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On the Nonunigueness of the Current Definition
in the Thirring Model

Aneva B, Mikhov 5, Stoyanov D.

In the paper it is shown that for the Thirring model there
exists a more general definition of the current, which implies
that the renormalized solutions form a ane parameter family. It
iz also shown that with this more general curvent definition the
conformal dimension of the two-point functions is not fixed, Thus
the Thirring model acquires all characteristic fvatures of a dgauge
model, The two-point functions for lields of one and the same
and of different renormalizations are calculated,

The invesligation has been performed at the Laboratory
of Theoretical Physics, JINR,

»Dubna 1978

Preprint of the Jaint Institute for Nuclear Research.

In a series of papers ’'1"* the exact solution of the
renormalized massless quantum Thirring model has
been constructed as an exponential from two fields,
which are usually called massless scalar fields. As it
has been shown in paper’? these fields are not usual
scalars, moreover the solutions of the Thirring model
are not spinors (even in the sense that is accepted for
a spinor in a two dimensional space-time).

As it is known the solution of the Thirring model
leading off Johnson/5 is connected with the conserva-
tion of two currents (a vector one and an axial one) that
can be expressed as gradients of two scalar fields. In
paper ‘% a correct definition of the vector current has
been given too (see also/6/) and later on all authors
followed this definition. However as we show in the pre-
sent work this definition is not unique. The obtained
here new definition of the vector current coincides in
some special case with that of Johnson’/%. On the other
hand it provides a possibility to establish that there
exists a closer connection between the Thirring model
and the gauge model. It is shown in particular that both
models have analogous properties with respect to the
conformal and to the gauge symmetries and the hence
resulting consequences have been considered too.



1. THE GAUGE MODEL IN TWO-DIMENSIONAL
SPACE-TIME

We call a gauge model the quantum field theory of two
interacting fields - a scalar one ¢(x) and a spinor one
y(X). based on the following equations*

K " .
ly d () = g e HX)y yHX): ; yO =ay, yl= iog, (1.1)
OG(X) = 0, (1.2)

where o4, og are the Pauli matrices. The field §(x)
we consider is completeflg identical with the massless
"scalar” field of paper '*. In particular we once more
write the nonzero commutation relations which hold for
the field #(%) and its creation and annihilationparts ¢ (x) :

| (), ()] = iD(x - y), (1.3)
|:¢‘t(x)' ‘ES:F(Y)] = Dt(x ~¥). I ¢ ¥ )

The eq. (1.2) is also satisfied by the dual field (%) (pse-
udoscalar). The latter is related with the field by the
differential equalities:

~ 1
LL‘#J(X) + f,uVav<ﬁ(x):0 (f;w =€y, €QLT € o =1). (1.5}

The dual field (sometimes it is called conjugated) and
its creation and annihilation parts ¢ (x) satisfy the
same ¢ommutation relations (1.3) and (1.4). Their com-
mutators with the fields (%) and ¢ ~(¥) are the fol-
lowing

[, ¢V = iD(x—y),

o~ ¥ -t + +
le (0, ¢ M =D (x-y); [¢ (%), q5+(y)] = 0. (1.6)

* The symbol : : denotes normal ordering.

The commutation functions are given in Appendix A.

"With the help of the fields listed here, an exact solution

of eq. (1.1) can be constructed. By a direct substitution
it can be verified that the expression

Wi, ) =~ e 1By %~ (%) ~ lagp " (9] expl-iags * (X) + 1By %6 T (9hu
a1.m

(y 5: y D}/ I )
i . Uy ,
is such a solution. (Here u=( 112) , [ug]=lug| , ug=const).
The constants « and £ are related only by the equation
a—[3 = i (1.8)

The solutions (1.7) form a one-parameter family. We
choose « as a parameter and consider 3 expressed by
it, due to (1.8), The transformation laws of the fields
b (%) and ¢ " (x) under the two-dimensional conformal
group have been found in/”*“ - With the help of these trans-
formations the corresponding transformations of the
”spinor” field (1.7) can be obtained. The latter coincide
in form with the, transformations of the Thirring field,
given in paper’*. The only difference is that « and 8
satisfy a single equality (1.8). The generators of these
transformations for any « and {4 are given in Ap-
pendix B. As in’% it can be shown that eq. (1.1) is
covariant with respect to the infinitesimal transforma-
tions of the two-dimensional conformal group and with
respect to the global transformations of its universal co-
vering group. As far as the proof of this statement does
not differ at all from the proof of the analogous statement
for the Thirring case given in /4/ we do not consider it
here. However we remark that the parameter « is
connected with the conformal dimension of the two-point
function which is hence not fixed. Indeed starting from
eq. (1.7) and using eqs. (1.4) and (1.6) we can readily
calculate the two point function of the fields y(x):

