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I. I_ntrodUCtig!! 

In our preceding paper/1/ a version of the covariant Hamil­

tonian formulation of quantum field theory (QFT) on the light 

cone was considered for the case of scalar particles .• The result­

ing scheme, which is an alternative to the Hamiltonian field 

theory, developed in refa. 121, is baaed on the Tomonaga-Schw1nger 

equation for the scattering matrix S(6',-0o) defined on the hy­

perplanes of the type 
-'>""> 

f-' X = t-'0X0 - ~ X = 6-, ( 1. 1 ) 

where p. is.an 2 
arbitrary light-like 4-vector: M = 0 , p

0 
> 0 • 

ll I 
This equation has the form 

t 'o S(&-o0) = H(x) $(6',-0o), 
'o 6'(x) ( 1.2) 

where ~(x) is the Hamiltonian in the interaction representation 

and the total scattering matrix $(00,-00) is given by the re­

lation $(o0,-o0)ae: S = Um S(s-,-0o). The transition from the des-
~~o0 

cription of the time dependence of the events to the description 

in terms of 6-

variables. 

is equivalent to the transition to light-front 

To formulate the causality condition in terms of the hyper­

planes (1.1), the 4-vector ti is treated as a limit of a se­

quence of the time-like vectors ~~ , i.e., 
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tim. .Ag= t-t. ' '6"-o 
( 1. J) 

2. 2. 0 

,A,& = 6 , .),,. > 0 . 

The limiting procedure (1.J) removes at the same time all addi­

tional singularities which accompany each scalar field theory 

in the light-front variables. 

The characteristic feature of this approach is the presence 

in the theory of spurions (quasiparticles), carrying 4-momentum 

~ae, where ze is th~ scalar parameter121• To the virtual quasi­

particles in the intermediate states there corresponds the pro-
..1..._1_ 

pagator 2Jt ae-ie. and to the physical particles the function 
'<+) o 2. 2 
D(K,tn)=e{li: )'6(k-m) • Thus, physical particles in the intermediate 

states are on the mass shell and therefore a natural way for 

extending off the energy shell arises. The projecting properties 

of the wave functions and other quantities follow directly from 

the diagrammatic rules/11, which were applied to derive quasi­

potential type equations and a generalized eikonal representa­

tion for the scattering amplitude at high energies/JI.*) 

· In the present paper, which is the continuation of ref.111, 

a covariant Hamiltonian formulation of QFT on the light cone is 

extended to the case of particles with spin and as before our 

approach is based on the spurion technique/2 , 51. Some difficul­

ties, which arise in quantizing field thories on the light front 

in the case of particles •with spin, have been analyzed in refs. 

16 ,7I.**) It turns out that in this case the theory is accompanied 

*)Thie diagram technique was also applied for the study of 
the structure of relativistic wave functions and their. connection 
with the relativistic amplitudes in refs./4/. " •. 

**) References to other works on the quantization of ·fields 
on the light front can be found in/8/, where the questions of 
relativistic invariance and covariance of the Hamiltonian·formu~· 
lation on the light cone of dynamical systems with a finite num­
ber of degrees of freedom are considered in detail. 

4 

1 • 

' ', 
i 

., 
1 

by more strong singularities localized on the light cone. In 

order to remove them we introduce infinite number of counterte=~ 

of the new type, which are uniquely defined by the requirement of 

equivalence of this approach to the standard formulation of the 

S-matrix •. It is demonstrated that these counterterme can be inclu­

ded into an interaction Hamiltonian quite in the same way as the 

quasilocal terms, which can be added to the S-matrix due to the 

ambiguity of the T-product of field operators, are usually 

included into the interaction Hamiltonian/9 , 101. 

In quantizing fields on the light front there arises a very 

important question whether it is possible to retain the relati­

vistic invariance of the theory. The point is that the use on.the 

light cone the "simple" commutation relations of the type 

[ ~(x) ''.P( o) t•=o= -tE(ic)'ii(x) ' X±= x
0 

h.3, X = ( x:x
2

) ( 1.4) 

results in the unnecessary surface terms in the commutator of the 

field operator ~(x) and the generators of the Poincarl group/11 ~ 

However, as it was shown in ref.1121, the~e formal difficulties 
I . 

can be eliminated by the consistent modification of the commutation 

relations on the light cone, leading to the relativistically inva­

riant theory on the light front (see also ref.1131). 

