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Processes. ·I. Deep Inelastic Scattering 

Methods are developed for investigation of the asymptotical 
behaviour of deep inelastic scattering, based on the use of the 
alpha-representation of Feynman diagrams, Light-cone operator 
product expansions are obtained. The relation of the alpha-repre­
sentation analysis and operator product expansion to a modified 
parton model is investigated. 
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of Theoretical Physics, JINR. 
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High momentum transfer processes are now a subject 
of intensive experimental and theoretical investigations 
because their study can help to answer the fundamental 
questions concerning the hadronic structure and the 
nature of strong interactions. It is also very attractive 
that in quantum chromodynamics (which is the most pro­
bable candidate for a theory of strong interactions) the 
effective coupling constant is small at large momentum 
transfers 11/. Thus one may hope to obtain certain re­
sults with the help of perturbation theory. Strictly speak­
ing, the constant is small only in the deep Euclidean re­
gion. But in any physical process the particles in initial 
and final states are on their mass shells. Hence it is 
not correct to say that the high momentum transfer pro­
cesses are the short distance phenomena. One may only 
hope that the asymptotical behaviour of the cross-sections 
considered is determined by the short-distance dyna­
mics, whereas the large distance contribution is descri­
bed by some dimensionless functions which characte­
rize the probability of the corresponding short-distance 
subprocess. 

T~s is just the picture dictated by the parton mo­
del I . The validity of the parton model treatment of two 
kinematically most simple processes (i.e., e+e- -anni­
hilation into hadrons and deep inelastic lepton-hadron 
scattering) has been justified in the QCD framework 
with the help of the operator product expansion and re­
normalization group methods, (see, e.g., ref./1/ ). 

But the parton model remains the only tool for the 
theoretical analysis of the processes which have a more 
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complicated kinematics such as /?e massive lepton pair 
production process AB->11+11-X 3 . Note that the afo­
rementioned field-theoretical methods have lead to a 
slightly modified parton picture I 4-8/ for deep inelastic 
scattering. In this picture the Bjorken scaling law is 
violated. Hence one has to modify the parton model also 
when applying it to other processes. This problem can be 
solved only within an approach which is not based on the 
parton model. In our investigation consisting of three 
papers we try to work out such an approach. 

In the present (the first) paper we consider the deep 
inelastic scattering. This process has been investigated 
earlier from various view points /1-14/. We give our 
treatment of this process because, first, in this case it 
is most easy to formulate the basic statements of our 
approach. Second, it allows us to demonstrate a full 
equivalence of our approach (in which different processes 
are treated on the same footing) and of a standard ana­
lysis 11,13/, Unlike the standard approach where the ope­
rator product expansion on the light cone /9,10/ is postu­
lated, we derive it from an analysis of Feynman diag­
rams (not claiming for an absolute rigor of such a deri­
vation). This allows also to shed new light on some 
known facts. 

In the second paper we apply the formalism developed 
in the first paper to a process .AB .... 11 +11-x. As a re­
sult, we obtain an expansion which justifies the parton 
model ideas when applied to two characteristics of this 
process, namely, to total cross-section of producing 
the pair having mass Q and to differential cross-sec­
tion of producing a pair having large Q-L»M trans­
verse momentum QJ_ • 

In these two papers we restrict our treatment to 
nongauge field theories. The final goal of our investi­
gation is the treatment of ~AB .... Jl + 11 -x process in gauge 
field theories including QCD given in the third paper. 
The main result is that taking into account the specific 
features of vector fields does not change essentially the 
results obtained in the framework of nongauge models. 
This justifies the efforts spent for a study of these 
models. 
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1. DEEP INELASTIC SCATTERING 
AND a-REPRESENTATION 

Let us consider first a scalar analog of the deep 
inelastic structure function W(w ,Q ~ in a theory 

fint (x) = gl; :tfl:(x) 1/Ja (x) ¢(x): I (N) 

in space-time of N dimensions. A complex scalar field 
ljJ describes the "quarks" whereas a real field ¢ cor­
responds to the gluons. By definition 

W(w,Q 2) = -
1
-Disc T+(s,Q 2 ) ,· 

2rr s 

T±(s,Q 2 ) = (T(s,Q 2)±T(-s,Q 2))/2, 

T(s,Q 2 ) =-1- I dNxeiqx <P\'I(j(x)j( 0))\P>, 
4rr 

where 

S= 2(Pq), Q2=-q2, w = s/Q2. 

For simplicity we consider scalar currents 

j(x)=IK :1/J*(x)I/Ja(x): 
a a a 

(1) 

(2) 

(3) 

The function T(s, Q2)can be written in the a -represen­
tation /15/ (the necessary information about the a-repre­
sentation can be found in the Appendix, see also 
refs. 116- 18? as follows: 

diagr. 

g 2z ioo 

( 4 )N z/ 2 I n da D -N/ 2 ( ) TT 
0 

a a a x T(s,Q 2) = I 

1a 

xexp!(sA (a)-Q2~A(a))/~) +l(a,m
2

)1 + [s-o-s], (
4

) 
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where z is the number of loops of the diagram. Due to 
unequality ltA_/tAl~1 (see. eq. (A.3))9 in the Euclidean 
region l sl < Q 2 one can safely rotate the contours of 
integration over aa in eq. (4) to the real positive axis. 
The expression Q 2.A -sA_ can vanish in the region 
lsi< Q2 only if :A(a)=O. This can take place only due to 
vanishing of some set of parameters Ia a I because the 
function :A(a) is nonnegative (see eq. (A.3)). According to 
a general result, the asymptotical behaviour at large 
s, Q2 is in this case determined bysubgraphs the contrac­
tion of which into point eliminates the dependence on s and 
Q2 (i.e., by s,Q2 - subgraphs). In a superrenormalizable 