Aij (X ~¥) = <O yri (g3 WI0>  Lj = 1,2 (1.9)



Here ljj(y) is the Dirac conjugated field. If we denote
z-x—y then the functions (1.9) have the following form

_ ;4-1;;[{-32(—1) LA
Agj(2) = u’j(—uazzrin i0z ) x

B8 .
é§1(~1)J-:(~1)1] .
0 1 .
(22210 o (1.10)

2 +0

In this formula u; =(u*y0) where u* is the hermitian
conjugated quantity. The functions Aij(Z  are obviously
homogeneous in z  but the degree of homogeneity de-
pends on the indices i and j. Indeed the diagonal terms
of the matrix A (% have one homogeneity degree

B2 ®  gheag
2a T ey

and the nondiagonal - another one

a® 8% 2 g ¥ -2ap

2 2

Nevertheless, as we see further, the two-point function
(1.9) of the spinor field w(x) is conformal invariant.
Apparently this invariance is due to the corresponding
invariance of eq. (1.1) although such statement is not
always true. The presence of diagonal terms in the two-

point function namely points out. that in the quantum theory,

of the gauge model a spontaneous breakdown of some
symmetry takes place. To prove the latter we consider
the iransfermation

- '
l/)’(x) - 8 XY l/}(X); qs(x) e (f)(x)- (1-]1‘)

( x 'is a numerical parameter and y%-,%, 1), Obviously
the eq. (1.1) remains invariant under this transformation.
Now if we would suppose invariance of the vacuum state
|0- too, then the two-point function A ;i(z) from (1.9)
should satisfy the following equation

; b . 5
Ay (1) =167 Ao NV - 1.12)

We should have in particular for the diagonal terms
(taking into account that the matrix y° is diagonal)

A e (8) = e 20 IA (2. (1.13)

Hence however it follows
A gp(#) = 0,

which is in contradiction with eq. (1.10). Thus the
vacuum is not invariant with respect to the symmetry
(1.11), so this symmetry is spontaneously broken.

Let us consider also the following operator gauge
transformation:

(X, a) » ZeXpiiK[yS g?;(x) — (X)) (%, a): 7 (1.14)

Taking into account the explicit form of the (Xa) it is
easily verified that the transformation (1.14) is actually
reduced to the transformation

Y%, o) > (X et w), (1.15)

i.e., to a translation of a parameter «. Hence § also
translates in such a way that eq. (1.8) holds. Therefore
eq. (1.1) is covariant with respect to the gauge transfor-
mation (1.14).

Here it can be shown that the vacuum is not invariant
under the given symmetry (1.14). If we suppose the cont-
rary, then the two-point function should not change under
the substitutions a-a+x and B- 8+« As it is seen
from (1.10) this is not the case, which proves our state-
ment.



At the end we note that the consideredabove one-para-
meter solution of eq. (1.1) is a special case of a more
general two-parameter solution

G(% ar o) = espligy *g T (H)=da’p (W)} %

N 5+ (1.16)
xexpl-iap (X +i8y & (N,
where

a’-B'=a-B=g. (1.17)
The discussion of this solution leads only to more cum-

bersome calculations without any principle difference
from the given above results, so we omit, it here.

2. THE CURRENT IN THE THIRRING MODEL

The current in‘the Thirring model has been defined
pefore according to Johnson/5%/. We remind this defi-
nition. One constructs the following two expressions

Jp = lim i = limo gy, (1),

’ =0 " BT ey 2.1)
51‘90 ?1%1

where

—4?7(11 +,H )--

#(X €) = (=€ ) [yr(x + f)y#,’,’,(x) —gb(x)l;(x - f)y#]’ (2.2)

and

(We consider here, as in /4/,  the renormalized Thirring
model).Then one takes their linear combination and fmds
the current in the form

To® = 3,0 3, 0L (2.3)

The renormalized Thirring model with such a current
leads to solutions of the type (1.7) but with different rela-
tions for ¢ and {:

aff = 7. B—:a=—§;—€a + ). (2.4)

The current is expressed further with the help of the
field

1,08 - —%—(a+ﬁ)0ﬂ¢(x). (2.5)

This current namely reduces the Thirring model to the
gauge model, considered in Sec. 2.

