СООБЩЕНИЯ
 ОБЪЕАИНЕННОГО ИНСТИТУТА
 ЯAEPHЫX ИССАЕАОВАНИЙ

АУБНА

N.B.Skachkov, I.L.Solovtsov
$5083 / 2-78$
MESON FORM FACTORS
AND COVARIANT THREE-DIMENSIONAL
FORMULATION
OF COMPOSITE MODEL

N.B.Skachkov, I.L.Solovtsov

MESON FORM FACTORS
AND COVARIANT THREE-DIMENSIONAL FORMULATION
OF COMPOSITE MODEL

Скачков Н.Б., Соловцев И.Л.

Формфакторы мезонов п коварнантная трехмерная формулировка составнои моделп
Развит аппарат, позволяюшии в рамках релятивистскод кварковои модели паяти явные выраженкя для формфакторов мезонов через ковари аитвые волновые фувкции системы двух кварков. Эти волновые функцин подчнняются авухчастичному квазипотенивальному уравнению, в котором ховарнантным образом выделено относятельное движенне кварков. Точный вид волновых функий наиден благодаря переходу в релятивнстское координатное представление путем прнменения вместо обычного разломевия Фурье гармонического анализа на группе Лорениа и решения полученного таким образом релятивистского разностного уравнения. Полученные выражения аля формфакторов преобразоввны к трехмерному ковариантному внду, являюшемуся непосредствөнным геометрическим релятнвнстским обомением аналогичяых выраженй в нерелятивистскод хвантовои механ ке и обеспечивапопим в кулоновском поле убывание формфактора мезона прн $-t \rightarrow \infty$ по захону $F_{\pi}(t) \sim t^{-1}$

Работа выполнена в Лаборатории теоретпческои фпамки Оияи
Сообтение Объедивенного ивститута ядериых всследовавии. Дубна 1978

Skachkov N.B., Solovtsov I.L.
E2 - 11727
Meson Form Factors and Covariant Three-Dimensional Formulation of Composite Model
An approach is developed which is applied in the relativistic quark model to oblain explicit expressions for meson form tactors in terme of covariant wave functions of the two-quark system. These wave
functions obey the two-particle quasipotential equation in which the relative motion of quarks is singled out in a covariant way. The exact form of the wave functions is found using the transition to the relativistic configurational representation with the help of the harmonic analysis on the Lorentz group instead of the usual Fourier expansion and then solving the relativistic difference Fourier expansion and then solving the relativistic difference equa-
tion thus obtained. The expressions found for form factors are transformed into the three-dimensional covariant form which is a direct geometrical relativistic generalization of analogous expressions of the nonrelativistic quantum mechanics and provides the decrease of the meson form factor by the low $\left.F_{F}(t)\right)^{-1}$ as $-t \rightarrow \infty$, in the Coulomb field.

The investigation has been performed at the Laboratory of Theoretical Physics, JNR.
Communication of the Joint Institute for Nuclear Research. Dubna 1978

[^0]1. Introduction

The idea of the composite quark nature of hadrons in conjunction with the assumption of acale invariance leads to a aimple universal law of the form factor behaviour in the esymptotic region of large momentum tranafera/1/.

However, there is atill a problem concerning the relativistic covariant description of form factors (and other characteristica caused by the composite nature) throughout the whole energy and momentum transfer region. Por this purpose it is neceseary to have a more detailed knowledge of quark dynamics and in particular to know the covariant wave functions of relative motion of quarks. Our consideration here will be restricted to the spinless mesons as objects composed of two spinless"quarks.

In the nonrelativistic theory the form factor $\left.F / \vec{q}^{2}\right)(\vec{q}=\vec{p}-\vec{k}$ - momentum tranafer) is defined as the Pourier transform of the modulue squared of the wave function of quark relative motion $\rho(r)=X /\left.\Psi_{B C}^{\ell=0}(r)\right|_{i} ^{2}$

$$
\left.F\left(-q^{2}\right)=\int d \vec{r} e^{i \overrightarrow{f_{r}}} \rho(r)=4 \pi \cdot z \cdot \int_{0}^{\infty} d r \frac{\sin q}{r q} / \psi_{B k}^{c} / r\right)\left.\right|_{1} ^{2}(1.1)
$$

or in the momentum representation

$$
\begin{equation*}
F\left(-\vec{q}^{2}\right)=\frac{z}{(2 \pi)^{3}} \int d \vec{p} \Psi_{B K}(\vec{p}) \Psi_{B K}(\vec{p}-\vec{q}) \tag{1.2}
\end{equation*}
$$

Within the four-dimensional formaliem of quantum field theory, the covariant wave functions (WF) are derived using the two-particle Bethe-Salpeter equation. However, in this approach, the WF of relative motion maintaine an additional dependence on relative time which has no analog in the nonrela-
tivistic quantum mechanics and complicates the direct covariant generalization of the nonrelativiatic quark model.

Our task is to construct a covariant three-dimensional formalism in the relativistic theory as close as possible to the nonrelativistic one. In the momentum representation, an essential progress has been achieved in the three-dimensional covariant description of the form factore of composite syetems through the covariant formulation of the two-particle quasipotential equation of Iogunov-Tavkhelidze $/ 2 /$ in papers $/ 3,4 /$. However, in the momentum representation that is used in $/ 3,4 /$ the equation for WF is an integral equation that makes it difficult to obtain solutions in a closed form required for inve日tigations.

As it was shown in our previous paper $/ 5 /$ the explicit form of covariant WF can be obtained on the basis of the method of transition to the relativistic configurational representation $/ 6 /$ proposed earlier in the framework of the Kadyshevsky quasipotential equation $/ 7 /$.

The aim of this work is to derive the explicit form of the relativistic form factors and to keep the analogy with the nonrelativistic formaliam, in particular, with the expreseions (1.1), (1.2).

