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Meson. Form Factors and Covariant Three-Dimensional

_Formulation of Composite Model

An approach is developed which is applied in the relativistic quark]
model to obtain explicit expressions for meson form factors in terms
of covariant wave functions of the two-quark system. These wave
functions obey the two-particle quasipotential equation in which the
relative motion of quarks is singled out in a covariant way. The
exact form of the wave functions is found using the transition to
the relativistic configurational representation with the help of the
harmonic analysis on the Lorezntz group instead of the usual
Fourier expansion and then solving the relativistic difference equa-
tion thus obtained. The expressions found for form factors are
transformed into the three-dimensional covariant form which is a
direct geometrical relativistic generalization of analogous expres—
sions of the nonrelativistic quantum mechanics and provides the
decrease of the meson form factor by the low F () ~t~! as
-t+=, in the Coulomb field, 7

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
Communication of the Joint Institute for Nuclear Research. Dubna 1978
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1. Introduction

The idea of the composite quark nature of hadrons in con-
Junction with the assumption of scale invariance leads to a
simple universal law of the form factor behaviour in the asymp-
totic region of large momentum transfer5/1/.

However, there is still a problem concerning the relati-
vigtic covariant description of form factors (and other charac-
teristics caused by the composite nature) throughout the whole
energy and momentum transfer region, For this purpose it is
necessary to have a more detailed knowledge of quark dymamics and
in particular to know the covariant wave functions of relative
motion of quarks. Our consideration here will be restricted to
the spinless mesons as objects composed of two spinless“quarks.

In the nonrelativistic theory the form factor 4 %]"/ ( /e‘.:/?-z‘
~ momentum transfer) is defined as the Fourier transform of the
modulus squared of the wave function of quark relative motion

PR IY gL (1) [ :
754 2 2 l=0, ;2
Fg)= [ e Ppty - dmz oo ST Y

or in the momentum representation

FLF) =g Youp) Y (P7)

Within the four-dimensional formalism of quantum field
theory, the covariant wave functions (WP) are derived using
the two-particle Bethe-Salpeter equation., However, in this
approach, the WF of relative motion maintains an additional
dependence on relative time which has no analog in the nonrela-



tivistic quantum mechanics and complicates the direct covariant
generalization of the nonrelativistic quark model.

Our task is to construct a covariant three-dimensional
formalism in the relativistic theory as close as possible to
the nonrelativistic one. In the momentum representation, an
essential progress has been achieved in the three-dimensional
covariant description of the form factors of composite systems
through the covariant formulation of the two-particle quasipoten-
tial equation of Logunov-Tavkhelidzela/ in papers/3’4/. However,
in the momentum representation that is used in 3.4 the equation
for WP is an integral equation that makes it difficult to obtain
solutions in a closed form required for inveatigations.

Ag 1t was shown in our previous paper/S/ the explicit form
of covariant WF can be obtained on the basis of the method of
transition to the relativistic configurational representationle
proposed earlier in the framework of the Kadyshevsky quasipo-
tential equation

The aim of this work is to derive the explicit form of
the relativistic form factors and to keep the analogy with the
nonrelativistic formalism, in particular, with the expressions
(1.1), (1.2).

2, Covariant Quasipotential Equation in the Relativistic
Configurational Representation (RCR)

The main difference between the quasipotential equation
and the Bethe-Salpeter equation, where all quantities are de-
fined off the mass shell, but in each vertex the energy-momentum
conserves, consists in the following: in the quasipotential
approach (QPA) all the momenta of particles belong to the mass
shell

po - m? : (2.1)

But, like in the "old fashioned™ perturbation theory all quan-
tities (WP, the Kernel of the equation) are defined over the
"energy" shell, Equation (2.1) defines the three-dimensional
surface of a hyperboloid whose upper sheet serves as a model of
the Lobachevsky space, Therefore in the quasipotential equation,
it is convenient to expand over the complete system of functions
which realize the unitary representations of the group of motions
of that space, i,e,,the Lorentz group.
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Earlier the RCR has been applied to describe the form

factors in pape 8 . The transform of the form factor in RCR is
defined as follows’® /f = &—&)‘Z= ML L - &é/})
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where analogs of the nonrelativistic plane waves & , which
realize the group of motions of the three-dimensional Euclidean
momentum space are the following functions

. A, nt ]L=rH .
f/d ) /—1‘“,/ R Ry (2.3)
—_{1,5’).