(t/J *1/Jcp) ( 4) -theory a leading contribution which behaves 
like 1/Q2 can be obtained only in the "handbag" diagrams 
by integration over a

0 
-0 (fig. 1 b): 

1 2z oo da I (a,m2) 
T(s,Q 2 ) =-~ K2(_!L) JII _£_e 0 x 

Q 2 a a 417 0 a D 2 
0 

x (1- w 2 1·A (a)/D (a)l 2 ) - 1 11 + 0(1/Q ~I. (5) 
- 0 

(\. 

a) b) c) 

Fig. 1 
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We have taken into account that for such a diagram 
A =al{), A_ :oaoA-; D=aoD 1 + Do; l(a,m~)lacr=O"' 
= 10 (a, m ~. The function D 0 (a) (D 1 (a)) is a determinant 
of the diagram shown in fig. 1 c (ld). It is clear from the 
representation (4) that the function T (w,Q ~ has a cut for 
lw l ;:::. 1 because I A _/D 01 =l:A_/A IS 1. Taking a corres-

ponding discontinuity we obtain the following expression 
for W (w , Q 2 ) : 

W(w,Q 2 )=-1-~K 2 [f c-.!.)+f_(...!.)l!1+ 0(1/Q 2 )!, (6) 
Q2a a a w a w 

where f (x) is the a -quark distribution function a 

2 10 (a,m ) 

fa (x) = ~ 
diagr.lc 

2z oo e -
(..!__) J II daa O(tA _(a)) x 
417 0 a D 2 (a) 

0 

1 -
x8(1- -lA (a)/D (a)l). 

X - () 

(7) 

To get an antiquark funct!on fa (x) it is necessary 
to take 0(-A_) in place of O(A _) in the r .h.s. of eq. (7). 
The expedience of such a definition is clear from the 
fact that the quanti ties eH and e t/1 

1 
e H = ~ e f dx I f (x) - f _ (x) I; 

a a 0 a a 

1 
(8) 

e ·'· = ~ J xdx{f (x) + f_(x)l, 
~ a 0 a· a 

can be interpreted as electric charge of the hadron 
and momentum carried by quarks because the a -re­
presentation for eH and for et/1 coincides with that for 
matrix elements of the electromagnetic current and the 
quark part of the energy-momentum tensor respectively: 

2P eH =<PI~e :t/1* (x) a;ax 11 t/f (x):IP>, 
11 a a a a 

2P P e.,. =<PI~:(Jl/J*(x)/axl1)(at/f (x);axv):IP>. 
11 v ~ a a a 

(9) 
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2. ANALYSIS OF RENORMALIZABLE THEORIES 

The theory g(t/J *t/1 ¢ )(6 ) in space-time of 6 dimensions 
is renormalizable. The coupling constant g is dim en­
sionless, and hence any subgraph V having 4 external 
lines gives a contribution of 1/Q 2 order due to integra­
tion in the region Av- 0 (by definition A.v= I a a ). As 

a(; V 

a result there appear logarithmical factors (ln Q 2) M . 

To sum the logarithms it is convenient to use the Mel­
lin transformation 

2 --0 + ioo dj dJ . . 
T(w,G ) = J 1(-j)i(j-J)---[wJ +(-w)J] x 

--0 - joo ( 277 i) 2 

x (Q 2) J <D + (J, j, m 2) (10) 

The Mellin transform 
representation 

<tJ ± has the following a -

± 2 
<D (J,j,m ) 

2 g2 z"" £+(A_) 
I K (--) J Dda ----- x 

diagr.1a a (477 )3 o a a D3 

x 1~1 j (~) J-j e l(a,m 2) 

D D 
(11) 

where £+(A_) =8(A_) ±e(~A_). 
We consider first the diagrams without quark loops. 

Let T be such a diagram, whereas V is the largest 
s, Q 2 - subgraph having 4 external lines (in particular, 
V can coincide with the whole diagram T ). Integrating 

over A v- 0 gives a pole (J +1)-1. We divide the region of 
integration over A v into two parts: a) A v < 1/11 2 , 
b) Av > 11112. Making use of scaling aa =Avf3a for 
lines a(; V we obtain 

+ ()() 
<D- (J,j,m 2 ) = J AJvdA. n df3 o(1-If3 ), 

0 V a a a 

+ Q da _ ¢- ({3 ,a _ , /.. ) = <D V (11 2) + <D V (11 2), (12) 
a a a a V pole reg 
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where the lines a belong to subgraph V ='I\ V.Expan­
ding the function ¢ ({3 a, a a, ,\ v ) 

()() k 
¢({3 ,a_, A ) = ¢({3 ,a-, 0) + I A ¢ ({3 ,a _), 

a a V a a k=1 V k a a 
(13) 

shows that only the first term in eq. (13) is responsible 
for a pole at J = -1. Using the factorization properties 
(eq. (A.4)) of the A- and D -functions 