2. Covariant Quasipotential Equation in the Relativistic

 Configurational Representation (RCR)The main difference between the quasipotential equation and the Bethe-Salpeter equation, where all quantities are defined off the mass shell, but in each vertex the energy-momentum conserves, consiats in the following: in the quasipotential approach (QPA) all the momenta of particles belong to the mass shell

$$
\begin{equation*}
p_{0}^{2}-\vec{p}^{2}=m^{2} \tag{2.1}
\end{equation*}
$$

But, like in the "old fashioned" perturbation theory all quantities (WF, the Kernel of the equation) are defined over the "energy" shell. Equation (2.1) defines the three-dimensional surface of a hyperboloid whose upper sheet serves as a model of the Lobachevaky space. Therefore in the quasipotential equation, it is convenient to expand over the complete system of functions which realize the unitary representations of the group of motions of that space. i.e., the Lorentz group.

Earlier the RCR has been applied to deacribe the form factors in paper $/ 8 /$. The transform of the form factor in RCR is factors in paper $/ 8 /$ The transform of the form factor in
defined as follows $\left(t=(p-k)^{2}=2 M^{2}(t-c h y)\right)$

$$
\left.F(t)=\int d \vec{r} \xi\left(\overrightarrow{\Delta_{p k}} ; \vec{r}\right) F(r)=4 \pi \int_{0}^{\int_{0}^{\infty}} \frac{\sin ^{\infty} \operatorname{shy}_{y}}{} \vec{F} r\right)^{2} d r,(2.2)
$$

where analogs of the nonrelativistic plane waves $e^{\overrightarrow{\boldsymbol{q} \vec{r}}}$, which realize the group of motions of the three-dimensional Euclidean momentum space, are the following functions

$$
\begin{align*}
\xi(\vec{\Delta}, \vec{r})=\left[\frac{\Delta_{\mu} n^{\mu}}{M}\right]^{-1-i M M} ; \vec{r}=+n^{\prime} ; \vec{n}^{2}=1 \tag{2.3}\\
n^{\mu}=(1, \vec{n})
\end{align*}
$$

The functions (2.3), realizing the unitary irreducible repregentations of the Lorentz group, have been found in/9/ The spatial part of -vector $\left(\Delta_{p, k}\right)^{\mu} \equiv\left(L_{k}^{-1} p\right)^{\mu} \quad \mu=0,1,2,3:$

$$
\begin{aligned}
& \vec{\Delta}_{p, k} \equiv \vec{p}(-) \vec{k} \equiv\left(L_{k}^{-1} p\right)=\vec{p}-\frac{\vec{k}}{M}\left(p_{0}-\frac{\vec{p} \vec{k}}{k^{0}+M}\right)(2.4) \\
& \Delta_{p, k}^{0} \equiv \sqrt{M^{2}+\vec{\Delta}_{p, k}^{2}} \equiv\left(L_{k}^{-1}\right)^{0}=\frac{p_{0} k_{0}-\vec{p} \vec{k}}{M}=\frac{\beta_{\mu} k^{M}}{M}(2.5)
\end{aligned}
$$

can be treated as a vector of a difference of two vectors \vec{p} and \vec{k} in the Lobachevsky space: $\overrightarrow{\Delta_{p, k}}=\vec{p}(-) \vec{k}$. In the nonrelativistic limit $\vec{D}_{p, k}=\vec{\beta}(-) \vec{k} \rightarrow \vec{q}=\vec{p}-\vec{k}$ and $\xi(\vec{\lambda}, \vec{r}) \rightarrow e^{\vec{i} \vec{f}}$, therefore, the expansion (2.2) transforms into (1.1). In ref. $16 /$. the expansion (2.2) was proposed to consider as a relativistic three-dimensional generalization of the Pourier transformation used for the transition to the configurational representation in nonrelativistic quantum mechanics. The group parameter r in (2.2) and (2.3) which has been proposed $/ 6 \%$ to consider as a relativistic analog of the relative coordinate r in(1.1), i.e., the "relativistic coordinaten, numerates the eigenvalues of the invariant Casimir operetor of the Lorentz group $\hat{C}_{L}=\frac{1}{4} M_{\mu, ~} M^{\mu+}$ (where $M_{\mu \nu}=p_{\mu} \frac{\partial}{p^{\nu}}-p_{\nu} \frac{\partial}{\partial p^{\mu}}$ are the group generators)

$$
\begin{equation*}
\hat{C}_{L} \xi(\overrightarrow{,}, \vec{r})=\left(\frac{1}{M^{2}}+r^{2}\right) \xi\left(\overrightarrow{A_{j}} \vec{r}\right) ; 0 \leq r<\infty \tag{2.6}
\end{equation*}
$$

The nonrelativistic coordinaterhas the same group-theoretical meaning: its square is an eigenvalue of the Casimir operator $\hat{C}_{3}=\left(i \frac{\partial}{\partial}\right)^{2}$ of the group of motions of the Guclidean momentum space

$$
\hat{C}_{3} e^{i \vec{q} \vec{r}}=r^{2} e^{i \vec{q} \vec{r}}
$$

In the nonrelativiatic limit $\hat{C}_{4}^{\hat{1}} \rightarrow \hat{C_{0}}$.
An important property of the relativistic analog of the relative coordinate in (2.2) is the relativistic invariance of its modulus (as a parameter which numerates the eigenvalues of the invariant Casimir operator C_{L} of the Lorentz group). Therefore, the distribution $F(r)$ in (2.2) is an invariant function

In ref. $/ 8 /$ it has been shown that the usual definition of the invariant $\left.r, m, s,\left\langle r_{0}^{2}\right\rangle \equiv 6 \frac{\partial F(t)}{\partial t} / t=0 / F / 0\right)$ has the group-theoretiCBl meaning of an eigenvalue of the Casimir operator of the

$$
\begin{align*}
& \text { Lorente group: } \tag{2.8}\\
& \left.\qquad r_{0}^{2}\right\rangle_{\text {in } r} \equiv \frac{\partial \frac{\partial F(t)}{\partial t} / t=0}{F(0)}=\frac{\left\{C_{L}^{A} F(t)\right\} / t=0}{F(0)}
\end{align*}
$$

