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INTRODUCTION 

The process of massive lepton-pair production in had
ronic collisions AB -+p. +p.-x plays an important role for 
the verification of parton model ideas. The well-known 
parton model formula established by Drell and Yan

111 

expresses the cross-section of massive lepton pair pro
duction in terms of quark (fa) and antiquark (fa: ) dis
tribution functions inside the colliding hadrons A , B * 

~-I 
dQ2 AB-+p.+p.-x 

2 2 1 1 
4 rr a r _1_ I e a J dxJ dy 

3 Q4 Nc a 0 (0.1) 

o(xy-r )If lA (x)f- 1 (y)+ [Ac.• !3]1. 
a a, B 

In principle, one can obtain the distribution functions 
from the data on deep inelastic scattering, hence the 
par ton model leads to the scaling law d a I dQ2 =- c I Q

4 

with c being a determinable constant. Recent experi
mental data, however, point out that the Bjorken scaling 
law in deep inelastic scattering is violated (see, e.g., 
ref. 121 ): the parton distribution functions have indeed 
an appreciable dependence on the virtuality of the photon 

-------------------------* The sum here is taken over quark flavours (a,.u,d, 
s,c, ... ). the factor 1/Nc is due to colour averaging (Nc ,..3,) 
ea is the quark electric charge divided by that of elect-

ron. 
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that probes the structure of the hadron: f(x)-.f(x, Q 2 ). It 
was argued/ 3

-
121 that in the Drell-Yang formula (0.1) 

one must also use f(x, Q 2 ) in place of f(x). This argumen
tation is based on various parton model modifications 
which take into account the violation of the scaling laws 
by the logarithmic corrections inherent to renormali
zable theories. A further progress is however complica
ted due to the absence of a general field-theoretic ap
proach to the process AB->11 +/1-x. i.e., the approach 
which can provide a basis for the parton model rather 
than that taking the parton model as a starting point. 

In this paper, which is a sequel to ref. 113 ( we apply 
the approach developed there to a study of massive lep
ton-pair production within the framework of nongauge 
field theories. Using the a -representation analysis leads, 
in a superrenormalizable ¢c~) -theory, to the Drell
Yan formula. In· this case the ordinary "naive" parton 
model is valid as expected. In the ¢(~) -theory one- must 
take into account effects due to the renormalizability 
of the theory. This results in a modified parton descrip
tion which uses parton distribution functions f(x, 11

2 ) 

depending on an additional renormalization parameter 
related to a subtraction procedure analogous to that used 
in ref. 1131 . This subtraction procedure is in essence 
a reordering of perturbation series terms which gives 
.an "expression more suitable for the analysis of asympto-
tical properties. · 

The resulting expression is analogous to operator 
product expansion on the light cone. This allows us to 
calculate asymptotical behaviour of two characteristics 
for the AB->Jl+/1- X process: a) the total cross-sectJon for 
productfon of a pair with mass Q, i.e., d aId Q , and 
b) the differential cross section for production of a pair 
with large transverse momentum, i.e., da/dQ2 dQI in 
the region Ql » M 2 

1. ANALYSIS OF MASSIVE LEPTON-PAIR 
PRODUCTION IN THE a-REPRESENTATION 

Let us consider first the structure function 
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• 

W(PA ,PB,Q)~Je iQx <PAPB\j(x)j(O)\PAPB>d
4
x, (1) 

which is a scalar analog of the function describing the 
production of a lepton pair having mass Q. Scalar cur
rents j(x) are defined as in ref. 113 / (eq. (1.3))*· In 
fig. 1 the subgraphs are shown the contraction of which 
into point eliminates the dependence of the diagram on 
the large variables s, t , u , Q2 (soo2(PAPB ), L-,-2(PA Q~ 
u -- 2 (PB Q ). In addition, these subgraphs have a minimal 
number of external lines. Fig. 1a corresponds to the 
Drell- Yan configuration. (The configuration shown in 
fig. 1 b does not contribute to the cross-section for 
kinematical constraints (see part 4 of this paper).). 

Q. 

a) b) 

Fig. 1 

£~ 

~J 
G. 

P ... 
c) 

~ 

A minimal s, t, u, Q 2 -subgraph in this case is of an 
order of 0 ( g 2 ) (fig. 1 c) and describes a par ton sub
process of 2 _. 2 type, for instance t/J tjJ * _. y ¢ , rather 
than the Dr ell-Yan annihilation t/J t/J *-+ y. 