- - -
A+ (V+ V) =A+ (V)!A + (V); D(V + V) = D(V) D0 (V); 

- - - v 

A(V+V) v A(V) D
0
(V); ( ± (V+V) =f± (V)£± (V) 

we obtain the very important representation 

+ + 
<D-(J,j,m2) ~ <D(~p.j,m2) 

2 zv ()() . . 
= I ( ~) J ll d a • I A_l J ( ~) J - J 

(477) o a a D D 

(±(A_) I X 

D3 

(14) 

(15) 

x l(~)zv 
( 477) 3 

J n d a - I p;_ I j ( ± (A ( V)) I ( a_ 'm 2 ) 
0- a D eo a I 

a 0 r)3 • 
0 

The sign v means that equality holds in the limit A v4 0 
that is, up to terms 0(.\ v)· It follows from eqs. (13) 
and (15) that the coefficient corresponding to a pole (J +1)-1 
is a product of two functions, the firs5 one is given by 
V -subgraph and the second one by v -subgraph. Integ­
rating the a -representation for the function <Dcv) in the 
region 0 :::_ A v :::_ 1111 2 gives a pole contribution 

v 2 1 J+1 - 2 
<Dpole (11 ) = (~) Cv(J ,j) fv (j, m ) . (16) 

The regular part <D v (, 2) is given by subtracting 
re~ r 

the contribution <D v 
1 

( 11 :!"" ) from <D (but not from 
po e 

<D (V) ) according to eq. (12). Let V 1 c V be a maximal 
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s, Q2' -subgraph with 4 external lines. Integrating in the 
region A v 1 - 0 gives a pole of the function ¢ ~g (JL 2) at 
J =-1. Changing aa =A v1 f3a for lines a~ V 1 we find 
that in the limit Av 1 ... 0 the function <ll (J, j , m 2) can be 
represented by eq. (15) (with an obvious change V ... v 

1 
). 

The function <ll v 
1 

(JL 2) can be represented in the 
following form po e 

v 2 2 ZT 00 • • 

<1> pole (Jl ) = (J-) [ f ll da (~) J-J A_ J t:±(A_) 
V1(4rr)3 0 a~V1 aD IDI D3 ]x 

-00 

A- j 2 E+ (A ) 
x [ f II da (-) 0(1/JL -A )-=----] x 

0 a~V'\v 1 a D 0 V'\V 1 D3 
0 

-
oo A . 

X [ f n- da I-= I J 
0 a~ V a Do 

f± (A_) 1
0

(a,m2) 

D 3 e ] . 
0 

(17) 

Thus the pole contribution of the subgraph V 1 into the 
function <ll v can be written as 

reg 

v v 1 J+1 -
¢ 

1 
(JL 2

) =(-) C (J,j) {Reg 
2 

[ f (j,m2 )]1. 
reg pole Jl2 V 1 Jl V 

(18) 
The operation Reg 

2
is given in this case by the expression 

Jl 

Reg 2 [ f (j m 2)] - foo n d E ±(A_) I (a ,m2) A J. 
Jl V1 • a e o a I -oa~v 1 a D3(V) • 0 1 

0 1 0 

00 A_ j E+(A_) 1 
-[ f n da 1-1 -=--0(- -,\ )]x 

0 a~V'V1 a Do D3(V\V) Jl2 V'\V1 
0 1 

- - -
00 E+(A_) A_(V) j 

X ( f fi _ da ------1--1 
o a~v a D3 (V) D (V) 

0 0 

I
0

(a, m 2) 
e ]. 

(19) 
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The structure of the subtraction procedure is illust-
rated in fig. 2. The function <ll v v 1 (JL 2 ) is given by 
the difference reg reg 

v v 1 ( 2) v ( 2) v v 1 ( 2) 
¢ Jl = ¢ Jl - <ll Jl • (20) 

reg reg reg reg pole 

Then it is necessary to consider the next s, Q 2 -sub­
graph V2 c V 1 having 4 external lines, to single out 
a corresponding pole part, to subtract it, and so on. As 

/-

q,;ftE)~ a) 

'-/~ 

~~.=P-~~~ b) 

q:,v V11=~~~ ~~\j tt'!fOt~ ~/ 
..........::_.- ~ ./ VW

1 

=[0)(9] 
"Re<lll' 

c) 

Fig. 2 

a result, we obtain the following representation for 
a contribution of the diagram T: 

± 1 J+1 -
¢T(J,j,m 2 ) =(-) IC (J,j)f _(j,JL 2 ) + 

Jl2 v v v 

+ RT(J, j, m 2, Jl 2 ) . 
(21) 
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When the recipe of the ~-operation is fixed, one can 
single out the leading asymptotic terms 

ZT 2 
TT(Q 2) = __..!._ ~ a [ ln~] + 0(1/G 4) _ 

Q2n=O n 112 

= T(as)(Q 2) + O(l/Q 4) , 
T 

(22) 

where 11 is the parameter with dimension of mass. 
Using another choice of 11 we must use also other coef­
ficients an= a0 (112). But it is evident that the sum of 
logarithmic terms remains unchanged. The difference 
T -T(as)=0(1/Q4) remains unchanged too. It means 
that although the regular contribution ii was 11-depen­
dent by construction, it is possible to make it 11 -indepen­
dent by subtracting from C v the terms which do not 
contribute to T(as), i.e., those giving zero after integra­
tion around the point J =-1 in eq. (10). The function C v 
can have a pole (J + 1) -n as a senior singularity at J =-1, 
where n .:S z T: 

r (j - J) 1 n k 00 k 
---Cv (J ,j) = ---1 ~ ~ (J + 1) + ~ bk(J+1) I= 
r(j + 1) (J + 1) 0 k=O k=n+1 