By using (2.2) and (2.6), eq. (2.8) results in the expression for $\left\langle r_{0}^{2}\right\rangle$ in terms of the invariant distribution $\left.F / r\right)^{/ 8 /}$

$$
\begin{equation*}
\left\langle r_{0}^{2}\right\rangle_{\text {in } 2} \equiv \frac{6 \frac{\partial F(t)}{\partial t} / t=0}{F(0)}=\frac{1}{M^{2}}+\frac{\left.\int r^{2} d r F / r\right)}{\int d r F(r)} \tag{2.9}
\end{equation*}
$$

Which is valid in any coordinate syatem.
This equality was used in ${ }^{78 /}$ for analysing the vector dominance model and ita modification at short distances.

Our aim is to establish the connection of the invariant distribution $F(r)(2.2)$ with covariant wave functions of relative motion of quarks inside hadron. Note, however, that unlike (2.2), in the quark model the expansion is performed on the mase hyperboloid of a quark m rather than on that of particle with mass M (composed of quarks).

As a result, the connection of the "relativistic coordinate" (for relative motion of quarks)with r.m.s. of the composite particle will be somewhat different from (2.9).

Let us turn now to the quasipotential equation. In ref./2/ the single-time quasipotential wave function (WP) was defined which follows from the Bethe-Salpeter equation. The WF of the two-particle system with mass M, momentum \vec{C} and moment J (here $J=O$) in the Bethe-Salpeter approach is defined as

$$
\mathscr{\Psi}_{B k}\left(x_{1}, x_{2}\right)=\left\langle\left. 0\right|^{\Gamma}\left\{\varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right)\right\} \mid M, Y, \vec{k}\right\rangle \cdot(2,10)
$$

After the covariant equating of particle time $\frac{[3,4]}{x^{0}}=x_{i}^{0}-x_{i}^{0}=0$

$$
\begin{aligned}
& \text { it reads: } \\
& \Psi_{B K}\left(p_{1}, p_{2}\right)=(2 \pi)^{4} \delta^{(4)}(Q-K) \widetilde{\Psi}_{B K}(q) ; \mathcal{S}^{(q)}=p_{1}+p_{2} ;(2.11)
\end{aligned}
$$

where

As a vector $\lambda_{*} \mu$, it is convenient to choose the 4-velocity of the system ${ }^{*} A, 6$

$$
\lambda_{\rho}^{\mu}=\rho^{\mu} / \sqrt{\rho^{2}} \quad ; \quad \lambda_{\rho}^{\mu}=\lambda_{k}^{\mu}
$$

so that in the c.m.s. $\overrightarrow{\mathcal{P}}=\vec{p}_{1}+\vec{p}_{2}=0$ and $\lambda x=x_{1}^{0}-x_{2}^{0}=0$. Because of the presence of δ-function under the integral sign, the integration is performed over the three-dimenaional hypersurface $\lambda x=0$. As a result, the W_{F} (2.12)
$\tilde{\Psi}_{B K}(q)=\int d \vec{x}^{\prime} \exp \left[\frac{L_{k}^{-1}\left(\frac{p_{1}-p_{2}}{2}\right)}{L_{x}^{\prime}}\right]\langle 0| \Psi_{1}(0, \vec{x}) \varphi_{2}(0,-\vec{x})|M, y, \overrightarrow{0}\rangle$
depends only on the three-dimensional vector $\stackrel{0}{p}=\overrightarrow{\left(L_{k}^{-1} q\right)}$, which coincides with the spatial component of covariantly defined vector of the momentum of the first particle in the c.m.s. of the two-particle system, introduced in ref./ll/.In notation (2.5) this vector has the form $/ 5 /$ (see also $/ 12 /$):
*) In refs. /10/ the quasipotential formalism was fonstructed with the use of 4 -vector λ^{μ} on the cone, 1.e., $\lambda^{2}-\hat{\lambda}^{2}=0$.

$$
\begin{equation*}
\frac{\vec{p}}{\vec{p}}\left(L_{k}^{-1}\left(\frac{p_{1}-p_{1}}{2}\right)\right)=\vec{p}_{1}(-) m \vec{\lambda}_{\rho} \equiv{\overrightarrow{\Delta_{p}}, m 2 \rho} \tag{2.13}
\end{equation*}
$$

and

$$
\widetilde{\Psi}_{B K}(q) \equiv \widetilde{\Psi}_{B O}\left(\vec{\Delta}_{p_{4}, m a_{\rho}}\right) ; \vec{\Delta}_{p_{1}, m a_{\rho}}=-\vec{\Delta}_{p_{3}, m \lambda_{\rho}}(2.14)
$$

The analogous covariant equating of particles time is also ued for deriving the two-time Green function
$(2 \pi)^{4} \delta^{(/)}(\rho-Q) \widetilde{G}\left(\Delta_{p, m \lambda} ; \Delta_{q, m \lambda} ; \rho^{2}\right)=\int d x_{1} \cdot d{ }^{(4)} x_{2} \cdot d y_{1}^{(4)} \cdot d y_{2}$.

$$
\begin{equation*}
e^{i p_{1} x_{1}+i i_{2} x_{2}-i q_{1} y_{1}-i q_{2} y_{2}} \delta^{(14)}\left(\lambda x_{1}-\lambda x_{2}\right) \delta\left(\lambda y_{1}-\lambda y_{2}\right) G\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) . \tag{2.15}
\end{equation*}
$$