The a -representation analysis forces us, at the 
first sight, to made a conclusion that there is no Drell-

------------------ /13/ 
* Henceforth eq. (l.N) means eq. (N) from ref. 
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Yan mechanism at all. But really there is no contradic
tion with parton model ideas because the Drell-Yan 
mechanism corresponds to the so-called "pinch" singu
larity, given by large -a integration, rather than to the 
"end-point" one, given by small- a integration. Let us 
write W(PA ,PB ,Q) in the a -representation 

joo -N /2 
W(PA,PB,Q)- In da~ (a)exp!-1-(sA_(a)+ 

0 a D (a) 

2 2 l +tA (a)+UA (a)+ Q A 2 (a))+l(a ,m ) , 
t u Q 

(2) 

where A_ (a)= B_ (34\56);At ~ B_ (12!34), Au""B_ (12!56) ,A =B(1 I 2) 

(fig. la). Representing Q =A P A +p PB + Q.L and taking into 
account that for a Drell-Yan diagram A_ ,.,A~A~, 

LR LR LR L 
At '"'A_D 0 , Au = D 0 A_ , A = DoDO (wher~ A_= 
=B(12!34;VL),A~ ~B_(12;VR) ,D~ .. D

0
(VL) ;D0 ~D0(VR) (see ref/13/ ) we obtain the following representation for 

the exponential factor entering into eq. (2): 

s L L R R L R] 
exp! D(a)[(A_ -.\Do)(A_ -pD0 )-r.L_Do D 0 + 

+I (a, m 2 ) l = exp! s l::ia) + I (a ,m2 ) l. 
D(a) 

(3) 

2 
where r .J. '"' Q.J. Is . 

. /14/ It was shown by Tiktopoulos (see also Appen-
dix) that the pinch singularity, i.e., the vanishing of 
F(a) at nonzero a, gives a leading asymptotical contri
bution only if F(a) .. F1 (a)F 2(a), where both the factors 
F 1 (a) , F 2 (a) do vanish at nonzero a· In our case the 
requirement F = F 1 F 2 can be satisfied only if 
r ,..o(m 2 Is )-0, i.e., for small transverse momentum of 
tHe lepton pair, Qi '"'Q(m2 ).Then, from eq. (A.2) it follows 
that 

6 

.. 

i= ll da AL AL 
w+(PA,PB,Q)--hf ~ 12 a o(A-~)o(p- i) 

Q o D (a) D 0 Do 

D 2 DL DR 
_;o..__ exp 1 -Q o o DkD~ .J. D +l(a,m2)l. 

(4) 

Integrating over transverse momentum Q .J.. gives the 
expression 

JW+(PA,PB ,Q)dN-2Q.L- ~2[fa/A(,\)falB (p)+(A .. B)] (5) 

which has a natural parton interpretation, because the 
factors f (A) , f ( p) are distribution functions for partons 
having momenta A and p, respectively. 

The existence of the Drell-Yan mechanism is essen
tially connected with the non-Euclidean nature ofthe space
time. In the Euclidean space there are no :Pinch singula-
rities, because in that case (pi 1 + ... +pi ) 2 0 for any set 
of momenta, and moreover (Ai 1 ... in(af::::O (see. eq. 
(l.A.2)). /1 I 

When treating deep inelastic scattering (ref. 
3 

) we 
have considered "Euclidean" region where Is 1 < Q 

2 
. This 

allowed us not to take into account pinch singularities. 
But it is impossible to represent the expression F = 

~wA_(a)-A(a) as F= F1 F2 , hence the pinch singularities 
do not contribute in the region 1 s 1 > Q 2 also. The va
nishing of F(a) at nonzero a (i.e., when w=A_(a)IA(a )) 
gives only a cut for 1 Cl> I> 1. That is why it is justifiable to 
investigate T (w , Q 2 ) at lwl <1 and to perform an analyti
cal continuation of the resulting expression into the es
sentially non- Euclidean region I Re w I> 1 with the help 
of the Mellin representation. 

Investigation and summation of the pinch contributions 
is much more complicated problem than that of end
point ones. There is no justification for any appeal to 
asymptotic freedom, because the region of large a (or 
small p 2 in momentum representation) dominates. Hence 
there is also no reason to expect than higher order cor-
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rections will be smaller than the lowest order approxi-
mation. 2 

In the large transverse momentum region Q-L = 0 (s) 
the factorization F = F1 F2 does not hold and it is suffi
cient to consider only small- a singularities. The Born 
term for production of a pair at high transverse momen
tum corresponds to a process 2 -~2: it is necessary 
to produce a particle that balances the transverse mo
mentum of a pair. 

2. ANALYSIS OF THE TOTAL 
CROSS SECTION da /dQ 2 

Although the leading contribution to the form factor 
W ( P A. , PB , Q ) describing differential cross- section 
da/d4Q is given by the pinch singularity, it ispos
sible with the help of the well-known transformation' 15 1 

to "euclideaze" the form factor w ( r ,Q2 ) proportional 
to d a 1 d Q2 the total cross-section of producing the pair 
with mass Q. 

