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Korapuanraan 4fopMyIapoBKa PeAdTHBACTCKOR IaMuibTOHOBOM
Teopuu Ha cseToBoM Kouyce. ([Toas co cmuzom)

Passuras paHee KOBapHARTHAS raMHALTOHOBA GOPMY/IHPOBKA KBAHTOBOK
Teopuh Mo/ HA CBETOBOM XOHyCe pACHpOCTpaHSeTCS Ha Clyvall wacTHU co
cnuaoM, OcofGeHHOCTH, CONyTCTByKIIHe MOGOH TeOpHH HONA B MepeMeHHBIX
J|cBeroBOoro:¢poHTa, yCrpaHdioTCs BBEeOeHHEM B TeopHK GECKOHeYHOro 4HCHIa
KOHTpPY/IEHOB HOBOro THIA, KOTOphIE MOTYT ObITh BKMIOYEHBHl B TaMHJILTOHHAH
n3anmMoneicrsus, CHOpMyHpOBAHA TPeXMepHas RHATDAMMHAS TEXHHKAE, C IO-
MOILIO KOTOPOil BEIMHCAEHa COBCTBEHHAs 3Heprus JepMHOHA B HH3MWEM IOPAAKE
TEOpuH BO3MYIIeHHI.

PaBora phimonHena B JlaGopaTopuu Teoperudeckon ¢usuxa OUFAH,
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A Covariant F‘ormulatlon of the Relatnwstlc Hamlltoman
Theory on the Light Cone (Fields with Spin)

A- Ham:ltoman formulatiori of- quaritum: field  théory on the light
cone, developed earlier, is extended to the case of particles with
spin. The singularities accompanying each field theory in light-front
-lvariables are removed by the introduction to the theory of infinite
number counterterms of the new type, which can be included into
interaction Hamiltonian. A three-dimensional diagram technique is for
mulated, which is applied for the calculation of the fermion self-
energy in the lowest order of perturbation theory,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR; :
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I. Introduction

In our preceding paperh/ a version of the covariant Hamil-
tonian formulation of quantum field theory (QFT) on the light
cone was considered for the case of scalar particles.. The result-
ing scheme, which is an alternative to the Hamiltonian field
theory, developed in refs./‘?/, is based‘ on the Tomonaga-Schwinger
equation for thé scattering matrix S(b‘,—Oo) defined on the hy-
perplanes of the type

PX =X —fix =0, (1.1)

where rl is.an arbitrary light-like 4-vector: rl2= o, Ho > o,
&
This equation has the form

PERER SN sy,

where H(X) is the Hamiltonian in the interaction re'preaentation
and the total scattering matrix S(m,fw) is given by the re-
lation D(eo,-ec)=§ =e(:b;15(6,-°°). The transition from the des-
cription of the time d‘ependence of the events to the description
in terms of & is equivalent to the transition ta light-front
variables,

To formulate the causality condition in terms of the hyper-
planes (1.,1), the 4~vector H— is treated as a limit of a ge-

quence of the time-like vectors Q,s. s 1eeay



hm\x =R, (1.3)

The 1imiting procedure (1.3) removes at the same time all addi~
tional singularities which accompany each scalar field theory
in the light-front variables,

The charactéristic feature of this approach is the presence
in the theory of spurions (quasiparticles), carrying 4-momentum
pee, where ® is the scalar parameter/‘?/. To the virtual quasi-
particles in the intermediate states there cofresponds the pro-

_pagator gﬁ'siﬁi and to the physical particles the function
5?&m)=€(€)5(£inf). Thus, physical particles in the intermediate
states are on the mass shell and therefore a natural wﬁy for
extending off the energy shell arises, The projecting propertiés
of the wave functions and other quantities follow directly from
the diagrammatic rules/1/, which were applied to derive quasi-
potential type equations and a generalized eikonal representa-

tion for the scattering amplitude at high energies/B/.*)

- In the present paper, which is the continuétion of ref./1/,
a covariant Hamiltonian formulation of QFT on the light cone is
extended to the case of particles with spin and as before our
approach is based on the spurion technique/2’5/. Some difficul-
ties, which arise in quantizing field thories on the light front
in the case of particles with spin, have been analyzed in refa.