As a simple example of utilization of the covariant Hamilto­

nian formulation of the field theory on the light cone we consid~r 

the interaction Hamiltonian 

H(x) =-~:iy(x)P~(x)~(x): , r= 1 or ia5 (1.5) 

where lp(x) is a spinor field of the mass JI and ~(x) is a scalar 

field of the mass lTt • We formulate the three-dimensional covariant 

diagram technique, with the help of which the second-order pertur­

bation theory contribution to the fermion self-energy diagram is 

calculated. 
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2. Q_onatruction _Q_f __ the S-Matrix on the Li.s,ht Cone 

A formal solution. of the Tomonaga-Schwinger equation ( 1.,2) 

in the case of_ hyperplanes ( 1.1 ) tangent to the light cone along 

the generatrix 
/ ><._:=x.+s,~., -°'><J<_oa, (2.1) 

has the form 

~ 11 = TJ-l exp {-i S H(x),lx} = 

00 IJ ~ ij 

= 1+ 1.(-i.)j0(px1-px2)-··0(p xft.,~x,.)H(x1)···H(x,.)dx, ... dx~, ,~, 
(2.2) 

where TJ-l is the operator of p X -ordering. 

While the usual T-product of the field operators is not 

defined for the coinciding values of their arguments, the corres-

pond~ng region for the ½,-product is somewhat wider. Since, 

( 
:!. 2 

when _x,-x2) >O and in the case, when (x,-x2}=0 but the dif-

fe~ence Xt-x2 is not parallel to the_ 4-vector I-' (i.e. ~-X -=f-
. ,, . ,.·.. . ' . 0 • ' 2 

4'5>p. ), the equality 0(px,-px2)=0(x,-x~) is valid, and when 
2 ' ·. ., '' . . . ' '' ' . 

(x,-x2)..:: 0 the 9(pxC px2) function does not contribute to (2.2) 

due. t~ the lo~~lity condition [H(x1), H(Xz)}=O ; therefore the 

T11-produc~ of two field opera~ors in the X -representation 

is not defined on the generatrix of the type (2.1). Thus, the 
( I ' • \ > 0 . ' •" 

equality 0(px,- ~x2)= e(x,-x;) 'does not hold in the region Hx;x) 
. ' II . 

which can b~ o'iitained from (2. 1) by excluding the top of the 
2. 

cone ( X1- x2)= 0, i.e. , 

~ 11( x) = { x i R 
11 I x = g p , · _si i= O} . ( 2. J) 

Recalling that the ultraviolet divergences in QFT are origi­

nated.by the ambiguity in the definition' of the T-product /9, 101, 

from.(2.2) it becomes clear that besides the usual ultraviolet 

divergences the·s
14

.:.matri:ic has also.the additional ones locaiized 

on the light cone. 

6 ' 

L-. 

l 
... 
' 

On introducing now the notation 

tp { H(x,) .. , H(xh}} = T { H(x,)•uH(Xh)} - T,. { H(x,)"' H(x.)} , n ~ 2 (2.4) 

one can assert that t~ { H(x,)•" HO<.}} are in general singular 

operator functions, nonvanishing only in the case, when the dif­

ferences Xi-Xj of any two arguments belong to the region 

15~ (x,- x) *). On the other hand, as is knowr/9 • 1 O/ the addition 

of quasilocal operators to the S-matrix does not violate its 

unitarity and causality because of the ambiguity of the T-product. 

Since the operator functions (2.4) are not quasilocal, their pre­

sence in (2.2) contradicts the requirement of the causality of 

the S-matrix. Therefore we will make use of a regularizing pro­

cedure, which generalizes the regularization of the S-matrix for 

removing the ultraviolet divergences in renormalizable theories 

by inserting counterterms in the interaction Lagrangian (Bogo­

lubov1s R-procedure). In consequence of the ambiguity of the 

Tt' -product one can add to the S-matrix the operator functions 

(which we shal~ call counterterms on the light cone), different ,, 
from zero only in the case when the differences of any two argu-

ments belong to the region (2.J). As the counterterms on the 

light cone we choose just the operator functions (2.4) so that 

to every order of perturbation expansion the equality 

Tt' l H(x,) .. · H (x..)} +t~ { H(x,) .. , H(x.)} = T { H(x,)•" H(x.)J (2.5) 

will take place, which is established by means of the limiting 

procedure (1.J). Hence it follows at once that the matrix 

ry In the particular case of two field operators this state­
ment means that the propagator functions, being defined by the 
use of the TI' -product, will in general differ from the conven-
tional propagators by the additional covariant terms, which we 
supply with' the symbol t, • For instanc·e, the fermion field 
propagator is written as S0 (x)= s•(x)+ AS .. (x). 

r t' 
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00 .h( { } y ~ 'le9 $11 = 1 -t- I. ~ J T~ 1-l(x,)"· I-ICxn) clx
1 
... d x. + 

1'1:::1 . 