The functions (2.3),realizing the unitary irreducible repre-
sentations of the Lorentz group,have been found :ln/9 The spatial

part offvector (A " )/( /A“/;) = 84,23

-

4 5ok = -4 ="_£ D_/-;E’ .
ﬁ,c_/S()t {Ab/oj /b /‘1//6 k"fﬂ/(24)
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4y,

M /[ / /5 ko = f /6,’6/4(2.5)
M

can be treated as a vector of a difference of two vectors ,b
and £ in the Lobachevsky space: LL%x /b(f)b . In the nonre-
lativistic limit A o2 BEH > Tz 5 & anaf/4F)+e " (tnere-
fore, the expanaion (2 9) transforms into (1.4). In ref.
the expansion (2.3) was proposed to consider as a relativistic
three-dimensional generalization of the Fourier transformation
used for the transition to the configurational representation
in nonrelativistic quantum mechanics. The group parameter I in
(2.2) and (2.3) which has been proposed to consider as a
relativistic analog of the relative coordinate p in(1.1),i.e.,
the "relativistic coordinate®, numerates tihe eigenvalues ‘ﬂy
of the invariant Caaimir operator of the Lorentz group 4-1{10/1
(where /M, 0-7%% /6 are the group generators)

4’ mpf'
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The nonrelativistic coordinatel”has the same group-theoretical
meaning: its square is an eigenvalue of the Casimir operator

3 —[251; of the group of motions of the Euclidean momentum
opace A N g
C.? e =/ €& i

7 A (2.7
In the nonrelativistic limit Cy = C,

An important property of the relativistic analog of the re-
lative coordinate in (2.2) is the relativistic invariance of its
modulus (as & parameter which  numerates the eigenvalues of the
invariant Casimir operator C:A of the Lorentz group). There-~
fore, the distribution /T/k)¢n(2 2) 1s an inverient function,

In ref, /8/ it has been shown that the usual definition of

the invariant r.m.s, {/,°>z € @——%w/c/ 2)has the group-theoreti~
cal meaning of an eigenvalue of the Casimir operator of the

Lorentz group: ’
DEA)
¢ 355 #=0 /CA F/f/j/zev _
Lo & =77 Fr0) (2.8)

By using (2.2) and (2,6), eq., (2.8) results in the expression
for £ K, > in terme of the invariant distribution £ /%) /8/

R -K(KZJ/:‘A{/" 4 /,"%;ﬁ/

LA -
),,n, p/p/ /\1.1 ? //;'Fﬁ') (2.9)

H

which is valid in any coordinate system,
This equality was used in,877for analysing the vector
dominance model and its modification at short distances.

Our aim is to establish the connection of the invariant
distribution /£ /F) (2.3) with covariant wave functions of
relative motion of quarks inside hadron, Note, however, that
unlike (2,4), in the quark model the expansion is performed on
the mase hyperboloid of a quark A7 rather than on that of
particle with mass /7 (composed of quarks).