/6’7/.**) It turns out that in this case the theory is accompanied

g

¥)This diagram technique was also applied for the study of
the structure of relativistic wave functions and their connection EY
with the relativistic amplitudes in refs./4/.
P

References to other works on the quantization:of fields
on the light front can be found in/8/, where the questions of
relativiastic invariance and covariance of the Hamiltonian formu=<
lation on the light cone of dynamical systems with a finite num-
ber of degrees of freedom are considered in detail,

g o
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by more strong singularities localized on the light cone. In
order to remove them we introduce infinite number of counterterms
of the new type, which are uniquely defined by the requirement of
equivalence of this approach to the standard formulation of the
S-matrix,. It is demonstrated that these counterterms can be inclu-
ded into an interaction Hamiltonian quite in the same way as the
quasilocal terma, which can be added to the S-matrix due to the
ambiguity of the T-product of field operators, are usually
included into the interaction Hamiltonian/9’1°/.

’ In quantizing fields on the light front there arises a very
important question whether it is possible to retain the relati-

vistic invariance of the theory. The point is that the use on the
light cone the "gimple" commutation relations of the type

[ 960, 9@],, ~-§e00B(@), x=xex, K=y (1,4

results in the unnecessary surface terms in the commutator pf the
field operator }P(X) and the generators of the Poincaré group/"/.
However, as it was shown in ref, /12 /, fhese formal difficulties
can be eliminated by the congistent modification of* the commutation
relations on the light cone, leading to the relativistically 1nva-
riant theory on the light front (see also ref./13/). »

As a simple example of utilization of the covariant Hamilto-
nian formulation of the field thedry on the light.cohe we conéidgr

the interaction Hamiltonian
HO) = -4 Weryeye: |, T=1or iy (1.5)

where qu) 'is a spinor field of the mass M and Y(x) is a scalar
field of the mass M . We formulate the three-dimensional covariant
diagram technique, with the help of which the second-order pertur-
bation fhedry contribution to the fermion self-energy diagram is

calculated.



2, Comstruction of the S-Matrix on the Light Cone

s

A formalAsolution of the Tomonaga—Schw1hger equation (1, 2)
in the case of hyperplanes (1.1) tangent to the light cone along
the gene;atrix ‘ ) ) .

. \MX./‘=X‘+8H;7 —-oe<\?<oo, - ,(2'1) 3
has the form

SH = 'TH exp {-i S H(X)el"x} =
= 1+ T fotprny---o(p X )HGa) - HOxdesl,

(2.2)

where H'bis the operator of }lx-drdefiné.

While the usual T-product ‘of the field operators is not
defined for the coinciding values of their arguments, the corres—
ponding region for the ’rI;;product 7 is somewhat wider, Since,
when (X XZ) >O and in the case, when (X~ Xz) O but the dif-
ference X X is not parallel to the 4=vector M (i.e, Xe X=# |

‘ =/=9|~l ), the equality G(}IX }lx) G(X X 2) is valid, and when

0 xz) <O the @(px-p ,) function does not contribute to (2.2)
due to the locality condltlon [FKX1) H(Xzﬂ_ O ; therefore the
j}pproduct ' of two field operators 1n the X -representatlon
is not deflned on the generatrlx of the type (2 1) Thus. the
equallty @(HX px ) S(X X ) does not hold in the regionlf(x-x)
which can be obtalned from (2.1) by excludlng the top of the
cone (X Xz) 0O, i.e.,
30 = [x€R" | x=gp, §#0} . @)
‘Recalling that the ultraviolet divergences’ in QFT are.brigi; ’ i
hated by the 'ambiguity in the definttion of the T-product /9'10/, ?

from (2,2)'it becomes clear that besides the usual ultraviolet 5

divergences the- Sﬁ—matrix has also the additional ones localized : ?