The definition of the Green function of the Bethe-Selpeter equation

$$
G\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=\langle 0| T\left\{\varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{1}\right) \varphi_{1}\left(y_{1}\right) \varphi_{2}\left(y_{2}\right)\right\} \delta^{2} s^{16}
$$

with the completeness condition of the system of state vectors, the integral representation of θ-function, and the definition of the single-time WP (2.10) produce the following form of (2.15) near ${ }^{\text {the bound }} \boldsymbol{\mathcal { F }}\left(\Delta_{p, m a}^{\text {state }} ; \mathcal{D}_{q, m a} ; \mathcal{P}^{2}\right)=\tilde{\mathcal{F}}^{\text {net }} \tilde{G}^{\text {adv }}=(2.17)$

where wf
malization
$/ \tilde{\mathscr{S}}_{B M}$$\left(\Delta_{\rho, m \Omega}\right)$ diffor from (2.12)-(2.14) by the nor-

$$
\widetilde{\varphi}_{B M}\left(\overrightarrow{\Delta_{p, m \lambda}}\right)=2^{3} \Delta_{p, m \lambda}^{0} / \sqrt{m} \widetilde{\Psi}_{B 0}\left(\overrightarrow{\Delta_{p, m \lambda}}\right)(2.18)
$$

Wo also defin the noxt function

$$
\tilde{\varphi}_{B M}^{r}\left(\vec{\Delta}_{p, m \lambda}\right)=\left(2 \Delta_{p, m \lambda}^{0}\right)^{3 / 2} \widetilde{\Psi}_{B 0}\left({\overrightarrow{\Delta_{p, m \lambda}}}_{(2.19)}\right.
$$

The spectral representation (2.17) contains poles at points both with positive and negative mass. Therefore, if we want to have a formalism close in form to the nonrelativistic one, we should follow/13/ and use the construction procedure of the quasipotential equation only with the help of the retarded Green function $\widetilde{G}^{\text {ret }}\left(\Delta_{p, m a} ; \Delta_{q, m a} ; \mathcal{P}^{2}\right)$. AB a result of the usual procedure ${ }^{/ 2-4 /}$, we obtain two possible types of equations $/ 5 /$

Equation (2.20) corresponds to the formulation of the quasipotential approach in terms of the Green function (2.17) while eq. (2.21)-1n terms of the retarded Green function $G^{\text {ret }}$ (Note, that eq. (2.21) coincides with the equation obtained in the Kadyshevaky approach/f/ on the basis of the covariant Hamilton fornulation of QPT). The procedure of constructing quasipotentials V and V^{r} from matrix elements of the relativiatic scattering amplitude is, presented in $12-4,7,13 \%$.

As is shown in $/ 5 /$, undor the Lorentz transformation the WF (2.12)-(2.14) is transformed by the law

$$
\begin{align*}
& U(L) \tilde{\Psi}_{B O}\left(\vec{\Delta}_{P, m a_{\rho}}\right)=\widetilde{\Psi}_{B O}\left(\vec{\Delta}_{L P, m a_{L \rho}}\right)= \tag{2.22}\\
&=\widetilde{\Psi}_{B O}\left(R\left\{V^{-1}\left(L^{-1}, \mathcal{S}\right)\right\} \vec{\Delta}_{p, m a_{Q}}\right)
\end{align*}
$$

After the trensformation (2.2) with the substitution of vector $\bar{\Delta}_{p t, m a P_{1}}$ (2.13) into the function (2.3), oquations (2.20) and (2.21) take the form $/ 5 /$:

$$
\begin{equation*}
\left[\mathscr{\rho}^{2}-H_{0}^{2}\right] \tilde{\varphi}_{B M}(\vec{r})=V(\vec{r}) \tilde{\varphi}_{B M}(\vec{r}) \tag{2.23}
\end{equation*}
$$

$$
\begin{equation*}
\left.\hat{H}_{0}\left[\sqrt{\mathcal{P}^{2}}-\hat{H}_{0}\right] \tilde{\varphi}_{B M}^{r}(\vec{r})=\stackrel{r e t}{r}_{(\vec{r}}\right) \widetilde{\varphi}_{B M}^{r}(\vec{r}) \tag{2.24}
\end{equation*}
$$

The free Hamiltonian \hat{H}_{0} is a ininite-difference operator ${ }^{/ 5,6 /}$. It should be noted that since the relativistic coordinate" r is now conjugated to the covariant momentum vector of the particle in the o.m.s. of the two-particle system $\Delta_{\text {pa map }}{ }^{*}$) the operator $\hat{H}_{0} \quad$ in (2.23) and (2.24) is the Lorentz invariant $/ 5 /$.

$$
\text { When quasipotentials } V \text { and } V^{r} \text { in eqs. (2.20) and (2.21) }
$$ do not depend on \mathcal{P}^{2} the normalization conditions for the $W P$

$$
\begin{align*}
& \text { are of the form } \\
& \qquad \int \frac{d^{(3)} \vec{\Delta}_{p_{1}, m \lambda \rho}}{m^{-1} \Delta_{p_{1}, m \lambda \rho}^{0}} \cdot \widetilde{\varphi}_{B M}^{+}\left(\vec{\Delta}_{p_{1}, m \lambda \rho}\right) \widetilde{\varphi}_{B M}\left(\vec{\Delta}_{p_{1}, m \lambda \rho}\right)=1 \tag{2.25}\\
& \int \frac{d^{(3)} \vec{\Delta}_{p_{1}, m \lambda \rho}}{m^{-1} \Delta_{p_{1}, m \lambda_{\rho}}^{0}} \cdot \tilde{\varphi}_{B M}^{+r}\left(\vec{\Delta}_{p_{1}, m \lambda_{\rho}}\right) \cdot \frac{2 \Delta_{p_{1}, m \lambda_{\rho}}^{0}}{M} \widetilde{\varphi}_{B M}\left(\vec{\Delta}_{p_{1}, m \lambda_{\rho}}\right)=1 \tag{2.26}\\
& \text { or in the RCR: }
\end{align*}
$$

$$
\begin{gather*}
\int d \vec{r}\left|\widetilde{\mathscr{Y}}_{B M}(\vec{r})\right|^{2}=1 \tag{2.27}\\
\int d \vec{r} \tilde{\varphi}_{B M}^{r^{+}}(\vec{r}) \cdot \frac{\hat{H}_{0}}{M} \cdot \tilde{Y}_{B M}^{r}(\vec{r})=1 \tag{2.28}
\end{gather*}
$$