The functions W{PA,PB,Q) and W(r ,0
2 ) are related 

by 
2 2 ,-1N t. + 2 2 

W(r,Q )a Q I ~W(PA,PB,k)o (k -Q )8(PA+PI3-k0), 
(2 1T) 

(6) 

where r .. Q 
2/s. The function w ( r, o2 ) can be treated as an 

appropriate discontinuity of the function T (r, Q 2 ): 

T ( r , Q 2) = Q 2 I dN x D c (x , Q 2) < PAP B I T ( j (x) j(O)) i PAP B > 

W(r ,Q
2 )= - 1- Disc T(r ,Q2 

). 
2 rr s,(Q 2) 

(7) 

(8) 

The notation Discs, (Q2) means that the discontinuity 
corresponds to such a slicing which must cross the line 
of a fictitions particle with mass Q (fig. 2a). Hence 
slicing shown in fig. 2b does not give a contribution to 
Discs, (Q 2) 

a 

.. 

a) b) 

·g-", VL 

J--- -, 
~)\ 

v 
?, 

/--~ 
c) 

Fig. 2 

o(o 

d) 

The function T ( T 'Q 2 ) has the a-representation 
similar to that of eqs. (2), (3) but for the factor 

A_ (a) Q2 . 
F =---- a

0
_:_, whtch cannot be represented as F = F1 F 2 , 

D (a) s 

hence the vanishing of F at nonzero a results only in 
the appearance of cuts. In distinction from deep inelas
tic scattering these cuts are of two types. The first type 
corresponds to fig. 2a whereas the second one corres
ponds to fig. 2b. 

A general form of the s ,Q2-subgraph having a mini-
mal possible number of external lines (equal to 4) is shown 
in fig. 2c. It must contain the a 0 -line. In a superrenor
malizable ¢~4 ) -theory the leading contribution is given 
by the subgraph shown in fig. 2d. It consists of the a 0 -

line only. Integrating over a 0 - 0 and taking into account 
the factorization properties D ~0D 0 (V L )D 0(V R), A_ =«a A_ (V Jx 
xA_(VR); I(a,m 2);;: I~(a, m2 )+1~(a,m 2 ) 

0 

gives a formula of the Drell-Yan type 

1 1 
W(r ,Q2 ) =J k I ~ I K;o(l- ..!L) 

X O y a T (9) 

I f (x) f _ (y) + (A~ B) I. 
a I A alB 

9 



The functions fa(x), f 11 (y) are the same distribution 
functions as those used in ref. 1131 given by eq. (1.7). 

To treat a renorma.lizable ¢ 3
(6 ) -theory we write the 

amplitude T in the Mellin representation 

+ 2 2 ioo i 7T j 
T- ( r, Q ) = Q f _d j dJ __ rr _ ( __! )j ( Q 2l 1 ± e _ x 

-ioo (2rr i ) 2 sin rr j r 2 

x ~± (J ,j,m 2 ) (10) 

~±(J,j,m 2 )=r(j-J2.IK;I (g
2

/(4rr)3 )z JTidaax 
r(j+l) a diagr. 0 a 

J-j A j 2 
xa 0 1----1 expll(a,m )!. 

Do 
(11) 

Now we must construct the procedure of singling out 
the poles in J. Let V be a maximal s . Q2-subgraph 
having 4 external lines (fig. 3a). Integrating over the 
region ,\ v-0 singles out a pole contribution 

. 2 1 J+ 1 . - . 2 -
~ ( J ,J ,m ) = ( -:-:-2" ) C v ( J , J) f (J , m , V L ) x 

f1 

- 2 - v 
x f ( j , m , VR ) + <P ( J , j, m 2 , 11

2 ) . 
re!. (12) 

a) V. 

) 
~ ........ ,2. ~11 ~' I ~ \ ' ' 

I ~ I -r, ~ ;;-1! 
).J-l-~:~~- c) 
'- -- Fig. 3 

b) 

10 

... 

The factorization of the pole contribution into the 3 fac
tors is due to the following factorization properties of the 
functions A, D : 

- - - -
A_ (VL + V +V R} = A_(VL )A_(V)A_(VR 

D(V L +V +V R )VD0 (VL)D(V)D 0 (VR) (13) 

2 L 2 ( R 2 I (a, m ) = I (a , m ) + I o a , m ) . 
v 0 

v 2 2 
A regular part <ll reg(J,j,m ·fl ) can possess poles at 

J = -- 1 resulting from integration over small ,\ v of 
smaller s, Q 2 -subgraphs v c V. Then we choose such 
a subgraph v among these s , Q2-subgraphs which is not 
contained as a whole in any other s, Q~subgraph except 
'l. There are two such subgraphs V 1 • V 2 (fig. 3b,c). Let 
us single out a pole part of one of them from the func
tion <lJ v 

reg 

v 
<ll reg 

V1 

pole 

1 J+ 1 . - . 2 2 - L 
= ( -f?l' ) C v 

1 
( J ,J) f (J , f1 , m , V 1 ) x 

(14) 

- 2 2 -R V V1 2 2 
x f (j • fl • m • V 1 ) + ¢ reg reg ( J 'j 'm 'f1 ) 

(cf. eq. (1.18)). Then we single out the pole part of V 2 
from the function <lJ v v 1 . From the resulting re-

reg reg 
v 

gular contribution <lJ reg 

v1 v2 we single out the 
reg reg 

pole contribution of the subgraph V 3 (fig. 3a), then that 
of V4 and so on, just as it was done in analysis of deep 
inelastic scattering (ref. 1131 ). As a result we obtain 
a representation 