On the other hand it is not difficult to calculate the
expression (2.1) with the help of (1.7) without fixing «
and £

jo (0 = -ﬁ-q by KD a6~ Bl - «d_ b + 0 Bl

afs uf3
_ i o w - -
J(x)y = - é;—(_l) H-1) [-"-(u')lgb - fialqbl A oad b= 3d 1P f
(2.6)
- 1 -
Jg(®) = zad (&,
-~ 1 2.7
] 1(X) = —TT—,U(JI(]S, ( )
A iTA
where for simplicity we have set (-1 =e and
a2+1['52
T
(1 2) _ |uj 2_ !

~2~7-7-*-.

It is easy to note that eqs. (2.6) and (2.7) give the mutual
inverse relations between the quantities j, (¥ and
]# {(x) on one hand and between ud, ¢, 33, ¢ and aal 96,38145
on the cther hand. Therefore we can solve eqs. (2.6) and

9



(2.7) with respect to 9, ¢(X -and 0, é(¥.  without fi-
Xing ¢ and B then construct the current from eq. (2.5)

considering this equality as its definition,

1
sola+ Blogh =T, (x) -

af3
1 ) 1 B E??—
= —-—.{JU(X) + —2"-(‘—1) |JO (X) - Jl(x)] -
o8 |
i 27 '
- -é—(“l) IJO(X) + Jl(x)“ 4 | “ (28)

1
slas B = 1y (x) -
afl

L —

- 3l,m - Loy Ty
=2 ‘]I(x) —‘—2—(-*1) [ O(X) —- ] l(x)] =
B
i & .
“g D g™+ i, ol @9

Thus, if we define the current in the Thirring model
by eqs. (2.8) and (2.9), one of the relations between the

coefficients a and A2 no longer arises, and instead of
(2.4) we have only

B—a:é;h+ﬁ% | (2.10)

The definition (2.8)-(2.9) differs from that of Johnson
but it is reduced to it by setting «f - . ’

Thfe eq. (2.10) does not determine the constant « and
£ uniquely and therefore eq. (1.7) represents a one-
parameter family of renormalized solutions of the Thir-

ring model. As is known the factor (-®) (e > 0)

10

has the meaning of a renormalization constant for the
field operators. More exactly the relation between the
renormalized fields ¥(x}) and the unrenormalized ones
o (¥ is of the type: -

1
. —=§ﬁ(a2+rﬁ %421
Y(X) o (= )F 0 W (X).

Y

2.11)

As far as « and 5 are related only by eq. (2.10),
then eq. (2.11) means that there exists a one-parameter
family of renormalizations in the Thirring model. We
choose ; as a parameter of this family.

Any solution belonging to this family with given «
is expressed by the scalar fields #(x} and (H(x) according
to eq. (1.7). Therefore the Thirring equation with any
« is covariant with respect to the representation of the
conformal algebra with generators given in Appendix B.
Considering the whole family of renormalized solutions
we find a closer connection between the Thirring model
and the gauge model.

In particular here as it is in the case of the gauge
model there is no sense to assign any conformal dimen-
sion to the two-point functions of the fields y(x), because
it depends on « and hence on the chosen renormali-
zation. Besides, it is possible, with the help of a trans-
formation analogous to (1.14) to change the value of the
parameter « thus passing over from one renormalized
solution to another, i.e., roughly speaking from one
dimension to another. In particular, the transformation

(%, @) - texpliCe - DIy’ g3 - ap(Ii(x, Ok (2.12)

which is simply a multiplication of the constant « and
B with «

1/{(){, a) » Y(X, ka) (2.13)
leaves eq. (2.10) unchanged. Therefore the whole family
of renormalized Thirring equations is invariant with

respect to the transformations (2.12).

1



At the end WE show that the expressions for the cur-
rent components (2.8) and (2.9) can be written in mani-

festly covariant form. For this purpose we introduce the
quantities

C |
T, (1) =51V, (s)(a#’”wfli g MV, (6, re, NI (xa), (2.14)

where I.(%¢) is given by eq. (2.2) (« and 8 arbit-
rary, and V (<) and Voo are given by

_o
0 1. 2 -1 (215)
Vi@ = 20 )
0 . .
¢ e —-10
It is easily found that
afs
1 T em
lim T, (%) = = |(~1) g® +i,(x] +
. °=0 2
ebo a3
Eaas
+{-1) g =i, (= T, (.

B T (50 = (9 = Ty (.