In what follows we shall illustrate our method for finding the pion form factor by solving eq. (2.23) with the potential**)

$$
\begin{equation*}
V(r)=-e^{2} / r \tag{2.29}
\end{equation*}
$$

The corresponding covariant wF coincides with those found in $2^{\text {nd }}$ ref.of $/{ }^{6 /}$ for the c.m.s. and for s-atate these have the form $\tilde{\mathscr{Y}}_{B M}^{l=0}(r)=$ Const $\cdot e^{-x r m}{ }_{2}^{l} F_{1}\left(1-i r m, 1-\frac{e^{2}}{\sin 2 x} ; 2 ; 1-\exp (-2 i x)\right)$
 $2\left|\vec{\Delta}_{p_{1}, m \lambda_{\rho}}\right|=\sqrt{M^{2}-4 m^{2}} ; 2 \Delta_{p_{4}, m \lambda_{Q}}^{q}=M ; \mathcal{P} \stackrel{2}{=}\left(p_{1}+p_{2}\right)^{2}=M^{2}$. **) At present it is accepted that inside the hadron auarks interact through the exchange by the maseless gluon.
In the RCR to the propagator $(p-k)^{-2}$ there corr potential (2.29) at the propagator $\left(e^{-k}\right)^{-2}$ there corresponde the quasi-

Though the quasipotential $V^{\text {ret }}$ in (2.24) is constructed from diagrame of field theory different from those for $\mathrm{V}^{-1 / 4}$ in
(2.23) ($V_{18}^{\text {ret a }}$ sum of irreducible diagrams ariaing in the Hamilton covariant formulation of quantum field theory by Kadyshevaky $/ 15 /$), we consider as an example eq. (2.24) with the same potential (2.29).

We look for the solution to eq. (2.24) with (2.29) in the form of the Laplace integral

$$
\begin{equation*}
\tilde{\varphi}_{B M}^{r}(r)=\int_{\alpha}^{l=0} d p e^{-p r} f(p) \tag{2.31}
\end{equation*}
$$

Substitution (2.31) into (2.24) gives a simple differential equation for the function $f(p)$ and certain relations which allow one to choose complex points $\alpha \quad$ and β ~ in the integral (2.31). As a result, for the function $\tilde{y}_{B M}^{r}{ }_{B}^{l}=0(r)$ we get

$$
\begin{align*}
& \text { the integral representation } \\
& \tilde{Y}_{B M}^{r, l=0}(r)=C_{1} \cdot e^{-r m x} \cdot \int_{C} d y e^{-r m(y-x)}\left[\sin \frac{y+x}{2}\right]^{\frac{\alpha}{\sin 2 x^{-1}}} . \\
& \cdot\left[\sin \frac{y-x}{2}\right]^{-\frac{\alpha}{\sin 2 x^{-1}}} \cdot\left[\sin \frac{y+\frac{\pi}{2}}{2}\right]^{\frac{\alpha}{2 \cos x}-1} \cdot\left[\sin \frac{y-\frac{\pi}{2}}{2}\right]^{\frac{\alpha}{2 \cos x}-1} . \tag{2.32}
\end{align*}
$$

The correct asymptotic behaviour is provided by the choice of contour C as drawn in Pig. 1 and by the following quantisation condition

$$
\frac{e^{2}}{\sin 2 x}=N \quad(N=1,2,3 \ldots) \quad ; \quad x=\arccos \frac{\sqrt{\beta^{2}}}{2 m^{2}}(2.33)
$$

For the ground state $(N=1)$ eq. (2.32) gives

$$
\begin{equation*}
\tilde{\mathscr{y}}_{B M} r, l=0 \quad(r)=\operatorname{Const} \cdot r \cdot e^{-r m x} \tag{2.34}
\end{equation*}
$$

3. Porm Pactor of the Relativiatic Tro-Particle System

The matrix element of the local current operator between bound atates is obtained with the help of the fivepoint Green-like function ${ }^{16 /}$

$$
R\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=\langle 0| T\left\{\varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) J(0) \varphi_{1}\left(y_{1}\right) \varphi_{2}\left(y_{2}\right)\right\}|0\rangle
$$

As follows from ref. $/ 4 /$, the Pourier transform of the covariant

$$
\begin{align*}
& \text { two-time Green function } \\
& \widetilde{R}\left(\Delta_{P_{1}, m \lambda_{\rho}} ; \Delta_{q_{1}, m \lambda_{Q}} ; \Omega, Q\right)=\int d^{(k)} x_{1} \cdot d^{(k)} x_{2} \cdot d \frac{(k)}{y_{1}} \cdot d_{y_{2}}^{(k)} \tag{3.1}\\
& \quad \cdot \partial^{(4)}\left(\lambda_{Q}\left(x_{1}-x_{2}\right)\right] \cdot \delta^{(4)}\left(\lambda_{Q}\left(y_{1}-y_{2}\right)\right] \cdot R\left(x_{1}, x_{2} ; y_{1}, y_{1}\right)
\end{align*}
$$

near poles of bound states A and B (with masses M_{A} and M_{B} reap.) can be represented in the form

with the help of the completeness condition for the aystem of state vectors, integral repreaentation of θ-function (corresponding to Γ-product) and definition of the covariant twoparticle WF (2.10), (2.18).