+ . 1 J+1 ± . - ± . 2 ) 
¢- (J,J,m 2 )= I (~) Eab (J,J,g(fL))fa!A (J,fl ,g(p.) 

a,b f1 

fb/B (j,f12 .g(p.))+ R(J,j,m
2

). (15) 

11 



where Eab is given by a sum over all possible s . Q 
2

-

subgraphs; furthermore, the contribution of each sub
graph is a_ sum of poles ~en (J +1)-n (cf. eq. (1.23)). The 
functions f(j .112. g(l1 )) are given in the a-representa
tion by eq. (1.23). We can choose the subtraction procedu
re in such a way that the recipe of the f(j. 11 2 • g)-re
normalization is that used when analyzing deep inelastic 
scattering, e.g., we can use 't Hooft 's renormalization 
for f(j,l1 2 ,g). The functions <I>(J,j,m2 ) and R(J,j)are 
independent of 11. hence differentiating eq. (19) in res-
pect to ln 11 gives a renormgroup equation 

[- 2 c J + 1) +f3 c g) a~ + 2 Y c L g) J E c J . L g) ,., o. c 16) 

The functions E are given by small- a integration, 
whereas the functions f( j ) are connected with matrix 
elements of operators, just as it was the case in ref. 1131

• 

This indicates that the Drell-Yan contribution is given by 
the expression which has the structure of the operator 
product expansion. We will turn back to this point later 
on. Introducing parton distribution functions (eq. (1.34)) 
gives a hard scattering formula 

1 1 + 2 + 2 
T ± (Q 2 • T) = f ~ f .QL ~ f ~/ i X ·11 ) f -, ( y '11 ) X 

6 X o' Y a, b ' b B 

x t ± (Q2 /11 2 , r/xy, g(l1)). 
(17) 

The function t ± is really the function T ± construc
ted for the parton subprocess ab _. y *x with the infra
red regularization characterized by the parameter 11 • 

To calculate the function Disc 8 • (Q 2) T we note that 
in the r .h.s. of eq. (17) only the function t is respon
sible for existence of the discontinuities of the amplitude. 
Hence one must apply the operation Disc 8 • (Q2) in the 
same way both to the full amplitude T and to the sub
process amplitude t. This gives T _.w , t ... w in eq. (17). 

The function w b (Q 2 I 11 
2 , _r_ • g ) is proportional to 

a xy 
a properly regularized cross section of the parton sub-

12 

.,. 

process a b _. y * x . The Born term for 
pend on 11 • for example w _ = K

2 8 ( 1 a a a 

w does not de
- _r_). whereas 

xy 

higher order corrections have logarithms (ln Q 
2 

I 11
2 

)M . 

Taking fl = Q we obtain the final result 

'> ld ld T 
W(r,Q~)= ~ (-...!.J-~wab(l,g(Q),-)x 

a b - X 0 Y xy 
. 0 

x fa, A (X' Q 2 ) f b B ( y 'Q2 ). 
(18) 

3. PRODUCTION OF PAIRS AND PHOTONS 
AT HIGH TRANSVERSE MOMENTUM 

Let us consider the behaviour of the structure func
tion W (P A, P B , Q) given by eq. (2) in the region of high 

2 2 2 I 2 transverse momenta: Q-1. ,Q ,S-+"", butr=Q s, r..l.. =Q-l-/s 

fixed. We have established earlier that in this region 
only end-point singularities contribute (fig. ld). The ne
cessary factorization relations are ( T = V L + V + V R ) : 

A_ (T) ""A._ cvL )A_ cv)A _(v R); 

- - -
A t (T) V A_ (V L) A t (V ) D 0 (V R ) , 

A u (T) % D 
0 

(V ) A ( v ) A (V ) ; A 2 (T) ~ D 0 (v L) A,9(V)D 0(V R). 
V L u -R Q V let 

D(T)~ D
0

(VL)D(V)D0 (VR); I(T) ;I 0 (VL)+I 0 (VR). (19) 

From eq. (19) it follows that 

exp I - 1- [ sA + tAt + u Au +Q
2 

AQ2 1 + I( a, m 
2 

) l 
D(a) -

13 



A (V) At (V) 
=exp {2(PAPB)E r ---- 2(PAQ) --- f 
v -- D(V) D(V) 

A (V) 2 - -
-2r (P8 Q) ~- + Q AQ2/DW)+I 0(VL )+I 0(VR)!. 

- D(V) 
(20) 

where e_ %A_(VL)/Do(VL); r_ .. A_(VR)/Do(VR ). 
Using the relations like 

1 A. ~ > -
L .. J dxo(x- 1-=:.--k---I)[O(A_ )+0(-A_ )] (21) 

Do (V L) 

gives the hard scattering formula for the amplitude 

Tala 2 1 
(PA,P 8 ,Q) ="-

4
-{[T(PA,PB ,Q)+a 1{PA~-PA ll+ 

+a !P ~-P !!• 
2 B B ' 

a a 1 d 1 d al 2 
T 1 2 ( p A ' p B , Q ) = J __! J _Y_ I fa/ A ( x ' 11 ) x 

0 X 0 y a,b 

a2 2 al a2 2 al a2 
xf (y,l1 )t (xPA,yP 8 ,Q,I1 ,g)+R (PA,P 8 ,Q). 