61‘0

Therefore we can write the current (2.8) and (2.9) in
the following covariant form

1%

-
W@ = T, () i, T, (9], (2.16)

3. CONFORMAL INVARIANT TWO-POINT FUNCTIONS

We show in this section that the two-point functions
of the type (1.10) are invariant with respect to the re-

12

presentation of the conformal group with generators
iven in Appendix B. :

¢ Let the fields ¢!(x) and v*x transform under the
above-mentioned representations with parameters ay,
By and a9, By respectively. We calculate the two-
point function of these fields defined by the formula

Ll - 3.1
Ajj (0 = <0y (D¢ O]0>, @G.1)
(d_; denotes the Dirac conjugated spinor_). The condition
for Lorentz invariance leads to the equation

(M[u/ A)i_j(x) == 1(’&1 Ay = Ky a,u)Aij (%) +

ifpv“Eﬁl 5 if;w“l:@2

5 5 3.2
b gee——ly A(X) ] == (A®)y Dy = 0. 3.2)

The latter is obtained in the standard way using
eq. (B,) (see Appendix B). Analogqusly'using eq. (B
one can find the condition for scale invariant of the two-
point function (3.1)

2
(DA) ij (X)) = ix“aﬂ_ A“(X) + i—'**g;-/\ij (x) —
B1be
e “(VBA(X)}/S)U:O. (3.3)

The condition for invariance under the special‘conforrrlial
transformations (K, A);(x) =0 can be obtained using
(B,). This condition however does not lead_toinew equa-
tions for the functions (Aij (¥, because it is reduced
to the eqs. (3.2) and (3.3). Actually, if we wr-'ite the. ex-
pression (K, A);(¥) explicitly, it can be readily verified
that the identity holds

KpNij(®) = X My Aij(%) = Xu(DA)(x), (3.4)

13



which proves our statement. The system of eqs. (3.2)
and (3.3) is simple enough, so it is not difficult to solve.
To make sure of this one has to introduce new variables

. X
u :'X-'x y Vo= _"';""r' !’\1‘] (x) = AIJ (u, V), (3_5)
X
+ . .
where x~ =x+ x1 _jp.

Then eqs. (3.2) and (3.3) take the following simple
form

V—(jTAI] (“,V) = _4"?'1"[(11{_‘2(“1) 1 "‘=(12F$1(“1) I]Alj (U, V), (3.6)

d 1., i+]
u'a'u_"’—\ij(u- V) = ‘i&‘l:ﬁlﬁe(—l) -y ua E]Aij(u' V). (3‘7)

In finding the latter equations we made use of the conc-
rete form of the matrix 3} =(-D*5, . Solving the sys-
tem and going back to the variables X,» We obtain the
following end result

1 _ i+]
e [filﬂ52{— 1 ~u quo |

A0 = Hijl "% 4 iox®)y .
1, j i
x g g T ®1B2C D ~Brag-1) |
e - 2 ) (3.8)
X +x74i0

Here H'ij are arbitrary integration constants. It is easy
to observe now that if « - g and 1= 3 gothe expression
(3.8) coincides with the expression (1.10) which proves
the conformal invariance of the latter.

The functions (3.8) differ from zero for any ay, 4
and «y,8, . Therefore the two-point functions of the
Thirring fields with different remormalization constants
are not zero too. '

14

At the end we note that two-point functions of the type

~ 1 2
Aij (8} = <0l¢rj (D (00> (3.9)

are also different from zero. The explicit form of the
latter is easily obtained if in eq. (3.8) we set ag=—a,

APPENDIX A

In the paper the following commutation functions have
been used

1 0 _F -1 2 2 . 0
(%) —_=_§E(xﬂ)®(x ) D (®=F by x L i0x0),

D (0+D (x) = iD(x),

~ 1 1 - 1 x" —x'Ti0
D(x) S e —2-~f (X )(’)(—-X ), D (X) =1t TW-].D ;ﬁ‘;ﬂ};Tii‘a

D+ D (® - iD(x).

APPENDIX B

We write the commutation relations of the conformal
group generators with the ”spinor” field

[Py w00l = id, y(w), o (B.1)

lMpu (D) = =i(x, 0, —Xydy DRy +

(B.2)
+ ¢ a8+ BLy Dy(x):

D, ¥(x)] = ixiua,u (%) + {al + 8BSy 5)1/;(1;): (B.3)

15



[Kpe o (0] = - i(2xp %0/ ~8 uX 2)0”,,{,(;{) v 2xu(al + B8y Y pxyey
+ 2 x": (a8 4 Ly Oy(x): | (B.4)

where « and g are arbitrary constants and

1+ - 1+ -
§= b (0) + b (0)], 1, - ——la (0)+ a ()L
2\/ 2r 2 2

The constant operators a"&(O) and bf(O) are defined
in paper '4/. They have the following commutation rels-.
tions with the fields

[a™ 0), (9] =7 i -Zemy),

V2m

+ .
[ O ¢(x) = Ti-doe,® cn),
e
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