= Ev(J,j) + rv(J,j). (23) 

The contribution of rv is of an order of 0(1/Q 4J due 
to the absence of poles at J =-1. We add it to R, then 

r u- J) + 2 1 J+ 1 + . - ± . 2 
--<1> T (J, j, m ) =(-) ~ E v<J. J, g) f- (J, 11 ,g)+ 
f'(j+1) 112 v v 

+RT(J,j,m2). 
(24) 

The function R Tis regular at J =-1 and does not de-
pend on 11, whereas the function Ev(J, j) according to 
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eq. (23) is a sum of poles at J =-!.Summing over all the 
diagrams without quark loops we obtain the representa­
tion 

r u - J) ± . 2 1 J + 1 + . - + . 2 ___:.::_;_¢ (J,J,m) =(-2) E-(J,J,g(l1))f-'-{J, 11 ,g(11))+ 
r (j + 1) 11 

+R(J,j,m 2). 
(25) 

We have added the dependence of the coupling constant 
on parameter 11 • This dependence originates from the 
ultraviolet divergences. We define the R -operation with 
the help of dimensional regularizatim/19/ di\_,ctN-2£k ( 11 ~) ( • 
1n t~e a -.representation this results in a change D N/~ 
_, DN 2 -( (11 ~ zf • It is sufficient for renormalization, 
according to 't Hooft, to subtract the poles in ( , and 
then to take limit HO. There appear in particular loga­
rithmical factors ( ln~/ 11 2) ~ The asymptotical behaviour 
of T(w ,Q 2) does not depend on a particular choice of 11R 
and 11 and to avoid superfluous complications we take 
11=11 R' From the formal a -representation for fv(j, g) 
(the first term in eq. (19)) it follows that after the di­
mensional regularization of the function fv(j, g) there 
appear new poles in ( (which are not related to ordina­
ry divergent subgraphs) due to integration over small Av 
of subgraphs adjoined to the o -vertex (fig. 3). But these 
poles are removed by the operation Reg 2 . 

To illustrate this, let us take v ~ V'\.V 1 (fig. 2). 
Using the factorization properties, eq. (14), it is easy to 
see that the integrands of both the expressions entering 
into eq. (19) are equal up to the terms of higher order 

Fig. 3 
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in .\ v • Hence after integration over the region .\ v - 0 
the poles E-n corresponding to the first and to the second 
terms in eq. (19) cancel with each other. 

3. ANALYSIS IN THE a-REPRESENTATION 
AND PARTON MODEL 

-+ 2 -- 2 The function f (j, p. , g)(f (j, p. , g)) has, according 
to eq. (A. 7), the same a -representation 

- ± . 2 
f (J , p. , g(p.)) = Reg 2 p. 

g 2 z 
(.- ) X 

( 477) 3 
I 

diagr. 

oo A j E +(A ) 
x f II da 1---1 - - exp 1!

0 
(a, m ~ l , 

u u D D3 
0 0 0 

(26) 

._, 
as the reduced matrix element of the operator t/1 *(a) n tjJ 
for even (odd) n: 

n <--> 
i <Pit/J*Ia 

a p.l 

+-+ 
... a It/! IP> = 

IL n a 

- 2 n- 2 =21P,, ... P11 I[ f (n,p. ,g)+(-1) f_ (n,p ,g)]. (27) 
'1 r n a a 

As usual, the braces I I denote the symmetric traceless 
part of a tensor. Thus the subtraction procedure formu­
lated above provides a recipe of the composite operator 
renormalization. We have formulated the recipe of con­
structing the function E and this uniquely determines 
the action of the operation Reg/!2 on the functions f. 
For calculational convenience it is preferable to define 
the operation Reg 2 (for instance, Regp.2 can be 
understood as the dimensional regularization plus remo­
val of all the poles E-n ). Then the structure of the 
function E is determined by the requirement that the 
final result for 'I (as) must be p -independent. This can 
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be obtained with the help of the renormgroup equation, 
i.e., by differentiating eq. (25) with respect to p..: 

[-2(J+1) +f3(g) a: +y(g,j)]E(J,j,g) =0, (28) 

where 

f(j ,p.2, g) y(g,j) = (p. a~ + f3(g) a~) r(j ,p.2, g); 

ag 
{3(g) = p.-. 

ap. 
(29) 

In the general case when the quark loops are present, 
there appear three types of singular functions Ev (fig.4). 