Further, following the paper ${ }^{/ 4 /}$, we derive the momentum representation of the matrix elementa of the current operator in terms of the covariant aingle-time quasipotential WF of two bound atates A and B (for detaila, aee App. I).
a) Por the WP defined by eq. (2.23) these are

$$
\frac{\sqrt{P^{2}} \Delta_{q, m \lambda_{Q}}^{0}+\sqrt{Q^{2}} \cdot \Delta_{p, m a \rho}^{o}}{\Delta_{p, m \lambda_{\rho}}^{0} \cdot \Delta_{q, m \lambda_{Q}}^{0}} \cdot \widetilde{\mathscr{P}}_{B M}\left(\vec{\Delta}_{q, m \lambda_{R}}\right)
$$

$\tilde{G}^{\text {ret }}{ }^{\text {b) For the WF (} 2.24 \text {) (i.e., with the retarded Green function }}$

$$
\begin{aligned}
& \langle A \vec{P}| Y(0)|B \vec{Q}\rangle= \\
& \quad=\frac{Z_{1}+Z_{2}}{(2 \pi)^{3}} \int \frac{d^{(3)} \vec{\Delta}_{P, m \lambda_{Q}}^{m^{-1}} \Delta_{\rho, m \lambda_{Q}}^{0}}{\tilde{\varphi}_{A M}^{r^{+}}\left(\overrightarrow{\Delta_{p, m \lambda_{Q}}}\right) \widetilde{\varphi}_{B M}^{r}\left(\vec{\Delta}_{q, m \lambda_{a}}\right)^{(3.4)}}
\end{aligned}
$$

The matrix element (3.4) is more close in form to the nonrelativiatic one than the matrix element (3.3). In expressions (3.3) and (3.4) the vector of Lobachevsky space $\vec{\lambda}_{q, m \lambda}$ is related to the integration variable $\bar{U}_{p, m \lambda_{g}}$ as follows

$$
\begin{equation*}
\Delta_{q, m \lambda_{Q}}=L_{Q}^{-1} \cdot L_{\mathcal{P}} \cdot \Delta_{p, m \lambda_{\mathcal{P}}}, \tag{3.5}
\end{equation*}
$$

where L_{Q} and L_{ρ} are matrices of the pure Lorentz transformations. The product of two pure Lorentz transformations, in general, is not pure lorentz tranaformation on the resulting vector $\left.\vec{J}_{Q, \mathcal{S}}=\stackrel{\mathcal{P}}{(}\right) \vec{Q}=\left(L_{Q}^{-1} \mathcal{P}\right)$ but contains an additional wigner rotation

$$
L_{Q}^{-1} \cdot L_{P}=L_{A_{P Q Q}}^{-1} \cdot V\left(L_{Q}, \supseteqq\right)
$$

For the spherical-symmetric WF of S-state of the two-particle syatem it can be easily shown that the matrix element (3.4) is an invariant function $F(t)$ which depend only on the invariant quantity the aquare of modulus of vector $\Delta_{\mathcal{S}}^{2} Q$ related to the momentum transfor of the syatem $t=(Q-\mathscr{D})^{2}$ by the formula ($M_{A}=M_{B}=M$):

$$
\begin{equation*}
t=(\mathcal{P}-Q)^{2}=2 M^{2}-2 M \sqrt{M^{2}+\vec{\Delta}_{\mathcal{P} Q}^{2}} . \tag{3.6}
\end{equation*}
$$

As a result, the function $F\left(\vec{\Delta}_{\mathcal{P} Q}^{2}\right)$,called the system form factor, can be written as a convolution of the quasipotential WF in the Lobachevsky apace

$$
\begin{aligned}
& F\left(\vec{\Delta}_{\mathcal{P}, Q}^{2}\right)=
\end{aligned}
$$

The form factor (3.7) is a direct geometrical generalization (in the sense of the change of the Euclidean to the Lobachevsky geometry) of the corresponding nonrelativistic expression (1.2), that is the convolution in the Euclidean space. By applying the "addition theorem" to the relativistic "plane waves" (2.3)

the form factor $F\left({\overrightarrow{\Delta_{p}}}_{Q}^{2}\right)$ can be represented in the form of the relativistic Fourier transform of the modulus squared of the covariant quasipotential WF $\widetilde{\mathscr{P}}_{\overrightarrow{B M}}^{r}(\vec{r})(2.24)$
$F(t)=F\left(\vec{A}_{\mathcal{P} Q}^{2}\right)=\left(z_{1}+z_{2}\right) \int\left(\overrightarrow{\vec{r}} \xi^{*}\left(\frac{m}{M}{\overrightarrow{A_{\mathcal{P} Q}}} ; \vec{r}\right) /\left.{\tilde{S_{B M}}}^{r}(\vec{r})\right|_{1,(3.9)} ^{2}\right.$

for S-state, integrating over angles gives
$\left.F(t)=\left(z_{L}+z_{2}\right) \frac{y}{\operatorname{sh} y} \cdot 4 \pi . \int_{0}^{\infty} d r \frac{\sin r m y}{r m y} / \tilde{\varphi}_{\Delta M}^{r, l=0}(r)\right)^{2}$,
where $y=A z$ ch $\left(L-\frac{t}{2 M}\right)$ is the rapidity and $\widetilde{\mathscr{Y}}^{r, \ell=0}(\underset{A M}{ })$, the radial WF. The form factor (3.10), being a generalization of the nonrelativiatic form factor (1.1), differs from it in two points. First, (3.10) contains the integration over invariant "relativistic coordinate r which is conjugate not to the momentum transfer, like in (1.1) but to the rapidity $m y$ [6], that has the meaning of a distance in the Lobachevaky apace. Second, (3.10) contains an additional relativistic geometrical
factor $y / s h y$ which vanishes in the nonrelativistic limit. (The meaning of this factor is discussed in refs. 18).