P :

on the light cone.
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On introducing now the notation

tu{ HE) HO) =T { o) Ho) = T {HO- Hew] | nna (2.4)
one can assert that tp{tﬂm)mliﬂhﬂ are in general singular
operator functions, nonvanishing only in the case, when the dif-
ferences xi—xj of any two arguments belong to the region
EF(X;-XJ) *). On the other hand, as is known/9'10/ the addition
of quasilocal operators to the S-matrix does not violate its
unitarity and causality beceuse of the ambiguity of the T-product.
Since the operator functions (2.4) are not quasilocal, their pre-
sence in (2.2) contradicts the requirement of the causality of
the S-matrix, Therefore we'will make use ef a regularizing pro-
cedure, which generalizes the regularization of the S-matrix for
removing the ultraviolet divergences in renormalizable theories
by inserting counterterms in the interaction Lagrangian (Bogo-
lubov's R-procedure)., In consequence of the ambiguity of the
TF ~-product one can add to the S-matrix the operator functions
(which we shall calazcounterterms on the light cone), different
from zero only in the case when the differences of any two argu-
ments belong to the region (2.3). As the counterterms on the
light cone we choose just the operator functions (2.4) so that

to every order of perturbation expansion the equality
T {HoH O+t {HOu - ) =T { W) Hee)f (2.5)

will take place, which is established by means of the limiting

procedure (1.3)., Hence it follows at once that the matrix

) In the particular case of two field operators this state-
ment means that the propagator functions, being defined by the
uge of the Ty ~product, will in general differ from the conven-
tional propagators by the additional covariant terms, which we
supply with' the symbol A , For 1nstance, the fermion field
propagator is written as §(x)= S (x)+AS x).



Zeq S,F 1+ E (‘—;!lh\STF{H(XI)... H(x,,)} oqul-.- dY +
v ,.‘ZZ (;hl'l S J‘r«{H(x‘) H(x..)} o["xz... dVX,, | (2.5) ‘

regqlarized by the addition of.the counterterms on the light cone
{F{H(n)m H(XQ} » does not depend on the 4~vector ﬁ and coin- ‘
?ides with the conventional S-matrix, i.e, 2@3§3H= S . Thus,
in the approach considered the equivalence of PQSSF and S
follows just from the definition of the counterterms on the light
cone, introduced by us. This atgtement means that to every order
of perturbation expansion two scattering matrices rgaS and S
(before carrying out the usual renormalization procedu;;) lead to
the gsame matrix elements owing to the cancellation of the counter-
terms on the light cone with the additional terms in the propa-
gator functions corregponding to the Tﬁ -product of field ope-~
rators, ‘
Due to (2.5) the functions by {H(x) H(x,))

form depends on the specification of an interaction Hamiltonian

whose explicit

and the type of fields are uniquely defined, Let us now discuss
the pr i ‘
properties of the "{P ~product™ and find a general form of
the counterterms on the light cone for the arbitrary interaction
Hamiltonians, To this
) end e first introduce the so-called A~
operation, If a prod i
product !1 5K of some functions is given, then
by definition
n

Alls = Z,*« SRS 5+

+ %:1:54 fk_,Azik 5;.'.";‘1-.‘3&43(;{."3..*' 2f [af + hA} .
(SIS t [ k (207) i\

(313

where l&jk (K==1,2,m,“) is a certain new function (which ié spe-

cified below). Then the 'tH—product of field operators can be ’ :

P .
defined as their TH ~-product with the subsequent application of

the A -operation, i.e.,
/

tp{ Hx) - H("h)} =A [Tl" {H(Xl) H(Xh)}] . (2.8)
Prime over the symbol TF means that when calculating TF -pro-
duct by the use of Wick's theorem the term without contractions
is to be omitted since owing to the definition (2.5) the 1%—
product of the normal product of operators is equal to zero:

tad T HG) - HOW: ) = O | (2.9)