L1 
I I 
I I 

h 
a) b) c) 

Fig. 4 

To the first type there belong subgraphs with quark 
external lines which do not contain gluon divisions in the 
t -channel. The corresponding contribution E~8 is 
proportional to K : , where a denotes the type of an 
external quark line. The subgraphs belonging to the se­
cond type have at least 1 gluon division in the t -channel. 
Their contribution is propqrtional to <K 2> = I K 21 N r 

/7/ a where a= 1, .. , Nc • Hence 

+ 1 J + 1 NS 2- + 2 
<ll- k (J,j)=(-2) [E (J,j,g)IKafa-(j,p,g)+ 

quar p. a 

-+ 
+<K2 >E

1
(J,j,g) ~ f~ (j,p. 2,g)]. (30) 
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The functions ENS, E 1 do not depend on quark fla-
vours. Let us introduce the function E s =ENS+ E 1 which 
corresponds to the sum of contributions given by all 
subgraphs having quark external lines. Then the ¢ -

function can be rewritten as 

¢±(J,j)=(-1-)J+1{ENSI,(K2-<K2>)f ± + 
~2 a a a 

s 2 -+ 2 - + 
+E <K >I.f- +Eg<K >f- I, 

a a g 
(31) 

where E g is the sum of contributions of subgraphs having 
gluonic external lines. The function fg can be connected 
with the gluon operators by the relation 

n <---> <-> 
i <PI¢1a" ... a I¢1P> 

'1 ~ n 

=21P ... P If 
~1 ~n 

(n.~2,g) 1+(- 1)n 

2 

(32) 

We identify the functions fP (n. 11 
2 , g) at positive in­

teger n with the moments of parton distribution func­
tions/?/: 

1 
- 2 dxn 2 
f (n.~ , g) = f -x fp(x./1 , g). (33) 

p 0 X 

In this normalization we have the sum rule 

1 
f xdxlf (x.~ 2 ,g) +I-[f (x.~ 2,g) + f_ (x./1 2,g)JI=1 (34) 

0 g a a a 

related to energy-momentum conservation. 
Note, that the only assumption used to derive eq. 

(31) is that all the dependence of the functions E on 
quark flavours is connected with quark charges only 
(i.e., we have neglected only the dependence of E on 
quark masses). 
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Turning back to the function T(s, Q 2) we get 

-0+ ioo 

2 -
1 f T(s,Q )-Q'2-0-ioo 

j )j - Q2 
w +(-w dj[ E(-2 'j, g(~ )) 0 

21 Sin rrj ~ 

0 f(j .~2, g(~)) + 0(1/Q 2)]' 
(35) 

where 
_ Q 2 -0 + ioo dJ {;: 2 J + 1 
E(-, j,g(/1))= f -.-(-) E(J,j,g~)). (36) 

11 2 -0 _ ioo 2m ~2 
Formula (35) is just the Sommerfeld-Watson trans­

formed version of the result given by the standard ana­
lysis based on the operator product expansion /1,13/. The 
terms denoted as 0(1/Q 1 ) in principle, canhavea power­
like dependence on j for real positive j: 0 (1/Q 2 ) -

- (j/Q 2 ) M • Such contributions have been analyzed in 
ref. / 22/. It has been shown there that even in this case 
one can neglect these terms for w not too close to 1 

(more precisely, outside the resonance region). In this 
region eq. (35) in conjunction with eqs. (31), (33) leads 
to the hard scattering formula 

2 1 1 dx Q 2 
T(s,Q ) = - f -t( 2 , g,wx) 0f(x.~ 2,g), (37) 

(;:2 0 X /1 

which holds both for the amplitude T and for its dis­
continuity: 

1 
2 dx NS 2 2 

W(w,Q ) = f -lw (Q .~ ,g~),wx) x 
0 X 

X I, (K ~ -< K 2 >) • ( fa (X,~ 2 , g~)) + f _ (X,~ 2, g( ~))) + 
a a 

+w s(Q2 .~2,g~),wx) ·<K2>I.[f (x.~2,g~)+f_(x./12,g(ll))]+ 
a a 

+W g(Q 2.~ 2,g(~),wx)<K 2 >f (x./1 2,g(ll))l. 
g 

(38) 

The functions w (G 2, ~ 2, g~), wx) describe the cross­
section of a parton subprocess with a proper infrared 
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regularization. Depending on the choice of a subtraction 
procedure the parameter 11 can be interpreted as a par­
ton virtuality -11 2 =k 2 · ,or as a parton transverse 
momentum 11

2 = k}. An inherent feature of the infra­
red regularization is a cut-off at .\ v > 1111 2 • It follows 
from the a -representation for a propagator 

1 
ioo 

---- = J da exp(a(p 2 -rn 2 + id) , 
m 2 -p 2-if 0 

ioo 

2 1 J da e 
Dc(x,m)= N/2 N/2 

( 477) 0 a 

x2 
- 2 4a-a(m -if) 

(39) 

that small a corresponds to large momentum p2 (or 
to small interval x 2 ). Hence the functions E , which 
are due to small a -integration, correspond to coefficient 
functions of the OPE and describe the parton subprocess. 

Regular functions f are given by large -a integration 
and correspond to matrix elements of the composite ope­
rators which are properly defined normal products of 
the fundamental (quark, gluon) fields, or in the parton 
language, to parton distribution functions. Subtraction 
procedure provides the ultraviolet regularization for 
parton distribution functions and the infrared one for 
parton subprocess cross-sections. 

4. SUBTRACTION PROCEDURE 
IN COORDINATE REPRESENTATION 

An analysis of the theories describing spinor particles 
is ~ighly complicated in the a -representation by pre­
expOnential factors due to numerators of spinor propaga­
tors. Factorization properties of the preexponential fac­
tors can be established only after the very sophisticated 
treatment. Such an anJ?lfis has been performed, however, 
for 4-leg diagrams 1 relevant to deep inelastic scat-
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tering. It appears that the functional form of the resul­
tant expression does not differ from the corresponding 
formula (25) of the ¢ 3(6)-theory. This "coincidence" has 
a natural explanation from the view-P<,>int of the operator 
product expansion on the light cone I 10! 