(22) 

where a1 ,a2 = ± are the signature factors. A more formal 
derivation of eq. (22) is based on the use of the Mellin 
representation 

a a 1 4 · j 
T 1 2 (PA ,P8 ,Q) ""----;rJ(.TI dj.1(-j. ))lsiJl 1t1 2 

(2 rri) 1=1 1 1 

jg .....2. j4 ala2 . 2 
I u I (~c~ J <t> U t • j 2 • ja • j 4; m ) · (23) 

The Mellin transform <ll·a1 a2 is given by 

14 

} 
y1 

a a <I> 1 2(J·. m2)- P(c.c) 
(T) 1' -

~1T) 

joo 1 

J l1 daa DN/2 (a) 0 a 

A_ (a) lj1 

D(a) 

A t (a) j 2 Au (a) j3 A Q 2 (a) j4 

I D (a)- I I D (a ) I ( D (a) ) 

I(a,rn 2 ) 
e 

+ a1 a 2 [ ( (h ) ( (j 2) ( ( j 3) fa (At ) f a (A u ) + 
. 1 2 

- -a1 -a2 
+( (jl)( (j2)( (j3)E_(As)f_al (At)f_aiA)l. 

(24) 
+ . i 1T .i where (- (J)=(1± e )/2; {+ (A)c:O(A)± 0(.-A). 

Due to factorization properties (see eq. (19)) 

ala2. 2 -al .. ala2. 2 -a2 .. 
<I> (J. , m ) = f (J

1 
+J )<f>(V) (J. ,m sO)f _ (J

1 
+Jg). 

(T) 1 V - 2 1 V 
VL R 

(25) 

The functions f a (j) have the ordinary a-representa-
ti_on (eq. (1.26)). Integratinf over the region ~v< ~ /11 2

. 
gives a pole (J +3) 1 (1/11 2 ) +3 .where J o=J1 +J2 +Jg + J4. 
Applying the subtraction procedure which is constructed 
in the same way as that for w ( r • Q

2 
). gives 

J+3 
al a2 2 a1 2 1 

<I> (j. ,m ) "'If lA (L ·11 ,g(l1))(~) 
1 a, b a 1\ 11 

a a a2 2 
¢a~ 2 (J ,j,\ ,jp ,j4 ,g(l1))fb/B (jp,Jl ,g{!l)) + 

a1 a2 . 2 
+ R (J. ,m ) , 

1 

(26) 

where j.\ %j 1 +j 2 ; jp = j 1 + j 3 . Eq. (22) can be obtained 
from eq. (26) in the ordinary way. Neglecting the contri-

15 



bution given by R we obtain the hard scattering formula 
for the structure function W (P A , P B , Q) W ( Ql , r ,r .J..) : 

2 1 dx 1 dy 2 W(Q+,r,rJ ): f -f-L f,,A(X,fl ,g(fl))x 
I 0 X 0 y a,b a 

xfbiB (y,f12,g(f1))wab(Q~/f12,r/xy,r.:._lxy). (27) 

Taking 11 = Q .l gives a formula of eq. (18) type. The only 
difference is a change w(l,g(Q) , r/xy) • w(l.g(Q.l) ,r/xy, 

r 1 xy ) . It is, of course, possible to take fl = Q or 
eVen !1 2 = s. But note that our consideration is meaning
ful only in the region s , Q 2 , Ql. > > M . Hence for Q.l < Q 
it is the value of Q.J..- the smallest of the large variab
les - which determine the applicability of the arguments 
based on asymptotic freedom. 

The forwulas (2), (3), (20) work also in the reversed 
situation Q ~ > Q 2 

. In this case one can take 11 Q + or 
fl"" Q (as far as Q » M ). In distinction from the Hmit 

Q .. 0 in the limit Q , 0 the exponential F entering 
inlo eq. (3) do not acquire a formF=F1 F2 . That~s why 
one can treat the production of a real photon ( Q 2 

.0 0) 
having a high transverse momentum Q .1 >> M. To do this 
one must take simply r = 0 in eq. (27). 

4. ANALYSIS IN THE COORDINATE REPRESENTATION 

Factorization properties in the coordinate represen
tation are expressed by the relation (see fig. 4) 

1w (x,ai ,bj ,ck ,de) =fd(drydad{3fv (ai ,bi ;(,ry) 
L 

cW,VL'\.VR(x,(,ry,a,{3)fVR (ck,dC ;a,/3) (28) 

which is a starting point of the further analysis. The 
dashed line in fig. 4a corresponds to a factor 1. The sub
traction procedure in the a -representation was con-

16 

Structed Only fOr the fUnCtiOnS W ( T ,Q2 )and W ( T, T .l , Q] ) . 
Now we will apply the subtraction procedure to the form 
factor W(PA,PB,Q).The functions W(r,Q 2 ) and W(r,r.l ,Q 2 ) 

can be obtained from W (PA, Pn, Q) by integration. It w1u 
be evident from the resulting expression that only these 
two form factors are dominated by small x 2 . Applying 
the subtraction procedure and summing over all the 
diagrams gives (cf. eq. (1.47)) 

< PAP B I T ( J (x) J (0)) I PAP B > = f d ( d 7] d a d {3 x 

X }:; < p A ! l" . ( .; , 7] ; !12 ) I p > < p I e . ( a , {3 ; fl 2) I PB > X 
i,j I A B J 

x C ij ( X , (, 7] ; a , {3 ; f1 
2 ) + R ( X , p A , p B ) · 

g . ~~ 
" .. · 

q. 