0o .h V V 

+ ~ ~ 5 i~ { H(x1J .. , H(x.)} ,{x1° .. d x. (2 ,6) 

regularized by the addition of,the counterterms on the light cone 

tr{Hcx,J .. , H(x.)} , does not depend on the 4-vector p- and coin-

cides with the conventional S-matrix, i,e, '2e3SI<= S • Thus, 

in the approach considered the equivalence of r-e3S,. and S 
follows just from the definition of the counterterms on the light 

cone, introduced by us, This statement means that to every order 

of perturbation expansion two scattering matrices ,ec'J$1' and $ 

(before carrying out the usual renormalization procedure) lead to 

the same matrix elements owing to the cancellation of the counter­

terms on the light cone with the additional terms in the propa­

gator functions corresponding to the T~ -product of field ope­
rators, 

Due to (2,5) the functions t,-i{H(x,)-., f-l(x.)} 

form depends on the specification of an interaction Hamiltonian 

and the type of fields are uniquely defined, Let us now discuss 

the properties of the II ti' -product II and find a general form of 

the counterterms on the light cone for the arbitrary interaction 

whose explicit 

Hamiltonians, To this end we first introduce the so-called 
h fi.-

operation, If a product fl ;5-1< 
k::I 

by definition 
of some functions is given, then 

.t. fu- = .It ... :f t,j· j ... 1 + 
l<zi k k:=I 1 k-1 k: k.t-1 h 

h h ti n 

+ }'.1---f .cd 1 ···J af±--1 + 1:5 flti.f. + fit:,.:f 
Kf\:. 1 ,t k-1 k ktl l-t ,t Ht h k.=I IC. _hi l k:=I K ' 

'*" 
(2. 7) 

where fi,,;f1c ( K= 1, 2-, ... ,n) is a certain new function (which is spe­

cified below). Then the t~-product of field operators can be 
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defined as their T~ -product with the subsequent application of 

the t:,. -operation, i,e,, 

t14 l H(xJ .. , H(x.)} = ~ [T: { H(x,) .. , H(x.)}1 (2,8) 

Prime over the symbol Tl' means that when calculating Tl' -pro­

duct by the use of Wick's theorem the term-without contractions 

is to be omitted since owing to the definition (2,5) the t­
product of the normal product of operators is equal to zero: 

t~ {: H(x,) "' tl(Xh):} == 0 . (2,9) 

We are now in a position to specify the meaning of the fl -opera­

tion: by acting on the product of the "propagator" functions in 

(2,8) according to the rule (2,7), it replaces them by the cor­

responding additional terms (see the footnote on page 5). , 

Thus, the A -operation gives an algorithm for calculating the 

counterterms on the light cone by a given Hamiltonian, We shall 

find their explicit form for the scalar and fermion fields (in 

the case of other fields their form can be found quite in the 

same way). 

1, As it ~as shown in/11, for a scalar field we have 
# 

C (-) (+) C 

D (x)=0(px)D(x)-8(-px)D (x)=D(x), 
C±l p . 

where D (x) are positive- and negative-frequency parts of the 

Pauli-Jordan commutator function D(x) ." The equality of functions 
C C C 

D,.(x) and D (x) implies that /:;.. o,.(x)=O and therefore in 

the case when interaction Hamiltonian depends only on the scalar 

fields (without derivatives) there is no need to introduce the 

counterterms on the light cone, i,e,, 

ttt { H(X1) ... ,H (x.)} = 0 . (2.10) 

Thia result is in an agreement with the fact that:when formulating 

a •field theory of ·the spinless particles on the lfght ·front the ,. 