We are now in a position to specify the meaning of the A ~opera-
tion: by acting on the product of the "propagator" functions in
(2.8) according to the rule (2.7). it replaces them by the cor-
responding additional terms (see the footnote on page - 5).
Thus, the A -operation gives an algorithm for calculating the
counterterms on the light cone by a given Hamiltonian, ‘e shall
find their explicit form for the scalar and fermion fields (in

the case of other fields their form can be found quite in the

same way).
‘1. Ag it Was agown in/1/,,for a scalar field we have

c . ) +), C
D;(x) = 6D 00 - 06D =060,
(£) - - o
where l) (X) are positive~ and negative~frequency parts of the
Pauli-Jordan commutator function D(X) ., The equality of functions
< .
D‘:.(X) and D) implies that ADC‘((X)=O and therefore in

the case when interaction Hamiltonien depends only on the scalar
no need to introduce the

fields (without derivatives) there is
counterterms on the 11gh§ cone, i.e.,

. R R MO} =0 . o)
This result is in an agreement with the fact that when formulating
a field theory of the spinless particles on the 1ight ‘front the -
Hamiltonian does not contain additional' terms, i.e, up to the sign
coincides with the interaction Lagrangian H®=-2(x) ,

v



2. 1r the case of & fermion field the "propagator" function
is < ) )
S =8(Ex)S (0= OGS (),
@) A (1)
where O &)= (1'0+M)D (X) . With the help of the limiting

procedure (1,3) it is not hard to show, that
< I .
$L.00= 80— AS,(x) ,  AS=TEEODG).

. c
For the covariant additional term Z&fSH(X) we shall also use

the representation

AS (X)“WS Pe ( Do (2.11)

in which the integratior is extended only over the values of
the momentum P , satisfyirg the condition Py # O . Prom this
formula in the particular case when }L=(i,0,0;‘i) there fol-

lows the noncovariant additional term in the fermion "propagator"

7

functiqn, obtained in refs,
Having defined the additional terms in the scalar and fer-
mion “propagator"™ functions, one can find the explicit form of
the counterterms on the light cone for Hamiltonians, dependent
on these fields, For the Hamiltonian (1.5) the counterterm on

the light cone of the second order in hag the form:

£ [ HOI MO} = 97 [ 9eg0a): + 4 Bix-x]
- {i_\-f?(’&)rf-ASr("rﬂz)"(’()‘z)'- + SpasEs o)t (=)}, )

In the last formula the term SP[AS - XZ)AS G5 X,)] in the
brace is omitted, which vanishes due to P =0 ., Thus, we see that

in the case of epin the S-matrix on the light cone (2.6) is

defined by the TF ~exponentiel of the interaction Humiltonian Hbo‘

10

plus infinite number of courterterms on the light cone. However,
they all can be included into. the "Hamiltonian" (see/g/). Irdeed,

if we define the interaction "lHamiltonian" as
o :Lm-l ) q y ‘.
%(NX) = H(X)+2 ™ 3 .[\rn(P 'X’Xi 1o Xy dX{“' d xnu (2.13)
: m=2 "

then it is possible to represert the S-matrix ir the form of the

TH -exponential of Hg(P‘X), i.e.,
S=TF exp {~13}{(H‘x)d"x}, (2.14)

Here 1\n1(H'X”X2,m Xm) are the singular operator functions,
transforming like scalars and nonvanishirg only when P&’HX;”‘HXm
and the interval between any two points X1,X2,".,XNl is equal

to zero, Such operator functions we will call the quasilocal ope~
rator functions on the light cone. To obtain their explicit form

there are the following chains of relations:

Ah(p|x1,.._,xh)= (’1)h‘tF{H§X,)-'- H(xh)} -
Z PO x X t’--x..)rl_;{{j\%(p[x, W) ‘A (VI )} (2.15)

o)
where .A1(H|X)=A1(X)=-H(x) by definition Whlle P stands for
/9/

the symmetrization operator, introduced in . The transformation
law of the quasilocal operators on the light cone under the her- -

mitian conjugation o
¥ -1
‘Ah(P|X1.-‘-,X.‘)=(—1)Ah(|l|x1,...,x,,) (2.16)
ensures the hermiticity of ﬁ{(le), i.e,,

H+(Hlx)= ). (2.17)

We illustrate the formulated above rules for constructing
counterterms on the light cone by two examples, In the case when

H(X) depends only upon the scalar fields from (2,10) and (2.15)

1



it follows that all j\"(Fli’ -+ X ) vanish and therefore accord-
ing to (2.13) }B(plx)- H(x), In the second case, when H)

has the form (1.5),

A (H\X1,X2)=’Ep{H(X,) H(Xz)} (2.18)

and all remaining qua91loca1 operators on the light cone vanish

since the product of two or more additional terms A 5 (x) 1is

equal to zero, Consequently,

R =Heo+ & S {HOH®) o'y, (2.19)

where’ fr{H(X)H(S)} is given by formula (2.12), In the particu-
lar case, when the vector 'HF=(1,0,0;1) , the "Hamiltonian" (2.19)
after simple manipulations coincides with that on the light cone
11/ :

used in refs,

3, The Causality and Unitarity Conditiéna

Prom the results of the previous section it is clear that
in the spin case instead of equation (1.2) one should use the

equation

58(0r09) _ -
d TGTX—)— Z—Q(Hlx)S(@‘ ). ;?-/1)

‘The causality and unitarity conditions formulated in

for a scalar theory, are transferred to the case under considera—

tion w1thout change. They have respectively the formz‘

R(x)- R(pae) ,M Vo ‘E[R(pae pae)R(px) R(pat)R(prrHBe)] (3.2)
R(p2)- R( pad) = 24.‘ae .g[R( px )R(vae }lat)+R(pat—pat)R(pat)] (3.3)

The operator R(‘X&) is connected with the ,5(6,—-0,0).-matrix by

the relation ) R( ) R
. S(e- oo) 1+2m§geff;_e dae L A3.4)

12

and obeys the equatlor

T de'
R(pae) }f(pae) R_Sé‘f(}zx-p&)x—ﬁ; R(p=), (3.5)
where gE(HEf) 'is the Fourier transform of the "Hamiltonian”,
i.e.

Jf(}laf) Se aeng(}‘lx)dux- (3.6)

The operator R(}Uf) satisfies the equation of the form
: | 1
(3.5), but with the "propagator" 53 it . On the mass shell
+ . F +
the condition (3.3) is written as R(0)-R(0)=tRORO or $S=1.

4, The Diagram Technique

On the btasim of the representation (2,14) for the S-matrix
it is possible to develop a coverlant three-dimensional diagran
technique, in which the spurion 4-momentum is light-like., To

this end let us write (2,14) in the form
/
S I}exP{ j%(ﬁ@d&}, (4.1)
where Se(plx) H(X)+ jh(x o'y h(x,g)=:p(x)%){z\s:gx-y)q/(s)@(y):

The operator 39 is obtained from d&f by the omission of the

fcllowing three terma, The first one
2 c < N
9 SP[A ,S}l(xw) Sy (s~><)]3TD(x—y)

contributes only to vacuum dimgrams and does not lead to obser- ,

vable effects, The oecond
LR - c S
9 1 PGHAS DY) 4D (x-y)
end the third ‘ /
2 c
9 1990 Sp [ a Sp(x-) S;(s-x)]

divergent termn contribute only to the fermion and meson aeif—

energy, reopectively and can be taoken into account by the appro-

13 -



priate renormalization., As a result we have the following rules
for calculating the matrix elements.
1. Apply to a given Feynman diagram the A -operation,

which acts on the internal fermion lines and substitutes them

according to the rule (2.7) by the fermion lines with the cross,te’

which there corresponds a factor Eﬁ&(ﬁ%ﬁ . Omit from thus ob-
tained diagrame those, in which at least in one vertex occur two
lines with the cross, and those, in which the ends of at least
one fermion line with the cross are connected between themselves
by othef lines.