Now let us consider a particular example, the form factor of a meson in the case of the Coulomb interaction between quarks. It is known that a nonrelativistic model based on the Coulomb potential predicts the dipole decrease of the pion form factor $\hat{F}_{\pi}(t)=t^{-2 / 1 \nabla / ~ t h a t ~ c o n t r a d i c t s ~ t h e ~ p r e d i c t i o n ~ o f ~ t h e ~ d i m e n s i o n a l ~}$ quark counting rules, ie., the decrease of type $\mathcal{F}_{\pi}\left(t / \sim t^{-1 / 1 /}\right.$. In our approach, the covariant quasipotential WF (2.34) produces the following behaviour of $F_{\pi}(t)$ at large transfer momenta $-t \rightarrow \infty$

$$
\begin{equation*}
F_{\vec{\pi}}(t) \equiv F\left(\vec{A}_{\vec{P},}^{2}\right) \approx \frac{1}{y^{3} \operatorname{sh} y} \approx \frac{1}{\left\lvert\, t /\left(\ln \frac{|t|}{M^{2}}\right)^{3}\right.}, \tag{3.11}
\end{equation*}
$$

which differs from that predicted by the dimensional quark countting rules by the logarithmic factor $\left(\ln \frac{/ t /}{m^{2}}\right)^{3}$ only.

Note also that the approach developed can help one to find the relativistic form factor of a system with the nonrelativistic internal motion of constituents. In this case the relatiFistic relative "coordinate" r coincides with the nonrelativistic one, and eq. (2.24) turns into the Schrödinger quaion $7,6 /$. Now, by comparing (1.1) and (3.10) it can be easily concluded that

$$
\begin{gathered}
F_{\text {rel }}(t)=F_{\text {rel. }}\left({\overrightarrow{\Delta_{P} Q}}^{2}\right)=y / \operatorname{shy}_{y} \cdot F_{\text {nonzel }}(m y), \\
y=\text { Ar } h\left(1-t / 2 M^{2}\right)
\end{gathered}
$$

It should be noted that formula (3.12) has been obtained in the consistent relativistic theory without any approximations of the type of an expansion in powers of $\mathrm{r} / \mathrm{c}^{2}$. On the other hand, the results of paper $/ 19 /$ can be applied only if the interacion Lagrangian is restricted to terms of first order in γ^{2} / c^{2}, as it was shown for classical models in ref. $/ 20 /$. The considertion of higher orders results in essential difficulties in determining the transformation properties of $W F / 21 /$. Expanding y in (3.12) in powers of $1 / c^{2}$ one can easily verify that formula (3.12) coincides, within terms $1 / C^{4}$, with the caresbonding formula of paper $19 /$.

On the besis of results of paper $/ 22 /$ formula (3.12) can be written in the form

$$
F_{\operatorname{mel}}\left(J_{\mathcal{P}, a}^{2}\right) \approx \frac{1}{y S k y} V(m y) \sim \frac{1}{\left.\left\lvert\, t / \ln \frac{k t \mid}{M^{2}}\right.\right)} V\left(m \ln \frac{|t|}{M^{2}}\right)
$$

with $\left.V^{r} / m y\right)$-the Fourier-Bessel transform of $V^{r}(r)$. From the latter expression it is clear what class of potentials provides the asymptotic behaviour of $F_{\text {rel }}(t)$ consistent with predictions of the dimensional quark counting.

Conclusion

Let us summarize the most essential results of the paper.

1. The relativiatic configurational representation (RCR) allows one to express the particle form factor in terms of the invariant distribution $F(r)(2.2)$ in any reference frame $/ 8 /$ and not only in the Breit one (as in the case of the PourierBessel transformation (1.1)),
2. We establish the connection of the invariant distribution $F(r)$ with the covariant quasipotential WF of the system of two particles (quarks).
3. The quasipotential WP are solutions of the covariant two-particle quasipotential equations (2.23) and (2.24), and for some potentiala they can be found explicitly (see, e.g., (2.30) and (2.34)).
4. The relativistic coordinate r in eqs. (2.23) and (2.24) is conjugated to the covariant momentum vector of particle in the c.m.s. of the system $\Delta_{P, m l \rho}$ (2.13). The invariance of its modulus $2\left|\vec{X}_{p, m \lambda \rho}\right|=$ inv-ar. . leads to the invariance of the modulus of the relativistic relative coordinate r in (2.2) and (3.10). Therefore the RCR with the group parameter (2.6) playing the role of the invariant relativistio relative "coordinate", allowe one to describe the syetem internal motion, responsible for the particle atructure, in an invariant way.
5. The invariance of the modulus of the relativiatic relative "coordinate"("incompressibility" under the Lorentz transformationa) is the main difference from the Licht-Pagnamenta formalism/19/ widely ubed in quark theory. This property allows
one to obtain the simple formula (3.12) for the invariant form factors of the systems with nonrelativistic internal motion.

Our further purpose is the application of the developed formalism for calculation of form factors for other types of quarkantiquark interaction and the inclusion of spin on the basis of an approach developed in refs./7,23/.

The authors express their deep gratitude to V.G.Kadyshevsky, A.B. Govorkov, V.A.Matveev, V.A.Mescheryakov, R.M.Mir-Kasimov and R.N. Paustov for useful discussions.

Appendix

Let us introduce, following ref. ${ }^{/ 4 /}$ the generalized vertex function $/ \Gamma$ related to the five-point function $R(3.1) \mathrm{as}$ follows:

$$
\begin{equation*}
R(P, Q)=G(P) \cdot \Gamma(P, Q) \cdot G(Q) \tag{A.1}
\end{equation*}
$$

where multiplication implies the invariant integration with volume element of momentum space $d l_{\Delta}=\frac{d^{3} U_{p, m \lambda}^{\prime}}{m^{-1} \Delta_{p, m \lambda}^{p}}$ realized on the hy-
perboloid (2.1).