Hamiltonian does not contain additional' terms, i,e, up to the sign 

coincides with the interaction Lagrangian H(x)=--.1'(x) • 

".:,9 



2. Ir, the case of a fermion field the "propagator" function 

is 
<: l-) l+) 

~\Cx)= 0(px).') (x)- 0(-px)S (x), 

where 
(±) A (±) 

$ (x) = (i.l)+M) D (x) • With the help of the limiting 

procedure (1.J) it is not hard to show, that 

C C t 

S.,(x)= S (x)- t.$r(x) , 
<: • I\ 

I-,. Slx) = L p 'ti(fx) D(x). 

C' 

For the covariant additional term 6 S/x) we shall also use 

the representation 

c - _I ( 4 -<.px(- L) 
~ ::\(x) - (2.11)4 j d p e Qpp (2.11) 

in which tho integratior, is extended only over the values of 

the momentUl!l p , satisfyir:g the condition Pi'=/= 0 . From this 

formula in the particular case when f-l = (1,0,0,-1) there fol­

lows the noncovariant additional term in the fermion "propagator" 

function, obtained in refs.171. 

Having defined the additional terms in the scalar and fer­

mion "propagator" functions, one can find the explicit form of 

the counterterms on the light cone for Hamiltonians, dependent 

on these fields. For the Hamiltonian (1.5) the counterterm on 

the light cone of the second order in ~ haa the form: 

t 11 { ~(x,) H(x2)} = ~
2 

[: ~<.x1)lf'(l(2): + -f- l)(x1- x2)] • 

{ 

(. C <: . 

x :~(x1)f6S?,~}l\{x2):+ S_p[t1Sl'(x1x)5t.(x2 x1))+ (x1-x2)}. (2.12) 

In the last formula the term Sp[t.s;cx.-xz)t-,.S;cxzx,}l in the 
A2 · 

brace is omitted, which vanisheG due to p =0. Thus, we see that 

in the case of spin the S-matrix on the light cone (2.6) is 

defined by the Tf-1 -exponential of the interaction Humiltonian H{x) 
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plus infinite number of cour:terterms on the light cone. However, 

they all can be included into the "Hamiltonian" (see191 ). Ir.deed, 

if we define the interaction "Harr.iltonian" as 

00 ,rn-1 q ij 

~(pix)= H(x)+ ,L ~! ) 1\./r lx,x1,···,x,,,)d\·" d x,,,_. 
· h~2 

(2.13) 

then it is possible to represer,t the S-matrix ir, the form of the 

Tl'-exponential of dl'.(plx), i.e., 

s = T., exp {- i J R(~lx )d\}. (2.14) 

Here Atn(filx
1
,x2 , ... xrn) are the singular operator functions, 

transforming like scalars and nonvanishir:g only when J!Xt~x2----px.,, 
and the interval between any two points X1 , X2 , ... , ')(.111. is equal 

to zero. Such operator functions we will call the quasilocal ope­

rator functions on the light cone. To obtain their explicit form 

there are the following chains of relations: 

Ah(plx11 ... ,xh)= (-1)'1-tl'{ H(9 ... H(Xh)}-

oo 

- -Y.1.p(x .. x IX .. , ... x)T.{A(ulx X )···A (rl-x )J (2.15) ,L_. ti\( 1' > ~ HI h U ~ I° 1'"') ~ ~ In 
111=2 I I JI I' 1 I hi 

(1•,= ") 

where .i\(plx)=A
1
(x)=-H(x) by definition while P stands for 

the symmetrization operator, introduced in/91. The transfonnation 

law of the quasilocal operators on the light cone under the her­

mitian conjugation 
+ h-t 

A 11(p I Xf' ... , Xn) = (-1) Ah(plx
1

, .,x 11) 

ensures the hermi ticity of ~ ( p Ix) , i.e., 
+ 

3-e(plx)= lfCrfx). 

(2.16) 

(2.17) 

We illustrate the formulated above rules for constructing 

counterterma on the light cone by two examples. In the case when 

H(x) depends only upon the scalar fields from (2.10) and (2.15) 
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it follows that all An(pl~,---,X11) vanish and therefore accord-

ing to (2.13) :H'(~lx)= H(x). In the second case, when H(x) 

has the form (1.5), 

A/~ I x11 )(2) =tti { H(x1) H(x2)} (2.18) 

and all remaining quasilocal operators on the light cone vanish 
C 

since the product of two or more additional terms A Sr (x) is 

equal to zero. Consequently, 

Jf(plx)= 1-\(x)+ ½ 5-t:p{ H(x)HC~)}l~, (2.19) 

where t:~{H(x)H(~)} is given by formula (2.12). In the particu­

lar case, when the vector j-t= (1,o,o,-1), the "Hamiltonian" (2.19) 

after simple ruanipulations coincides with that on the light cone 

used in refs.171. 