As a result, the connection of the "relativistic coordinate®
(for relative motion of quarks)with r.m,8, of the composite particle
will be somewhat different from (2.9),

Let us turn now to the quasipotential equation, In ref./2/
the single-time quasipotential wave function (WF) was defined
which follows from the Bethe-Salpeter equation, The WF of the
two-particle system with mass /7 s ‘momentum K: and moment
7 (here J=0 ) in the Bethe-Salpeter approach is defined =ss

‘}f o (% Xs) = o T{Y @)Y, /ﬂ’-z)}IM'j . (2.10)

[3,4]

After the covariant equating of particle time ' xr °= .’x‘;— xS =0
it reads:

BF (Ps, pe) = (0‘2"7)45 (9. 5" (7‘) - P”P"(a.n)

where

@an(‘})= e 5/2 2’0l T{4.6x) 4 /x)ﬂmk}? 12)

As a vector é;ﬂ »1t 18 convenient to choose the 4-velocity of
the system‘l ;47

Iy
? \/ ma @ K
— - -
8o that in the c.m.s, J = ;,n p. =0 and Ax=axl-x.:p.
Because cof the presence of ~function under the integral sign,

the integration is performed over the three-dimensional hyper-
surface.ﬂzx D . A8 a result, the WF (2. 42)

(‘} de MP[L [P__ﬂ’-) Ocjéol‘f(oa'c'] (o- ar:))Mj o>

dependa only on the three-dimensional vector F? CLK QJ ,which
coincides with the spatial component of covariantly defined
vector of the momentum of the first particle in the c.m.s, of

the two-particle system, introduced in ref./ll/.In notation (2.5)
this vector has the form/s/ (see also/lz/)'

¥) In refs, /10/ the quasipotential formalism waqqponstructed
with the use of 4-vector 7}/ on the cone, i.e.,}*- j] =0

Na
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(Z.,c [_”%f.‘)): pu(-ImAp = Aﬂ)mn? (2.13)
and

r\fB'C [?') /9:50 [API ma?) APAJMJ?:: 3?(2 .14) ‘

The analogous covariant equating of particles time is algo used

for deriving the two-time Green function & )
[QW’)HS({&/O Q) G [ prma J gmg).‘(j))sz/:q a7 O/}g'

(2.15)

(h Uy - 1"/
. A /fﬂ%

) Nag-a) Clo,aipi)

The definition of the Green function of the Bethe-Salpeter
equation

Gl o) =<0l T{ bitm) G 26) () £ 36155

with the completeness condition of the system of state vectors,the
integral representation of 4 -function, and the definition of the
single-time WP (2,10) produce the following form of (2,15) near

the b tate pol -~ ret —~ aa’-r
gnfjmaj ;lm’“ l)"' G- (.zu)

yan/P;’”J)ay;M/dzm)_ SZH/ Mjﬂ /,maj
\/:9_3? - M +se YPr M e ’

where WF -‘/é,q /Ap,mg)diffor from (2,12)-(2,14) by the nor=-

=/'/027}3

malization /5 /
3 o ns ——
/ /’m)’ 2 Aﬁm Ym 80 /A,emaj'(z'w) -
We also deflnl the next function —~
3/ —>
Y ) /»ZA,, wa ) -2%60 /Jf,na/ (2.49)

The spectral representation (2.1%) contains poles at points
both with positive and negative mass. Therefore, if we want to
have a formaliem close in form to the nonrelativistic one, we
should follow/13/ and use the construction procedure of the
quasipotential equation only with the help of the retarded Green
function & /4 4 P2) .4 1t of th 1

pmas ;mz . A8 a result o euﬂua
procedure , we obtain two possible types of equations a/
kmj_

[014[1 ]fan(r’;m) (v )’ V(rma’-:mﬁmjso {A’CW”’A“””

i (2.20)
)
"U[F JAP"U] Span Mp,ma )-&-)3 V[A pmy A’SW nj krru) ilft
(2.94) ~

Equation (2.20) corresponds to the formulation of the quasipo-
tential approach in terms of the Green function (2,17) while eq.
(2.24)=in terms of the retarded Green function (¢ re:‘ (¥ote,
that eq. (2.24) coincides with the equation obtained in the
Kadysheveky approach” / on the basis of the covariant Hamilton
formulation of QFT ). ‘The procedure of constructing quasipo~
tentials V' and V " from matrix elements of the relativistic
scattering amplitude ie presented in/’-'%'} 13/