T(j(x) j(O)) = 

x2->0 

2 2 /11 lln I F. (x , 11 ) x ... x x. 
. 1 
1, n 

i 2 
X 0 (0; /1 ), 

lll"'lln 
(40) 

where 11 is the renormalization parameter for local 
operators 0 111 ... 11 n (x). It is well known how to obtain 
a representation of eq. (35) type from the OPE 
(eq. (40)) /l,l 3~and we will not repeat it here. Let us show 
that eq. (40) is a coordinate representation version of the 
subtraction procedure we have formulated above. A deri­
vation of the representation (25) was very essentially 
based on the factorization properties with respect to 
2-particle divisions in the t -channel. These properties 
are trivial in the coordinate representation (fig. 5a) 

n 
~ (x,a.,b.)=J ll dxkT(x,O;x 1 , ... ,xn;ai,bj) 

w 1 J k=l 
m 

=J dgdrylk~l dxkCV(x,O; xl, ... ,xm; e,7])1 X 

n 
xl n dxkfW v c.e,ry;x 3 .... ,x ;a.,b .) I, (41) 

" m+ n 1 J k= m + 3 

Fig. 5 

tl) /J) 
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with notation: ,; = xm + 1 ; rJ=Xm+ 2 .To construct the 
subtraction procedure one must split W into pairs V, W'\ V 
and then apply an infrared regularization to Cv (e.g., 
'Av<1/ J12) )andanultravioletoneto fw\V ('Av>1/J.L 2 

for all the subgraphs which become divergent after uni­
ting ~ and ry ). As a result, 

5= ( x, a. , b . ) = I I d ~dry C v ( x , ~, ry ; 11 
2 ) x 

w 1 J v 
(42) 

xf (~,ry;a.,b.; 11 2 )+R (x,a.,b.). 
W'\V 1 J W 1 J 

Summing up over all relevant diagrams we obtain 
the representation 

j= (x, a. , b . ) = I I d ~dry C (x, ~, ry; 11 2 ) x 
1 J m m 

xr a.l]:a.,b.; 11
2 )+R<x.a

1
.,b.). (43) 

m 1 J J 

where m denotes possible two-particle states. The func­
tions C, f are the Green functions 

Cm(x.~,ry;/1 2 ),.<0IT(J(x)J(O)j (~)j (lJ))IO>I , (44) 
m m /12, IR 

f (.,;,IJ;a.,b. ;/1 2 )=<0IT[N 2 (¢ <e¢ (ry))x 
m 1J 11 m m 

- -
x ci> (a ) ... ci> (a ) ci> (b ) ... ci> (b ) ] I 0 > , 

1 n 1 n 
(45) 

where ¢ m are the "parton" fields, jm are the corres­
ponding currents, <11, iii are the fields of external par­
ticles. 

The symbol N 112 denotes the aforementioned ultravio­
let regularization procedure characterized by parame­
ter /1• Formally, one can expand ¢ m (~) ¢ m (lJ) into 
the Taylor series 

00 111 
¢ ((}¢ (lJ)"" I (~-lJ) 

m m n= 0 
... (~-lJ(n p (m) (~-ry)_1_, (46) 

llt•oolln 2 n! 
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(n) ~ ....... 
where P11 1 ... 11n (x) = ¢m (x) a111 ... a11 n¢m(x). But matrix 
elements of these operators have divergences which are 
not removed by the ordinary R-operation *. For bilo­
cal operator N112 (¢ m (,;) ¢ m (lJ)) one can take limit ~ .... ry 
and use eq. (46). 

With the help of a standard procedure /21/ (using 
expansion over a complete set: 1, I ln><n!) one can 
get matrix elements < P 1 P 1 P > in place of auxi-
liary Green functions. 11 1'" 11 n 

Representation (43) in conjunction with eqs. (45), (46) 
gives the following operator product expansion on the 
light cone: 

T(J(x) J(O)) =~I d~dryC 
1 
(x, (,ry ;/1 2)() 

1 
(~,lJ;/1 2)+R(x). (47) 

1 

where (.').(~,n)=N 2 (¢.<e¢.(ry)). Usingeq.(46),expanding 
1 'J /1 1 1 ( 

p111 ... 11 n over operators 01;> ... 11 C l with definite 
Lorentz spin t 

P = l C [ 0 (n-f') g ... 
/1 ... /1 o nC /1 ... /1 o /1 /1 g /1 /1 

1 n [=0 1 t f+1 f+2 f-1 n symm (48) 

and integrating over (.ry 

n -C 

2 111 11c 2 -2 -
Id~d7JCi (x.~,7J;/1 )1(~-ry) ... (~-!]) l[(~-7]) ] 

-I /11 llC lh (n,C )( 2 2)( 2)(4+di+n- C )/2 
-X ... X i X/1 X , 

(49) 

(where d i is the dimension of the function ci in length 
units), we obtain the operator product expansion in the 
standard form 

T(J(x)J(O)) =(X2)4+di/2 I Ih~n,n)(X2/12) x 
i 1 

/11 lln (0) 2 
xx ... x 0 (0; 11 ) + R (x) I . (50) 

/11"'/ln 

"' A mathematically rigorous analysis of composite 
operators in quantim field theory has been given in ref. 1201, 
where one can also find a complete set of references to 
earlier investigations. 
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It was essential for integration in eq. (49) that the 
matrix element <PI O(x) IP > is x -independent, hence, 
strictly speaking, eq. (50) is valid only if it is assumed 
that all operators are taken in symmetric brackets. We 
have added higher twist operator contributions to the func­
tion R(x) , which has a weaker singularity on the light 
cone than the functions h <?,n) (x 2 fl. 2 ). 

1 
The contribution of an s, Q 2 - subgraph in theories 

describing particles with nonzero spin is given by the 
following expression (see. eq. (A.l2)) 

F (V)< Q 2-It 1 
2 -

(51) 

where t 1 are the twists of fields corresponding to ex­
ternal lines _of the subgraph V. In a Yukawa type theory 
(i.e., !f. =gt/Jt/1¢ in the 4-dimensional space-time) 
the twists of all the particles are equal to 1. Hence it is 
necessary to consider subgraphs having two (in addition 
to two photon lines) external lines. The only complication 
is the use of the Fierz identity for spinor two-particle 
divisions 

a f:3' 1 a {3' . 
8 {3 8 a, = 4 7 (r i ) a, (r i ) {3 ; r i = 1, 1 Y5•Y5 y fl.' a fl.V f.../ 2 'y fl. • , 

(52) 

An upper estimate (eq. (51)) is realized for a y11 -pro­
jection. In this case the twist of a composite operator 
is equal to the sum of twists of constituent fields. 

Hence, in scalar or pseudoscalar gluon theories there 
are no essential complications in a coordinate represen­
tation treatment due to nonzero spin of the fermion 
(quark) field, and the result (25) remains unchanged. 

To complete the paper, let us summarize the main 
results. We have developed a method for investigating 
the asymptotical behaviour of deep inelastic scattering 
in scalar field theory models. The method uses the a­
representation and the Mellin transformation. An algo­
rithm is given for constructing a subtraction procedure 
which separates the contributions of large and small 
distances. The relation is investigated of this procedure 
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to that one of the composite operator renormalization 
and of the infrared regularization for short-distance 
contributions. An explicit use of the coordinate represen­
tation allows us to demonstrate that the subtraction pro­
cedure leads to the light-cone operator product expansion. 
And finally, the equivalence of the field-theoretic approach 
and of the modified parton model is shown. 

APPENDIX 

Using a -representation I 151 for propagator (eq. (39)) 
one can represent the contribution of any diagram of 
a scalar theory as follows 

M (p , ... , p ; m 2 ) = 
1 n 

Q(a,p) I 2 . 
P (c. c.) ioo -NI2 ~-a (m a- it") a a 
-____,

1
- f II da D (a) e 

(477rz 2 0 a a 
(A.l) 

where P (c. c.) is a product of coupling constants, z is 
the number of loops of the diagram. M -matrix in eq. (A.l) 
has a natural normalization: tree graphs do not possess 
factors like 277 or 77. The Symanzik functions I 22/ Q (a, p) 
and D(a) are determined by the topological structure of 
the diagram. They are independent of N - the number 
of space-time dimensions. 

Let us remind that " k -tree" of a graph is called its 
subgraph which contains all the vertices of the initial 
graph and consists of k components. k -tree v is 
uniquely determined by its chords (the lines whichk must 
be eliminated from v- to get V k ). The product of a -para­
meters corresponding to these chords is also called 
k -tree. 1-tree is simply tree. The determinant D(a) of 
a graph is the sum of all its trees. Let us denote 
B(i 1, ... , i k I j 1 , ... , j e ) the sum of such 2-trees of the 
subgraph v for which the vertices i 

1 
, ... , i k belong to 
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one component; j 1, ••• , j f , to another whereas nonenu­
merated vertices can belong to any of them. Then 

Q(a,p)=~8(i •.• i lj ... j ;V)x 
a 1 am a m+ 1 an 

2 
X (p + .. .+p ) , 

a 1 am 
(A.2) 

where ia 
1
, ... , ian are the vertices which the external 

momenta Pa f'"' pan enter into, and the summation runs 

over all the possible divisions of these vertices into two 
connected components. It is clear that 

2 2 
(Pa + •.• +pa ). = =(Pa + ... +p ) (A.3) 

1 m m+ 1 an 

By construction D (a) 2: 0 ; 8 (i. .. I j ... ) 2: 0 for real 
positive a. Determinant is a homogeneous function of 
a -parameters: D(A{3) =Az D({3). In the same way Q(A{3,p)= 
=J..z+1Q({3,p). 

For a 4-leg diagram describing deep inelastic scat­
tering (fig. la): 

Q(a,P,q) =q~(ll2) +2(Pq)8_(12l34) +P 2 8(3I4), (A.4) 

where 

8± (ablcd) = 8(aclbd) ± 8(adl be). 

By definition 8(112) = 8(11234) + 8(21134) + 8 + (12134). 
Hence, 8(112);:: 8(12134) 2:1 B_(12l34)1 for real positive a. 
It is useful to know the factorization properties of the 
functions 8, D with respect to two-particle divisions in 
the t -channel 

- - -
D(V+ V) = D(V) 8(516; V) + B(5l6; V)D(V), 

- -
8±(12I34;V+V) = 8±(12I56;V) 8±(56I34;V). 
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The functions 8 + ,{_12156; V) 8 + (56134; V) are constructed 
for subgraphs V ~ V in the -same way as the function 
8 + (12134, V + V) for a subgraph V + V. We denote them 
A~(V), :!J+(V), A+(V+V),respectively.Thefunction 8(516;\1)= - - - + 
= D 0 (V) is the determinant of the diagram shown in 
fig. lc. When Av .... owe have 

- zv - -
D(V+V) ="v !d(V)D0 (V) +Avb(5I6;V)D(V) I, (A.5) 

- -
i.e., D (V + V) v D (V) D0 (V). The sign = means the equality 
holds in the limit - A v .... 0. For the han~bag diagram (fig. 1 b) 

-
D =a0 D(V) +D

0
(V); A_ =a

0
A_; 

8(112. a 0 + V) =a
0

D
0

(V). (A.6) 

The a -r~resentation for the diagram lc with an opera­
tor i t/1 *I a 11 !''~!1 I t/1 corresponding to the a-vertex 
can be written as n 

. II 2 -P(c.c.) 1"" adaa IO(a,m) ~A_(a) n 
!P/11 ... P 11 I I ---e (---) . 

n (4rr)Nz/2 0 
00

N/2 0
0 

(a) (A.7) 

Expanding the quantities (Pa 
1 

+ .. .+pam) 2over independent 
invariants s 1 , ... , s k , we obtain 

M(sl ' ... , sk;. m 2) = P(c.c.) (4rr) -Nz/2 x 

ioo -N/2 k 
xI II daaD (a)expl ~ s.:A. (a)/D(a)-~aa(m 2 -idl. (A.8) 

a ·-1 I I a a 0 1-

It is clear from this representation that the behaviour 
of M(s 1, ... ,sk;m 2) in the region s1-s2- ... -se-s»se+

1
-

- ... - s k _ m 2 is determined by the region of a -para-

e 
meters, where . ~ (si/s)Ai(a)/D(a)- 0. We consider now 

I= 1 

the following possibility for this expression to vanish: 
all the functions A i I D; i= 1, ... , e vanish when a a = 0 for 
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lines a belonging to a subgraph V. Note that the k -trees 
of a subgraph resulting from an initial graph v after 
contraction of lines a 

1
, ••• ,an into points, can be obtained 

from the corresponding k -trees of the graph V by 
putting a a 

1 
= ... = a a = 0. Hence the vanishing of parame­

ters {a a· l mean~ topologically the contraction of the 
subgrapti v into point. We have supposed that A/ D = 0 
when aai = 0 ; a i ~ v ; i = 1, ... , L Hence, the diagram ob­
tained after contraction of the subgraph v into point 
is independent of large variables s , ... , s e . This sim-
plifies the search of such s1 , ... , s e 1-subgraphs. 

Let V be a connected subgraph with e lines, 
v vertices and z loops (z = e - v + 1). The scaling 

f-1 
a = Avf3 ; Av= I a ; llda = Av dAv TI df3 8(1-If3 ), a a a a a a 

at;;v a a (A.9) 

results in the following relation 

z z 00 
k 

D(a)=Avd(f3 ,a_;Av)=Av{d(f3 ,a_;O)+I Avd ({3 ,a_)}, 
aa aa kaa 

z+1 00 k (k) 
!A i (a)= A ! a. ({3 a ,a_ ;0) + I AVa . ({3 ,a _)}. 

1 a k =1 1 a a 
(A.lO) 

Using the relation nv = e ext + 2(1 (where e ext is the 
number of external lines of the dubgraph V) in the 
scalar g¢('k) -theory (we take s- Q 2 ) integrating over 
A v- 0 we obtain 

M- Q (N- [<,D]fext -[ g]v) 
(A.ll) 

where [<,D]=(N-2)/2 is the ¢-field dimension, whereas 
[g] =N-n(N-2)/2 is that of the coupling constant (in 
mass units). If the coupling constant is dimensionless, 
the asymptotical behaviour of an amplitude depends only 
on the number of external lines of the subgraph (remem­
ber that we consider now only scalar theories), hence the 
subgraphs with a minimal number of external lines are 
responsible for the leading asymptotical behaviour. In 
the superrenormalizable 9 (~) -theory we have 
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(4-Eext -v) 
M- Q the leading asymptotical contribution 
in the cases treated in this paper is given by a tree sub­
graph with a minimal possible number of external lines. 

The result (A.ll) can be easily obtained by a dimen­
sional analysis. In an arbitrary theory the contribution 
of a subgraph V has dimension dv=N-I[<ili ]-!.[g. l 
(where the summation over i runs over external !ides 
whereas that over j. over vertices of the subgraph V). 
If the i -th external line describes a particle with 
spin s i , then there can appear an additional fact~r 
<;; s 1 (for instance, P fl. - c:; for a photon line, u(P) _ Q 1 2 

for a spin -1/2 particle, and so on). This results in 

N-It. -!.[g.] 
M- Q I J (A.l2) 

where t i = [<Pi]- s i is the twist of field dJ i. In the 4-
dimensional space-time we ,have t i ~ 1 for particles 
with s i. o. 1/2 ; t i- 0 for the vector potential A fl. ; 

tensor Ffl.V effectively corresponds to t i - 1,2. 
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