J. The Causality and Unitarity Conditions 

From the results of the previous section it is clear that 

in the spin case instead of equation (1.2) one should use the 

equation 
. 'bS(e-oo) ( r: 
1 'b6"(x) = ::I-{ plx)S,6',- 00). (3.1) 

The causality and unitarity condi;ions, formulated in/1/ 

for a scalar theory, are transferred to the case under considera­

tion without change. They have respectively the form: 
~ t- oa d / r, T ' / ~+ / , ] 

R(p;l)- R(-p<£) = djl ~ ae'Zit: LR<r~-r~)R(~a:)-R(ra'. )R(~~+fl~ (3.2) 
-~ ' 

+ oo J I r];-. I . . . / + I . / ] 

R(p~)- R(-pct) = J~L 2e~[ LR(-pcl' )R(p~:-pa'. )+ R(~~-p~R(pa:) .o. 3) 

The operator R(fa,) is connected with the s( 6,-~}-matrix by 

the relation . . • 
. _1_ oo R( a'.) .rn·.ie . 

· , $(6,- 00) == i + 2.11. 5 -;ie!"'e. e ,. d~ {J.4> 
-oo 

12 

ar.d obeys the equatior. 
• ~ 00 / 

'10 I { ~ ' d'a'. 1 R(pa')=- dl(p;,r)- 2Jl J Je(rce-pa>)'i(>,_,E R(~t-;r), (3.5) 
-Oo 

where ';ft'(~ a') is the Fourier transform of the "Hamiltonian 11 , 

i.e. ~ -1p.iex ij 

'Ji(~~)= J e J-E(plx)d x (3.G) 

The operator R(~a') satisfies the equation of the form 
I __J_ 

(3.5), but with the "propagator" ;?.J{ ~+if. • On the mass shell 
+ . + + 

the condition (J.J) is written as R(o)-R(o)=dZ(o)R(o) 0 r SS=i. 

4. The Diagram Technique 

On the basis of the representation (2.14) for the S-matrix 

it is.possible to develop a covariant three-dimensiol)al diagram 

technique, in which the spurion 4-momentum is light-like. To 

this end let us write (2.14) in the form 

$. = T;1 exp {- t j Jf ( 11 Ix) d\ } • (4. 1) 
I JI 2 

V1here df(plx)=H(x)t9~n.(x,~)d\1 
I 

The operator ~e is obtained frorn 

, h(x,~)'° :~(x)ip(x)yhSlx-\l)lj'(~)~(~): 

;ff by the orniosion of the 

following three terma. The firot one 
2ct C C ~IC 9 i")p [ h 5/x-~) St, (s-x)n· D(x-~) 

contributeo only to vacuum dingran~ and does not lead to obser-. 

vable effects. The oecond 
2. - 1 C i C 

· ~ : 1(x)TA~\1(x-~)tpM: i D(x-~) 

and the third 
2 c ~ l 
~ : y>(x)tp(-,i): Sp [ A $

1
, (x-~I) S/~-x)J 

divergent tcrmo contribute only to the fermion and meaon aelf­

energy, reopectively and cun be taken into account by the appro-

13 



priate renormalization. As a result we have the following rules 

for calculating the matrix elements. 

1. Apply to a given Feynman diagram the A -operation, 

which acts on the internal fermion lines and substitutes them 

according to the rule (2.7) by the fermion lines with the cross,to· 
...i.._L 

which there corresponds a factor (2Jt? 2Kf • Omit from thus ob-

tained diagrams those, in which at least in one vertex occur two 

lines with the cross, and those, in which the ends of at least 

one fermion line with the cross are connected between themselves 

by other lines. 

2. Number all vertices of the remaining diagrams in an arbit­

rary way, ascribing the same number to the each pair of vertices, 

connected by the fermion lines with the cross, and the vertices 

of a given diagram. Orient all internal lines along the direction 

of decreasing vertex number. Without making a change in the orien­

tation, substitute some ordinary _internal fermion lines by the 

double ones, leaving the lines with the cross untouched so that 

in the result the number of fermions and antifermions to be con­

served. Omit all diagrams with vacuum transitions - DVT*). 