2, Number all vertices of the remaining diegrams in an arvit-
rary way, ascribing the same number to the each pair of vertices,
comnected by the fermion lines with the crogs, and the vertices
of a given diagram. Orient all internal lines aléng the direction
of decreasing vertex number. Without making a chenge in the orien-
tation, substitute some ordinaryAinternal fermion lines by the
double ones, leaving the lines with the cross untouched so that
in the result the number of fermions and antifermions to bte con-
served Omit all diagrams with vacuum transit1ons - DVT )

3., Connect the first vertex with the second, the second with
the third and so on, by dotted lines, oriented in the direction
of increasing vertex number, and ascribe the 4 -momentum tlae
to each of them ( j=1,2,..,0-1 for a given Feynman diagram and
3=1ﬁ,m,ﬁ'm—i for a diagram with the cross, where M 1is the
order of the diagram, M is the number of lines with the cross).
Draw the dotted lines with a free end so that they entef into the
first vertex and leave the last vertex, and ascribe the four mo-
menta % and FQP/ , respectively, to each of them.

4, Assign to each internalkordinary lire with the 4~-momentum

K ‘the function S(K M) = 6(’)(k+ M) Bk M %) , to the double line
*) For details see ref. /1/

14

™)
- the function S (K;M) and to the internal wavy line - the

" function D (K m)=08(k)F(kTm?) , 7o each internal dotted

line with the 4-momentum M¥; a factor gi ?%FTE is assigned.

5. Assign to each vertex of a diagram a factor %L{F 8
and to the vertices, connected by the lines with the cross, a
factor (2-“)88 , Where the O -function takes into account the
congervation of the 4-momentum in a given vertex. To each exter-
nal line (except for dotted ones) it is necessary to assign a
factor GUO (QP) » where .D is the 4-momentum of the given line.
Besides, assign the corresponding spinors 11,11 or 19,19 to
the external fermion lines.

’16., Integrate over all independent 4-momenta K and all

ag in infinite 1limits, .
T. Sum the coefficient functions, which result from all n!
numbering of vertices of4the giQen diagram and (Tb—hn)! numbering
of vertices of all diagrams with the cross..Multiply the result
by a sign factor end a factor comnected with. the symmetry proper-
ties of fhe giJen diagram,

To illustrate these rules some third-order diagrams are

drawn on the picture 1.

Fig. 1.

15



As an example, we consider the fermion gelf-energy zi(f»
of second order in perturbation theory (on the energy shell)
(Fig, 2). The fact, that there are no lines with the cross is
due to the property that according to the first paragraph of the
diagrammatic'rules the action of the A ~operation in this case

gives zero.

4 Tz

Fig, 2,

The second diagram is a DVT and does not contribute to JE(Pl

Consequently,
E(P) QP de dae S(K M)D(P K"Fa) + regular terms,
The integration over the variable X gives

@) K
Z(P) (Qn)ﬁde S(K M)H?ngg')il + regular terms

or
. 2

i A
=4 ~ M-G-x)P
zq»-mdx JdR M=)

+xM,+u-0mz—xG—ﬂP2—ie

S (B p2)dR
2(211)52[>H %24 (1-x)M +xm3—x(1 x)P—&E

+ regular terms,

where K is the two-dimensional vector (for details see ref;/1/).

)

Performing the regularization and the integration over K , We

obtain the well-known result

xM?+U-nnf

Z(P) C P (“ SdX[M (1- X)P]R*Ma+(i-x)m%-x(i‘x)Pz

16 -

Here Ci and C, are arbitrary constants,

We eipress our gratitude to V,R,Garsevanishvili, V,G.Ka-
dyshevsky, A,N.Kvinikhidze, V,A.Matveev, M,D,Mateev, A,N,Sissa-
kian, L.A.Slepchenko, and A,N,Tavkhelidze for valuable discus-

sions,
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