Q~ 

~ I 
~ 

' 

b) 

c ... 

a) 

c'V\, 
~ \V<Ci 

"R·~ tiiii 
c) 

Fig. 4 

(29) 

The contributions denoted as R(x, PA ,PB) are shown in 
fig. 4b,c. Expanding ~i.j over the local operators gives 
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(_';ice. r'; 11 2 ) = N11 2 <<Pi <TJ)¢i <en= (30) 

oc 1 {11 fln _, _, 
L --<e-TJ) ... ce-TJ) N11 2 c¢.CTJ)all ... a11 ¢i(TJ)). 

n=O n! 1 "'1 n 

n 
Then we expand ¢a ¢ over traceless operators 

n 
....L N 2 (¢ a a ¢ ) ,. }2 c o s [ g ... g x 

n! fl i fl1 ... fln i e,. o m fl1 fl2 fl2C-1fl2£ 

xN 2 (¢i 1a
11 

o ... a11 l(a 2 )e ¢i)], (31) 
fl 2r_+1 n 

where S denotes the symmetrization over 11 1 ... fL n 

As a result 
(\ 2 "" [ t: 2 ] e c2 e) 2 
~ (,; , T/ ; 11 ) .,. }2 d tnP ( s - TJ ) . 0 ( TJ ; fl ) 

m, P=O v1 · ·· vm 

1 ce-TJ )!! 1 
!J 

... C e -ry) m I . (32) 

We must now take an integral 

J de d T/ d a d f3 C (X; e , TJ ; a , f3 )\ ( f -TJ) Vl ... (f-TJtm 

2 k 2 £ 
xI (a-{3)

111 
... (a-f3)

11
nl[(,;-ry) ] [(a-/3) ] (33) 

Performing integration in eq. (33) gives 

minlm,nl I fl1 f1 2 2 r L Ekp(m,n,r;x ,fl) 8 ... 8 
r=O ' I v1 1/r 

fl r+1 
X 

fln l 
X 

( 2)r+ k+ £ (34) 
X ••• X j X 

vr + 1 vm 

The functions E (. .. ; x 2 , 11 
2 ) in each order of pertur

bation theory have identical (up to (lnx 2 11
2

)P ) behaviour 
on the light cone. Contributions of higher twist operators 
have additional factors (x2 ) e + k We define matrix 
elements of operators in the following way 

(2k) 2 2k (k) 2 
<P\ 0 (0, fl )\P>=M !P1L ••• P,, lbn (fl ), (35) 

{11 ... fln 1 r n 
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where M is some parameter with dimension of mass. 
The coefficients b ~k) are dimensionless. As a result we 
obtain a light cone expansion 

. Q "" minlm,nl (k) 
T (P ,P ,Q) ""Je 1 

x d4 x 'L L bm ({12 ) 
A B m,n,k, C :0 r-0 

b~) ({12)(M2)k+f (x2)r+k+CIPAPB lr Ek,C (m,n,r;x2,f.L2) 

n-r m-r 
lx PAl !xPBl . 

(36) 

We have introduced a notation 

lABln=lA
11 

... A l!B 111 ... B 110 }. 
1 flu 

(37) 

To proceed with eq. (36) one must know the relation 
between the asymptotical properties of T and the light
cone behaviour of E -functions. 

In the deep inelastic scattering one can write 

i (q X ) (k) 2 2 2 2 
T ( P , q) = f e u }2 b n ( fl ) E k (n , x 11 - x J.. ; p. ) 

k,n:O 

I n 2 2 k 2k 2 2 
x 11 Pl (x 11 -xJ..) M d x 11 d xJ.. (38) 

because it is possible to find a frame where 
Integrating over x ...L. gives 

qJ..= ~=0. 

i(qx 11 ) 2 (k) 2 2 
T(P,q) .. Je d x 11 'L b

0 
(p. )¢k(n,x 11 

k,n 

{ x 11 P 1 n ( x ~ ) k+ 1 (M 2) k . 

2 
•fl ) 

(39) 

It is clear from this representation that the factor 
(xrF -xi)k entering into eq. (38) gives a damping factor 
(M 2 /Q2 f for the higher twist operators. 