J. Connect the first vertex with the second, the second with 

the third and so on, by dotted lines, oriented in the direction 

of increasing vertex number, and ascribe the 4-momentum P,a'j 

to each of them ( j = i, 2, ... ,n-1 for a given Feynman diagram and 

j:\,2, ... ,~-m-1 for a diagram with the cross, where n is the 

order of the diagram, 1'n is the number of lines with the cross). 

Draw the dotted lines with a free end so that they enter into the 

first vertex and leave the last vertex, and ascribe the four mo-
t 

menta ~~ and f<l:' , respectively, to each of them. 

4. Assign to each internal ordinary lir.e with the 4-momentum 
(+) •" 22 

the function $(K,M)=0(K )(K+M)O(K-M ) , to the double line K 

*) For details see ref.111• 
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- the function t/+'(K;-M) and to the internal wavy line - the 

function D{+)(1e,1n)=El(tc 0)6(K~m 2 ) • To each internal dotted 
..L 1 line with the 4-momentum fJ-;'tj a factor .2Jt ~ is assigned. 

J 3 ~ 
5. Assign to each vertex of a diagram a factor i2>i'r u 

and to the vertices, connected by the lines with the cross, a 
lj 

factor (2j{)36 , where the O -function takes into account the 

conservation of the 4-momentum in a given vertex. To each exter­

nal line (except for dotted ones) it is necessary to assign a 
!l/2 -1(2 

factor (211) (2,R) , where .p is the 4-momentum of the given line. 

Besides, assign the corresponding spinors 'U, U 

the external fermion lines. 

or 'l9, 'l9 to 

·6 •. Integrate over all independent 4-momenta K and all 

a'­
J 

in infinite limits. 

7. Sum the coefficient functions, which result from all 11! 
numbering of vertices of the given diagram and cn-m)l numbering 

of vertices of all diagrams with the cross. Multiply the result 

by a sign factor and a factor connected with the symmetry proper-
• 

ties of the given diagram. 

To illustrate these rules some third-order diagrams are 

drawn on the picture 1. 

A '~, 2,,/ 

1 '- .... ✓ 

' ,, 
1 · 

/ 

/ 

/ 

Fig. 1. 
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2. I 

' / 
..... , . / 

2' /,-

' ,, 
2 

'~ ..... 

/ 

/ 



As an example, we consider the fermion self-energy ~(p) 

of second order in perturbation theory (on the energy shell) 

(Fig. 2). The fact, that there are no lines with the cross is 

due to the property that according to the first paragraph of the 

diagrammatic rules the action of the /J,. -operation in this case 

gives zero. 

p 

q 

~ •• p 2' , __ .,,,, 

jlZ 

q 

p ,A2 p 
..... _ ..... 

Jl:X 

Fig. 2. 

The second diagram is a DVT and does not contribute to 2:(p). 
Consequently, 

2. ~ d <+> <+> 
2.(p)=~5JdK ae~i£ $(K,M)D(p-K+pa:). + regular terms. 

The integration over the variable 'cX'. gives 

ZCp)=...i rlKlc'K 1v1) ecpp-rK) 
(2.nf>J ' m2-(p-,;:>~,t + regular terms 

or 
2. i " 

~( :\_ 9 rd jd"' M-(1-x)P + 
L Pi- 2(2.n)~~ x K K2+xM2+ (t-x)m2 - x(1-x.)p2 - iE 

2 ~ ~2 2 ~ 
~ l ( K ~ M - X p2) d. K +-~ )dx 2 2 

2(2Jl) 2p~ K +(1-x)t,t2+ xm2 -x(1-x)p-tE 
+ regular terms, 

where K is the two-dimensional vector (for details see ref J 1/ ). 
·~ Performing the regularization and the integration over K , we 

obtain the well-known result 

- . " 32. i ;.. k xM2+ (i-x)m2 
.2( p )-<::1p+ ('2 + (~n)2 Jdx [ M-(i-x)p] xM 2+(1-x)tn~ x(1-x)p2. 

0 
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Here C1 and C 2. are arbitrary constants. 

We express our gratitude to V.R.Garsevanishvili, V.G.Ka­

dyshevsky, A.N.Kvinikhidze, V.A.Matveev, t.1.D.Mateev, A.N.Sissa;.. 

kian, L.A.Slepchen.ko, and A.N.Tavkhelidze for valuable discus­

sions. 
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