Graphically, this representation is of the following form $/ 4 /$ (see Pig. 2)

Fig. 2,
In the presence of a bound state with the two-time Green function has a pole representation according to (2.17). Comparing (3.2) with (A.1) and applying the pole representation (2.17) to G, one gets the current matrix element between states A and B in terms of the quasipotential WF squation (2.20) and generalized vertex

$$
\begin{aligned}
& \text { function } \Gamma \text { in the following form } \\
& \langle A \vec{P}| T(0)|B \vec{Q}\rangle=\frac{1}{(2 \pi)^{6}} \int_{m^{-1}}^{d^{3} \Delta_{\rho_{1}, m \lambda_{\rho}}^{0}} \cdot \frac{d^{3} \overrightarrow{\Delta_{q}}, m a_{Q}}{m^{-1} \Delta_{q, m \lambda_{Q}}^{0}}(A, 2)
\end{aligned}
$$

Within the quasipotential approach in terme of the retarded Green function relation (A.1) should be changed as follows:
where $R^{r e t}(\mathcal{P}, Q)$ is the retarded part of the five-point function
(3.1), and the current matrix element is:

The vertex function Γ will be calculated approximately as an expansion in interaction constant. In the impulse approximation (see Fig. 3)

Fig. 3.

$$
\begin{aligned}
& \int_{0}^{r e t}\left(\vec{\Delta}_{p, m \lambda_{g}} ;{\overrightarrow{\Delta_{q}}, m \lambda_{Q}} P_{Q}\right)=\frac{2^{6}}{m^{2}}\left(\Delta_{p, m \lambda_{3}}^{0} \cdot \Delta_{p, m \lambda_{Q}}^{0}\right) \cdot \\
& \left\langle p_{4} p_{2} / J(0) \mid q_{1} q_{2}\right\rangle \text {. }
\end{aligned}
$$

$$
\mathscr{L}(x)=Z_{1} \varphi_{1}^{+} \varphi_{1} A+Z_{2} \varphi_{2}^{+} \varphi_{2} A
$$

$$
\begin{aligned}
& \text { with scalar field a we get } \\
& \begin{aligned}
\left\langle p_{1} p_{2}\right| J(0)\left|q_{1} q_{2}\right\rangle & =\frac{Z_{1}}{(2 \pi)^{3}} 2 p_{20} \delta^{(3)}\left(\overrightarrow{p_{2}}-\overrightarrow{q_{2}}\right)+(1 \leftrightarrow 2)_{\left(A_{1} 7\right)}= \\
& =\frac{Z_{1}}{(2 \pi)^{\prime}} 2 m \delta^{3}\left(\overrightarrow{p_{2}}(-) \overrightarrow{q_{2}}\right)+(1 \leftrightarrow-2)
\end{aligned}
\end{aligned}
$$

Substituting (A.5) and (A.6) into (A.2) and (A.4) and allowing for (A.7) and its invariance produce expressions (3.3) and (3.4).

Reference日

1. V.A.Mateev, R.M.Muradyan, A.N.Tarkhelidze. Lett. Fuovo Cim. 5 (1973) 907.
2. A.A.Logunov, A.N.Tavkhelidze. Nuovo Cim. 29 (1963) 380.
3. V.A.Matveev, R.M.Muradyan, A.N.Tavkhelidze. JINR, E2-3498, Dubna, 1967, JINR, P2-3900, Dubna 1968.
V.R.Garsevanishvili et al. Soviet Journ. Theor. Math. Phys.

23 (1975) 310.
R.N. Faustov. Sov. Journ. Theor. Iath. Phys. 2 (1970) 240.
k. A. Khelashvili. JINR, P2-8750, Dubna, 1976.
4. R.N. Peustov. Ann. of Phys. 78 (1973) 176.
5. N.B.Skachkov, I.L.Solovtaov. JINR,E2-11678, Dubna, 1978.
6. V.G.Kadyshevaky, R.M.Mir-Kasimov, N.B.Skachrov, Nuovo Cim. 55A (1968) 233; Sov. Journ. "Particles and Nucleug" voz. 2, N. 3 (1972) 635.
7. V.G.Kadyshevaicy. Nucl. Phys. B6 (1968) 125.
8. N.B. Skachkov. Sov. Journ. Theor.Math. Phys. 25 (1975) 313.
9. I.S.Shapiro. Sov. Phys. Doklady 1. 91 (1956); Phys.Lett. 1 (1962) 253.
N.Ya.Vilenkin, Ya.A.Smorodingky. Sov.Journ. RETP 46 (1964) 1793.
10. N.M.Atakishiev, R.M.Mir-Kasimov, Sh.M.Nagiev, Sov.Journ. Theer. Math. Phys. 32, 34 (1977).
V.A.Karmanov. Sov.Journ. ZETF 71, 339, 1976.
11. Y.M. Shirokov. Sov. Journ. ZETF 35, 1005 (1958).
12. V.M.Vinogradov. Sov. Journ. Theor.Math. Phys. 338 (1972).
13. A.N.Kvinikhidze, D.Ts.Stoyanov. JIRN,E2-5746, Dubna, 1971.
14. Nguen Van Hieu, R.N.Faustov. Fucl. Phys. 53 (1964) 337.
15. V.G.Kadyshevsky. Sov. Journ. 2ETF 46 (1964) 654; 46 (1964) 872.
16. S.Mandelatam. Proc.Roy.Soc. 233A (1955) 248.
17. R.S.Kauehal. Phys.Lett. 57B (1975) 354.
H.J.W.Muller-Kirsten. Phys.Rev. D12 (1975) 1103.
18. A. V.Efremov, A.V. Radyushkin. JINR, E2-11535, Dubna, 1978.
19. A.Light, A. Pagnamenta. Phys.Rev. D2 (1970) 1150.
20. V.I. Inozemterv. JINR,P2-10044, Dubna, 1976.
21. J.L.Priar. Phys.Rev. C12 (1975) 695;Ann. Phys.,1977, 104,p. 380.
22. V.M.Karnakov. Sov. Journ. Nucl. Phye. 19 (1974) 1122.
23. N. B.Skachkov. Sov. Journ. Theor. Hath. Phys. 22 (1975) 213; N. B. Skachkov, I.L.Solovtaov. Sov.Journ. "Particles and Nucleus" vol. 9 (1978) 5.

Received by Publishing Department on July 41978.

[^0]:

