)

(3.10)

in the confi~ _

13 : : |
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é”(f)=[_;,-7;§f<f//> YPpIAL2p (3.11)
‘Applying the transtormation (3. 10) to. (3. 11) we arrive at the
field with billocal dependence on )< a.nd ;’

v, (3) = o Px ) 0P

.-(3.12) i

L fcrip>e’” Wﬁ)f/ﬂ

(-?/)

The nature, of variables X and is different. Only

in the flat limit g (§) —> ¥+ $) .. . It is important that .-
; is translation —~-invariant:
a ' v'\ .
4//;/? :éﬂ*i /3’/ o (3.13)

which allows us to interprete it as some. relative, inner, . A
variable.

In fact, the physical meaning of this variable. folllows: =
from the role of %  in the dynamical equa.tio,ns_,_x), .

s e . c—

x) The notion “bilocal dependence® ‘is barrowed frun the

book /16/ « Despite the physical and geometrical considerations
which have introduced the quantity % (§) differ from / 16/,
nevertheless ‘the ideological resemblance of two approaches is .
obvious. This 1is clear from the following quotation from /16/:’
LT This way the ooncept of two spaces, ‘space X and spaoe ; ’
arises. It is natural, that the 3 ~-space could possess

also other pecullar geometrical properties, which differ

from properties of the x-space and with which 1t would ‘be
possible to connect the specific features of the weak interac-
tions",

14
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Let lis calculate now the frequency parts of tl}e commutator
funotion. We note that due to (3.8) and (3.9) the oommutation
function

[0, 47 0] = % f<;/f>ecp,)$(2p -2 )a/ﬂ,o e
o = :25(57 v

and its frequency parts

(2:;)’ \<§IP>9(? )%(QP“ 2“‘“ )"LQ ;6(”(%) | . " (315) -

S<i|r>9(— B(ZF m,) ﬂr ;5(-(; U Gae

do not depend on X.--

Each step of calcula.ting the integrals (3 15) and (3. 16) has
an analog in the usual Q F.Ts: ( see§16 in /12 ) So on
integrating the “angular" part in (3.15) in the continuous time-
-like pa.rt of the spectrum, we get :Z)(“(f) in the fom

4 '
5()(“(5) == '/,1) %A /D (f(/t/o,A) N (3.17)
where . 14 /z
9”(/1/0,/1 (2“ f(A/’” + & me 04/]—541)) (3.18)
. /[4, _'
Wy =24, M= 9/A /A// sAA E 7h !
The operator‘ F) ha.s the fom ‘ ,> —2 5 S o .
P:SLA( -te/\ ) M*% e . 5K ' (3.19)

In the flat limit ©)

x) For all the quantities of the conventional Q.F.T. we use
notations of the book

15
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. 2 . .
p — ﬁc\TSI\A?,"; , o o ' (3.20)

where \ ‘-’Xazf ;ZZ and Spa/o,/i) goes over to the integral
representation for functions HE (myxT ) or //a(zf/hﬁ’} for
Xo>0 andX, <0 , resp., ( of. /¥ ), . 3 :

In our case in the time-like reglon we have also different
expressions for A/ >o and f/, <o - , Besides, we must consider
separately the expressicns for 5¢*’(7 ) 1in "classical® M= -1
and "non-classical" A4 =+{  reglons. PR

We have the following expressions for 3 {;’}_:ﬂﬂ?/tf“&'f):)

> : . \/;,_7/"/-[/1-}2) Ay o
D (A-4,+) = s P, (=) G20
O =) VElAG) pidpm ) |
3" (4, jf )= 2c (2/7)1/2«1_ ’Dlrz (= ) : (3.21v)

A C 08 i 2N :
;D+(/f,+:/)+):"? (;"“,/z, ) p QZ”,;'/ (3.21 ¢)

2{f’/A]~+1’_1) = 0. (?.21d)

. +)' : - . .
The function ;Zsf (;’) has no singularities in the continu

ous spectrum, )
The expression for ,25 (f) in the discrete space-like region

could be obtained in straightforward way by analytic continuation -

with respect to interval. An analog of this continuation exists
in the usual Q.F,T, for A % O . Due to the relations

R BT
K(Z)=57l'€ H, (z@ )sz_qj”,_é H (ze ) (.22

 between McDonald K, and Hankel H, 112/ functions, the expres-
sions for 1)(”()4 in the spaoce-like region are obtained from
D) 1n the time-like region by the substitution

- er"‘i\/-,\ (3.23) .

( + =SJ"X0)." p - . X ;‘(‘;

16

The-detailed discussion of this calqulation in the case
of the curved p-space ‘goes out of this report. We only write down
here the prescription of the analytic continuation

"L.'/\-B/g\ > -0-3 “for A/o>0
(3.24)

N=%R — o for A, <0

where 6~ are in the neighbourhood of the discrete spectrum
=L . ° for i
We get the following expression for ;2(‘ /2),/'4/" ""{)

¥ \/_‘1—1_7/_’/54':[) ‘_o—-%’hu -
2 ‘ Vo) = ok P’/:. ( ’ (3_.25}

The quantity ﬁ(”(o‘) has a’simpie pole at the point
6 =-41 . This is the only singularity which contributes to the
integrals of perturbation theory ( see$4 ). Fdr large A  ande
’ZF"{;) e {+; +), -
In the flat limit 2 (§) passes into the B (x).
of local Q.F.T.:

7 6 A1) -
@f*’[x)- 9.7%—5()(0)8//\) —J’/ﬂﬁ_' 9/4) /// [h V:\) -
(3.26)

,—9(-A)17;% K (m/x) . )

The values of Zsrn(f) in region M, = +1 vanish in the
flat limit, ' ‘ '
We enipha.size that in the ¥ -space no term like
,’;" Elx°) B(A) does exist. This result is a clear manifestation
of the absence of an analog of the light cone in the ; -

space, _
Consider this in more detail. In the conventional Q.F.T, we

1Y)
have the following expression for ;ZS (%)

20 == A2 g0sa) oo

17
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For 5/’(x /l) we have different expressions in the tiime-like ;
and spaoe—like regions:

w6e) =90 E B i) -
b 2 2K, (VT

(3.28)

. . . o

where the superscript of H-functlion depends on Sj"X .
The differentiation with respect to A produoes .the

tern £ £0x?) §().

In the 3 -space; the differential operator &,7-— is
replaced by the finite-difference operator p +. . The applica- .
tion of this operator to Y#iA) does not introduce new
singularity. The recurrencé operator ,0 expresses 2)(‘”(;)
in terms of &  at shifted ‘points.

" The function 3 ”’(f) i1s commected with 25/’“)/3’) 'by the
relation

2 /'M// B Zm)/f / ' )
For ([;) we get ‘.
2(3) = Swv) B ”fz) FewIB ez )

Vo' (74~ & -t/f © 7 (3.30a)
G (,?/7/%.. / ‘ ;
T Plett) ek g e . (3.30D)
" aiaik a ).

For massless partlcles in the time~like region we have ( cf./17/)
-y ) .
2G)] < G
=0

Gt (A%Y )

18

The expi'ession for 2 (37 ) = oé(”/;’/f a’bﬁl/y’/

1s as follows:

A7) = f(xV)(m,/z Flin-4 )e slin. 0”’” ) (3.322)

for the time-like /1— region
é(f) =0 for the space-like b region.(3.32b)

Equation (3.32) provides the folldwing locality condition for
the free flelds

" ﬂaf ‘
Zgﬂxb“t{i)} 4, /0)]: © L (3.39)

1f ; & space-like L»region.

4., Formulation of the pertur‘ba.tion theory

In papers /3=5/ e Bogolubov causality condition was
generalized to the ; ~space, corresponding to the de Sitter
p-space (1l.1) in the fom . ‘

S8 - Jen) [ §) g - )
- A (80),

S, . ) )
where ./k /j) 1s the current opera.tor, /(X/fa), the quasi-
local terms. - ) -
‘l‘hough in our case (l 2) the structure of the ; ~3pace
di ffers from that considered in papers /3_5/ s the causality
condition is written in the same form, but ; means now the
configurational representa‘tion, conjugated to the p-space (1.2).
In the comventlonal Q. F .T, the locality condition for '
free flelds and for current operators, descri‘bing the interac-
ting systems have the same form. In the scheme _developed, 1t 1is

“19




naturally therefore to formulate the locality condition for
the currents as the requirement that theilr commutators vanish
in .the space-like region: .