As is shown in/ S , under the Lorentz transformation the
WP (2,12)~(2.14) is transformed by the law

UL Y, (Bymay) = Yoy (45,ma

L)
(2.22)

= Uy (RIVHE DY Ky g ‘

After the transformation (2. 2) with the substitution of vector

AP‘ mig (2.13) 1nto/;he function (2.3), equations (2.20)
and (2.21) take the form
X3
[J - H, ] \fam (F) = V) (\f) (2.23)
9



H, [V - H ]s’BM @)= VE) o (7))
The free Hamiltonian H ie a finite~difference o 7556/
o - perator . It
should be noted that since 'the"relativistic coordinate" r ie
now conjugated to the covariant momentum vector of the particle
in the, e.m.s8. of the two-particle sysiem A *) the opera-
tor HO in (2.23) and (2.24) is the Lorentz 1g:zvariant 5
When quasipotentials V and V ' 1in egs. (2.20) and (2.21)

do not depend on P the normalization conditions for the WP
are of the form
Ala)A‘; mig ~ 4 (A——>— ~ -
TA—;——_ ’ gﬁﬁ P‘_,W"Ls) EFBM [APA,”‘Q'@): 1 (2.25)
M P39
S id » ~
AdA 20ps mag e (2.26)
gos . G (B, ) 282 G, (0 1ng) - 1
AP‘I”‘Q?
or in the RCR:
~ ]2
Sch'*’ I, @ I* -4 (2.27)
A
~vt o H, G (2.28)
- o
a7 l:fsn (r)_ﬁ_ \jBH (F") =1 .

In what follows we shall illustrate our method for finding the
pion form factor by solving eq. (2.23) with the potentialu)

2
Vi) « - ¢/ _ (2.29)
The corresponding covariant coilncides with those found in 2'!
ref., . for the c.,m,s, and for S-state these have the form
—~ =20 =XPhm
\j;H (I“)-: coh‘t . e F (1-"."1 i- _g__ }2 ) 4 - aP(_Z(_x)) (2,30)
VPI -2m cosy

e modulus L and vector A are inva-
riant quantities.and orf orf‘t’ﬂaQ nergy shell 7 Pﬂ,”“ﬂ_‘)’

. 2
U pmaol =VHEtm® | Zlopag =M ; PE(purp)= 1
**) At present it is accepted that inside the hadron gquarks in~
teract through the exoha.nge by the massless gluon.

the RCR to the pagator(e )‘-there corresponds the quasi-

In t
potential (2.29) at distances r > ;5,1

10

Though the quasipotential Vn{ in (2.24) is oonstructe} from
diagrame of field theory different from those for AvA
(2.23) (Vris e sum of irreducible diagrams arising in the Ha-
milton covariant formulation of quantum field theory by Kady-
shevsky /15/), we consider as an example eq. (2.24) with the same
potential (2.29).

We look for the solution to eq. (2.24) with (2.29) in the
form of the Laplace integral

p -pr
S"Pﬁ%») = JF € P ]((P) : (2.31)

Substitution (2.31) into (2.24) gives a simple differential equa-
tion for the function ;(p) and certain relations which allow
one to choose complex points & and §f3 ~re_oin the in-
tegral (2.34) . As a result, for the function ‘:fa'n' (v) we get

"the integral representation

2. ¢

~rl=0 -r'mx —rm{y-%) [ oin y+x Sindx

\:f (v) = . gda e LS [S '3;.,_— I
c 4.4 (2.32)

-T.'Lx_i . Py .fzfoxx'i . 'J"- 2008 ¥ i 3

.[Sin‘tﬁ] s - [sth H__a‘] -[Sth, 3
+ 2 =z .
The correct asymptoiic behaviour is provided by the choice of

contour C as drawn in Fig, 1 and by the following quan-
tigation condition

L - - - VT (4,53
Sinl2x N (”" 4$23...) ; 2= awe cod T )