It is impossible to get rid of Q ..1 for massive lepton 
pair production, because there are two vectors P A and 
p 

B 
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i ( Q.l. X .l. ) + i ( Q II X H ) 2 2 
T (P , P , Q ) - J e d x d x , A B II ~ 

2 k+£ r n-r m-r 2 2 r+k+£ 
(M ) I pAp B l I p A X II l I p B X li l ( X 1: - X l) 

Ek,£ (m,n,r;x~ -x.i_; 11
2 ). (40) 

From eq. (40) it follows that in this case one can get 
dimensionless combinations of two types: M 2 

/Q 
2 or 

M 2 /Q]. Hence it is necessary to take into account 
higher twist operators in the region Q.l.- M. The most 
essential among these operators are known 16 · to be 
connected with parton distributions over transverse mo
mentum. Thus one must know parton distributions over 
transverse momentum to calculate the distribution of 
11 -pairs over Q.l in the region QJ. ~ M. Less trivial 
there is the fact that in the region Q ,-... M it suffices to 
know only distributions over longitudffial momentum, i.e., 
in this limit one can take into account only the operators 
with minimal twist (k, P ,O).Higher twist contributions 
will be damped either by the factor (M 2 /Q 2 

)k or 
(M 2 /Q I )k . Another way to avoid the consideration 

of higher twist operators is to integrate over Q .l. : 

J
T(P p Q)d2Q -Jei(Qnx")I.sr(x2)r+k+f 

A' B' .l. II 
(41) 

I 
m-r 

XII PB l {x p ln-r(M2)k+f.-~.. (x2 "2·mnr) 
II A 'I' k ,e II 'r ' ' ' 

(cf. eq. (46)). In this case the hi~her twist contributions 
are suppressed by the factor (M /Q 2 

)k. The effect of 
(x 2 ) r -factor is compensated in both cases by the factor 
I PAPB l r_ s r .It is more convenient however to perform 
the integration over Q.L in another way, that is, by 
introducing the form factor w (r ,Q 2 ) (see eq. ('?)). To 
treat W ( r , Q 2 ) we introduce a function T ( r, Q 2} ( eq. 
(8)). Then we use the a ·representation for the propaga
tor of a particle with mass Q: 

20 

. 2;4 . (Q 2 . ) 2 1 oo d -!X Cl- !Cl -lf 

D c(x ,Q ) = --
2 

J -:¥ e ( 42) 
H377 0 a 

Taking into account that the result of the integration 
over x can be written as 

9 
. r I 

d 4 -lqa- r 111 11r 
r __ x_ e E ( m n r · x 2 1· 2) ( x 2 ) 8 8 
· 16 77 2 , ' ' ' ' I vl ... vr 

11r+l Jlnl 
X ... X 

m 
... xv 1=2 8 n+2 m nm a Xvr+l 

xE(m,r,al) l8111 ... 8 11nl 
I v1 vn l 

we obtain 

T(r ,Q 2 ) .. n~Ob~) (112 )b~0)(/12) ~A PB_fx 
Q2n 

- 2 2 x t(n,Q 1 11 ,g), 

where 

X 

(43) 

(44) 

2 - 2 2 ) n oo 2 ) n+2 -aQ ~~__{f__:..!L ,. I. J ~ E (n , r , a J1 , g a e 
Q2n+2 r=O 0 a (45) 

An easily verified i.dentity 
n n 1 1 n+l 1 R n+1 

!P P l .. (p P ) -[(.l..±R) -(---) ] 
AB AB R 2 2 ' (46) 

2 2 2 1/2 . where R ~(1- PAP B I (PA P
8

) ) • allows one to take mto 

account the !; -scaling 
riable ~ (Jl) is 

17 · type effects. A new va-

~(Jl) 
2r 

1 +v 1-4m2m2 Js2 
A B 

(47) 
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2 2 2 But the value of m Am B I (PAP B). 

to be considered. For instance, 
protons and P = 10GeV. then 

lab 
n n 

forthwetake {PAPBI ::(PAPB) · 

as a rule, is too small 
if A and B are the 
4m 4 /s 2 : 10-3. Hence-

P 

We have seen earlier that the function T(r ,Q
2

) has 
unnecessary cuts at r =± o ,o- 0. The function 

2 2 00 1 n- 2 2 
tab(r ,Q /Jl )= ~ (-) tab (n,Q lfl ) 

n=O T 
(48) 

which is a function T constructed for a parton sub
process ab--> y *x • also has these cuts. We represent 
tab as tab= uab + v ab • where u ab has the imagi
nary part given by fig. 2b, whereas v ah has the imaginary 
part given by fig. 2a. It is clear that the function 

T'(r,Q2 ) .. I a(a)(f1 2 )a~b)(f12 )(.!.)nv b(n.~) (49) 
n=O n r a J1 

has only the cuts at r= ±1. The region 11 lr I< 1 plays for 
the function T' the same role as the Euclidean region 
for deep inelastic structure functions. In this region one 
can use perturbation theory if the coupling constant 
g(Q) is small (e.g., in asymptotically free theories). 
The discontinuity of the function T' on the r .h.s. cut 
gives w (r Q2 )=W =- w __ whereas that on 