[LJx(E)LJx(O)] =0 c | . (4.2)

for 3 &l - reglon. v
/ As in the conventional Q.F.p, /12-14/ » we shall consider
equation (4.1) as an equation of motion for the current. In
the case, when 1t 1s possible to look .for the solution of

" equation (4.1) as an expansion in small coupling'constant‘g, H

k) = j_‘_ g .\'X(‘"’(S )

and the quasi-local term in the lowest perturbation order
has the form

A G = e M) s

(4.8
We deduce the solution - . e R i
é?67< : 4.0 T | ’
Jx (3)=¢ San Ox : S (45
where ' s : . .
oy = [; exp /;//;VX Flel 12y ) - (4.6)

- and the local lagrangian density function ,f{x /f) has the form:

o‘/@/ e ) @

The operator C”_x _ resembles the scattering operator in
the local Q.F.T. The symbol T,’ represents the invariant’ ordering
based on the existing step fumctien' J(4°) .

But G does not obey the condil:lon of the translation
invariance. ' . ’

To construct.the translation-invariant S-matrix, we
introduce the switching on functian’ g,( (3) (et /22 ) with
bilocal dependence on- X and 3 , Because X  ani z

are independent variables,' there exlst the functional derivatives
of two types: /g‘ x(i) corresponding to the variation of ﬁ/\

as a function of 3 (gy(3) > GuG)+6G)) %j(")
corresponding to the variation of as a function of X
(9x(3) > Zu() +B ).

Introduce now the operator _
SCT; 6~ +
= = x . 4,8) .
He3) =ig 7.0) 4.8)

‘and define the S-matrix via the Telatlon

< AS_S___ * = Hx‘(o.). _ (4.9)
(0) ; - V
9!

The. S_matrix extracted from this relation satisfies all the
requirements of Q.F.T.
In the lowest perturbation orders it has the form

L = Ag(fo‘{(a)o/ )
g een) [4, 4. /;470/& o0y,

We do not obtain here the closed expression in the form of
the ordered 7} exponent, Each term contains the integi-ation
over d'x which garantees the translation invariance (the
averaging over the translation group),

As an example, we oonsider the matrix element (/’f /5‘2 /ﬂz >
in the second perturbation order which would correspond,in the
usual approach, ’tp the self energy diagram in the tp‘ theo-

Y.

(4.10)

Using the relations

[((7 G).a //’)] @y ‘/——'<37/" Jf 2 (4.11a)
[a(’?p) (;’)7 (;,;2 v <f/f S D o Gamw
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we oome to the following expreésions'

plsdp> = - J(j;j’j) 8(p-p )

L0 Jds o [ (2%)"- (0] -
[ol), 969/ (3“0’ (s3]
IS+ Gl

The firsé term represents the imaginary part of the matrix
element, and Zﬁf*?&) and ;ﬁ’:yk) are usual frequency
parts of the commutation function. This term coincides with the
imaginary part of the usual matrix element and reduces in the
momentum space. to the‘convergentvintegral_over the mass shell.
The second term, oontaining the integration over the } ~space
in the flat 1imit colnoides with the real part of the polariza-
tion operator which diverges because the integrand contains the
non—integrable produot of singular functions.,

In the curved case, as we know, the only singularities
of .E( ){;)are the simple poles of these as functions of complex
interval &~ , at the point - & = -l. The integration over
the "radial" part @~ runs along the contour around this pole
and reduces to taking the residue. ( In the case (4.12) remember-
ing that the volume element (2.27) also contains the poles, we
have the residue of third order), .

S0, we have shown that in this approach no non-integrable
expressions enter into integrals. The rule of integration of
singularities follows straghtforward from geometrical, group
theoretical apparatus which makes a basis of this scheme,

(4.12)
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