Im 4

- I
F\x_| x /s

th, i
For the ground state [NV =1) eq. (2.32) gives
~vr, =0 -Frmx
am (r) = Cons? -r-€ . (2.34)

1



3. Form Pactor of the Relativistic Two-Particle System

The matrix element of the local current operator
between bound atates is obtained with the help of the five-
point Green-like function

R (2m;4,4) = <0l T{ Y (). ) J6) Fu(9)% (4)f1 o>

As follows from ref./4/, the FPourier transform of the covariant
two-time Green function

Y ) (4) 7
R (Bpymags 4 .Jo,Q)zja/@a_ Il,c/%,g/yz ,

44,mrg ’

. S’(ZT)}@ (&'%))~SM@Q /}]L'dz)]' R (354,325:11)('14)

near poles of bound states A and B (with masses MA and
MB resp.) can be represented in the form

R{Ahma?; Zl%mé' P e

(3.1)

)« Goral g 671188 Gy (L)

Mg .2)

(O —Hy)- (Y&~ 1)

with the help of the completeness condition for the system of
state vectors, integral representation of £ -function (corres-
ponding to rTw-prr.:duct) and definition of the covariant two-
particle WF (2.10), (2.18).

Further, following the paper/4/, we derive the momentum
representation of the matrix elements of the current operator
in terms of the covariant single-time quasipotential WF of two
bound states A and B (for details, see App. I).

a) Por the WP defined by eq. (2.23) these are

AP 9o BT > = *uth S%ﬂ , g;n [A_;ma‘?).

(0 ) A A g
VU g + V@ Lomse G (1 .
' Lr:l& o pmagp E(Bﬁ ( ‘j,,h'\?«Q)

AP,MQ? ) A%mﬂQ

12

'

b) For the WF (2.24) (i.e.,with the retarded Green function

= ret
G‘ ) one has

AP 18T > =

(3.4)

[ it ~r
L+Z, ﬂ@ﬁ_~ &fAM (Ap,may)yam [A%rnaa)

(a)> )t 4] o

The matrix element (3.4) is more close in form to the nonrela-
tivistic one than the metrix element (3.3). In expressions (3.3)
and (3.4) the vector of Lobacheveky space g,mad g 1 Tela-

ted to the integration variable as follows
P A

/ - 4‘2 'AEP , A/’, (3.5)

;/MQQ ma?,

where AQ and A? are matrices of the pure Lorentz trans-

formations. The product of two pure Lorentz transformations, in

general, is not purg Lorentz transformation on the resulting
—"_ -"O

vector 2,9 = 93 )& _/Ag g j but contains an additional

Wigner rotation

L4, =47 Vg D)

dp g

For the spherical-symmetric WF of S-state of the two-particle
aystem it can be easily shown that the matrix element (3.4) is
an invariant function F'/ f/ which depend only on the invariant
quantity the aquare of modulus of vector p related to
the momentun transfer of the syatem 7 = /ﬂ— .93)‘ by the formula
( My = MB =M )

£ =/p_@}‘=,2/‘1’_,z/vt//_‘7_‘_:2;?;- (3.6)

13



As & result, the function /T/Z%QE ycalled the system form factor,
can be written as a convolution of the quasipotential WF in the
Lobachevsky space

F (4, 52)
. O//J)d —» A /_)ﬁ?( 3.7)

The form factor (3.7) is & direct geometrical generalization

(in the sense of the change of the Buclidean to the Lobacheveky
geometry) of the corresponding nonrelativistic expression (1.2),
that is the convolution in the Euclidean space. By applyin%.the
raddition theorem™ to the relativistic "plane waves™ (2,3)

fa/td' f[ *ma[_)md ’77=f/’;—’rf/4: ’r)f/m -’(3,3)