' - AB-->y*X AB-->y*X ' 

the l.h.s. cut gives W( Q2)=W- =W - • 
T • - AB -->y*X AB-->y*X 

2 - 2 
T '(r ,Q2 ) =fda { W(1 /a~Q J. + ...!YJ!i.~'l:.ll. (50) 

1 a-w a+w 

where w = 11 r. Performing Taylor expansion over 
in the region 1 w 1 < 1 gives wl a 

1 2 n - 2 n-1 
JCW(r,Q )+(-1) W(r,Q ))r dr= 
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= ~ a~a)(f12)a~b) (f12)vab(n,Q2/f12.g(J1))+ ~(1/Q2 ).(51) 
a.b 

We define 

(a) - n - ( - 2 2 
a = f (n) +(-1) L n); v b (n,Q l11 ) - 2 2 w ab (n,Q I J1 ) + n a a a 

+ (-1)n w ( 2 then ab n,Q 111 2); 

1 
2 n-1 2 2 ) JW(r ,Q )r dr= ~[w b(n,Q /11 ,g x 

a,b a 

- 2 - 2 2 
f 1 A(n,11 ,g)L (n.J1 2 .g)+W b(n,Q /11 ,g)x 

a ~a a 
X 

- - 1 
x f a/ A ( n , J1 2 

, g ) f b/ B ( n , 11 
2

, g) + (A ~ B ) ] + 0 ( Q2) 

(52) 

(!e !_lave used the symmetry relation wab =Wba ; 
w ba = w ab ). The meaning of the functions w. w 1s 

clear from eq. (52): the function wah (or wah ) is the 
moment of the structure function W. corresponding to 
the process a b--.y*x (or ab -->y *x ). To invert the 
moments it is necessary to take into account that the 
corrections 0(1/Q 2 ) can give a sizeable contribution 
at r close to 1. That is why one can use the hard scat
tering formula (17) only outside the resonance region, 
i.e., for r not too close to 1. 

Note, that the sum rule eq. (52) requires the data 
at fixed Q2 • As a rule, the data at fixed s are analysed. 
It is possible, of course, to take J1 2= s, but then appear 
obvious logarithmic factors y

11 
g 2 ln (C 21s) in the func

tion w(Q2 .' 1l2,n,g( 1l)) which tend to substitute the dis
tribution function f(x.s) by f(x.o 2 ). 

Finally, let us consider the configuration shown in 
fig. 1 b. Formally, it corresponds to a stronger light
cone singularity than the Drell-Yan diagrams, and the 
corresponding operator has twist equal to 2. But a pro
duced quark must be on its "would be" mass shell: 
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') 2 
(k ')= (k-Q) 0, k"- Q ' . o (fig. 5a). Hence only con-

figurations with k2 ~ 0:! do contribute to cross-section. 
The line corresponding to the highly virtual momentum 
k must be related to the coefficient function C (xJ rather 
than to a matrix element. We must now explain how to 
obtain a very massive virtual quark. This is essentially 
the same problem we have tried to solve: how to get 
a particle having large virtual mass? The bremsstrah
lung mechanism shown in fig. 5b indicates only that such 
a particle can be obtained from another particle having 
a large virtual mass. But it cannot answer the question 
from where this initial particle has appeared, if at the 
beginning we had only particles having small masses. 
The only possibility to break this chain is to suppose 
that the particle having large virtual mass is the re
sult of the fusion of two particles having momenta xPA 
and yP B. The corresponding operator consists at least 
of 4 elementary (parton) fields (fig. 1a). It makes sense 
to call this configuration the generalized Drell-Yan 
mechanism. The bremsstrahlung contribution (fig. 5b) 
is then simply a higher order correction described by 
eq. (52) rather than a contribution of a new type. 

G. 

PA 

\'~ 
~pA 

a) b) 

Fig. 5 

24 

APPENDIX 

Here we cite the result obtained by Tiktopoulos i 14 ·for 
pinch singularities which appear due to vanishing of the 
function F' (see eq. (2), (3)) at nonzero a . 

Let F(a,r)=A 0 (a,r)F1 (a ,r) ... Fk (a,r), where any 
factor F m can vanish at nonzero u . Then the Mellin 
transform <I> for amplitudes having definite signature: 

1 [ M ( s , r , m 2 ) ± M ( -s , r , m2 ) ] "" 

,., T ..J!.i-:- sj ± (-~~ f' (-j)!fl± (j ,r ,m 2 ) 
-ioo2rrl 2 

(A.l) 

has the following representation 

"'+ ( · 2 ) ( 1 + 1 )k Joo 
·~·- J ,r ,m - ------

j+1 j+1 0 

n daa 
a 

. X 
DN/2 (a) 

A 0 (a , r ) j 1 (a 'm 
2 

) ~ o ( F (a ) ) . 
(-D(y-) e m=l m 

(A.2) 

Thus, the pinch singularities result in a pole (j + 1)-k for 
amplitudes having positive signature. But the factor 
sj +(-s )j entering into eq. (A.l) compensates one 
degree of the pole at j =-1. Hence the pinch singularity 
contributes only for k 2. 2 and only for positive signature 
amplitudes. 
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