~>2
the form factor /v(/}d // can be represented in the form of
the relativistic Fourier transform of the modulus squared of
the covariant quasipotential WP 5’ /IP’) (2.24)

FIE) = F(G55) =) Jl 78 [ D i F ) ] 529
£ By, )= /—*!Aﬁ"—"——’-"—”ii’—?)""”” (427

For S—Btate, integrating over angles gives

I ~ rézo £
/:/z/{g*zi/;;;m “ ’7/”—;‘% /9. )0 ao

where ¢ = /é c//[ ‘%4/ is the rapidity and Hore,:// the
radial WF, The form factor (3.10), being a generalization of the
nonrelativistic form factor (1.1), differs from it in two
points, Pirst, (3.10) cgntains the integration over invariant
,Felativistic coordinate b  which is conjugate not to the mo-
mentum transfer, like in (1.1) but to the rapidity sy’
thet has the meaning of a distance in the Lobacheveky space.
Second, (3.10) contains an additional relativietic geometrical

14

factor 7/5{ which vanishes in the nonrelativistic limit,
(The meaning 6f this factor is discussed in refs./al ).

Now let us consider a particular example, the form factor
of a meson in the case of the Coulomb interaction between gquarks.
It is known that & nonrelativistic model based on the Coulomb
potential predicts the dipole decrease of the pion form factor
/]QV_ ¥/ that contradicts the prediction of the dimensional
quark counting rules, i.e.,the decrease of type /7/;Lv - /1/.
In our approach, the covariant quasipotential WF (2.34) produces
the following behaviour of é; /?/ at large transfer momenta -

=4
,/47‘///5,:/ )-— _’—;Z; z/f—/m/—)j (3.11)
M2

which differs from thet predicted by the dimensional quark coun-
ting rules by the z only,

Note also that the approach developed can help one to find
the relativistic form factor of a system with the nonrelativis-
tic internal motion of constituents., In this case the relati-
vietic relative "coordinate®™ r coincides with the nonrela-
tivistic one, and eq. (2.24) turns into the Schrodinger equa-
tion /7 { Now, by comparing (1.1) and (3.10) it can be easily
concluded that

£, /f/ / ) /// /’W'u//m// (3.12)
g = A@* 04{ /'1 - f,é},4z)

It should be noted that formula ('3.4£2) has been obtained
in the consistent relativistic theory withoug any approximations
of the type of an expansion in powers of ¢* . On the other
hand, the results of paper/19/ can be applied only if the igterae-
tion Lagrangian is restricted to terms of first order in ”/ﬂc‘ ,
as it was shown for classical models in ref./zo/. The considera-
tion of higher orders results in essential difficulties in
determining the transformation properties of WF/21/. Expanding
{f’ in (3.12) in powers of #/c® one can easily verify that

rmule (3.12) coincides, within terms %/c¥ , with the corres-
ponding formula of paper 1

15



On the basis of results of paper/aa/ formula (3.12) can

be written in the form
¢/
V%&MZ/

by (4, ) o

1
el ,;%7 /2l b /t L )
r r
with 1¢;j;/-the Fourier~Bessel transform of I/?7j . From the
latter exptession it is clear what class of potentials provides
the asymptotic behaviour of F.,.» /¥// consistent with predic-
tions of the dimensional quark counting,.

Conclusion

Let us summarize the most essential results of the paper.

1. The relativistic configurational representation (RCR)
allows one to express the particle form factor in terms of the
invariant distribution FYr) (2.,2) in any reference freme
and not only in the Breit one (as in the case of the Fourier-
Bessel transformation(1.1)}

2, We establish the connection of the invariant distribu-
tion F(r) with the covariant quasipotential WF of the system
of two particles (quarks),

3. The quasipotential WF are solutions of the covariant
two-particle quasipotential equations (2,23) and (2.24), and
for some potentials they can be found explicitly (see, e.g.,
(2.30) and (2.34)).

4, The relativistic coordinate F in eqs. (2.23) and
(2,24) is conjugated to the covariant momentum vector of particle

in the c,m,8, of the system le,"a (2.13). The invariance of
its modulus a?ll; mag l= ing- leads to the invariance
of the modulus of the relativ1stio relative coordinate in

(2.2) and (3.10). Therefore the RCR with the group parameter
(2.6) playing the role of the invariant relativistic relative

“"coordinate™, allowa one to describe the system internal motion,
responsible for the particle structure,in an invariant way.

5. The invariance of the modulus of the relativistic rela-
tive "coordinate®(®™incompressibility" under the Lorentz trans-
formations) is the main difference from the Licht-Pagnamenta

formalism/j’ / widely used in quark theory. This property allows
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one to obtain the simple formula (3.12) for the invariant form
factors of the systems with nonrelativistic internal motion.

Our further purpose is the application of the developed forma-
lism for calculation of form factors for other types of quark-
antiquark interaction and the inclusion of spin on the basis of
an approach developed in refs./ 7’23/.

The authors express their deep gratitude to V,G.Kadyshevsky,
A.B,Govorkov, V,A,Matveev, V,A.Mescheryakov, R.M,Mir-Kasimov and
R.N,Faustov for useful discussions,

Appendix
Let us introduce, following ref./4/ the generalized vertex
function /7 related to the five-point function R /34) as
follows:

E/jf@) = G/ - /—7/‘/?6?/‘5/4) , (A.1)

where multiplication implies the'ingariant integration with volume
element of momentum space aﬁ% = 4/ XY realized on the hy-
perboloid (2.1). m A2 .2
. 2 /& /
Graphically, this representation is of the following form

(see Fig. 2)

§

R G G

Fig. 2.

.

In the presence of a bound state with the two-~time Green function
has a pole representation according to {2.17). Comparing (3.2)
with (A.1) and applying the pole representation (2,17} to £~ , one
gets the current matrix element between states A and B in terms

of the quasipotential WF squation (2.210) and generalized vertex
function [’ in the following form

{ a/’ S,
4/4(_)’)UKO)IBQ> é??')‘ ‘—J_——‘Z —.I—j;”g‘ﬂ'(ﬁ..e)

/”’g_? ol ; !ﬂj@

mf) (1 by 200, 15



Within the quasipotential approach in terms of the retarded
Green function relation (A.1) should be changed as follows:

(Re) = F w‘/j’)-/#fjfﬂ/' 5’*‘%?/, (A.3)

red
where /Q ﬂ?ﬂ/is the retarded part of the five-point function
(3.1), and the current matrix element is:

— -— o
AP|TC)BG > = _ij //34 Ay mag
27, : Yk
,Jr( tA/:,/n:iy Hr Jﬂ,mﬂa (A.4)
/40 P”’Jy) /’/ %/4,0 /'/é/ /4”%)
The vertex function /7 will be calculated approximately

a8 an expansion in interaction constant., In the impulse appro-.
ximation (see Fig, 3)

o

P

Fig. 3.
it is of the form y/‘”
AN Ra) -2 (Vp7 4° )
/’°""’3’ 2 }(.2/") Jm A~ “F{A 5)
by 1900 g 90>

re 2
/ mJy/ZMJa/‘/ ﬁj "2 / d;'"ﬂ_? /,I«J.a)' (A.6)
LPupul Tedl g, g, >

For the interaction Lagrangian
* ¥
Llx)=Z LKA+ %, LY A
with scalar field A we get

Lpupul TN g g3 = Zos g S T2 7) v tdog),
" a?M(Jy//a (-)?,‘ /1.‘-*2)

Xy
(.2]
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Substituting (A.5) and (A.6) into (A.2) and (A.4) and allowing
for (A.7) and its invariance produce expressions (3.3) end (3.4).
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