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Bap6awos B.M., Hecrepenxo B.B. E2 - 117006
O reoMmeTpHYECKOM MONXOAE B TEOPHH pPeATHBHCTCKOR CTPYHE

B nasnoft paboTe B reomeTPHYECKOM HONXONE K TEOPUH CTPYHL! B 9eThi-
pexmMepHom NPOCTPaRCTHe MUHXOBCKOrC HCNONB3YEeTCH PeNATHBUCTCHKH HHBa-
pHAHTRAS Xambposka (X + 'ijgbq\?,xoropasr npUMeHwIack palee B Clydae
TPEXMEPHOro NMPOCTPAHCTRA-BpEMeHH, B oTaKuke of pe3yAbTaTOR NPeAblgyLNX
P&6OT CHCTEMY ypaBHeHuil Ha KOS(HOMEHTHl KBAADPATHUYHEIX $OPM TOBEPXHOCTH
Ylaercd CBECTH BHOBb K OAHOMY HenHHelidomy ypaewenuw Jluysumra, o
Tenepb YXe HA KOMINEKCHO-3HAYHYI (yHKUa© u. Jajee nokasaxo, 4rc # B
Cchydas MPORSBONLHOA PA3MEDHOCTH NPOCTRAHCTBA~BOEMeEHH €CTh TakKue
ABHMOAHA CTPYHbI, KOTOPLI@ ONHCBHIBAIOTCH peleHWSMH ypabHeuuwd Jluysuniaa

¢ neficreurencuolt dyHxused u. M kax cneacTeue »TOro, COMATOHHBIE pemeH s
ATOr'0 ypapHeHud, KOTODbIe HCCIeOOBANHCHL pPAHE®, AMEIT MECTC ¥ B CIydae
nwobofi paamepHocTH NpoCTRAHCTBA-BDEMEHM, B KOTOpPOM ORMKeTCH CTpYHA,

PaSora srmonaena s JlaGoparopus Teopetuuecxoli duanxn OWAU,

.

Ilpenpust OfveaunedHoro WHCTHTYTA snepHLX uccredopauuft, [y6ua 1978 -

Barbashov B.M.,, Nesterenko V.V. E2 - 11706
On the Geometrical Approach to the Relativistic String
Theory :

The geometrical approach to the theory of the relativistic string
is extended to the Minkowsky space of arbitrary dimension, It is
shown that in four—dimensional space-time in the relativistic inve-
riant gauge (x t:':')p' ==-q42, the problem is reduced to the norlinear

Liouville equation for the complex values function,

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR, .
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1. In papers/1-4/ the so-called geometrical approach
to the theory of the relativistic string was proposed. In
this method as the co-ordinates of the string world sheet
the coefficients are considered of its first and second
fundamental forms (gij and by|;; , respectively) instead
of the Lorentz vector x*{y;) ~ which describes this
sheet in a parametric form/5.6/. The advantage of this
approach is the possibility to combine the equation of
motion and the supplementary conditions of the string
theory in the three-dimensional space-time into one non-
linear equation

il'-—u”:Reu, (16)

where e_u(a’r):gn = %2 , U =du/dr, u’ =du/dg ¥, It
appears that this equation admits the soliton solutions
which lead to a new mass sp?c}rum in comparison with
the theory of the dual string’ ¥, If the string is moving
in four-dimensional space-time, then in the gauge t - ;
the problem can be reduced to the Gauss surface theory
In three-dimensional space again/!/, However, in this
case there are two equations for the coefficients of the
fundamental forms of the string world sheet. For the free
infinite string these equations have the form

d .
—(etg®or") = 9_ (ctgoN),
do or

* The infinite relativistic string is cons}dered only and
the boundary conditions are not discussed /2.3/ .
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In this paper in a geometrical approach to the string
theory in the four-dimensional Minkowsky space the
relativigtic invariant gauge (X + x°) = -¢%  proposed in
papers /2% for the string moving in three-dimensional
space-time is used. In contrast to the results of paper/!/
the system of equations for the coefficients of the funda-
mental forms of the string model world sheet can be
reduced now to one equation (1) again but with a complex
valued function u. It is shown that in the case of space-
time with arbitrary dimension there are such string
motions which are described by one non-linear equation
(1) with a real function u. And as a consequence the
soliton solutions investigated in paper /4/ take place in
a geometrical approach to the string theory in any dimen-
sional space-time.

II. Our consideration will be based on the following

embedding theorem of the differential geometry/7.8/.
The symmetrical tensor gij » P Symmetrical ten-

sors b,|; and p(p-1)/2 vectors Vafli (”*Vﬁa[i) ,
ij=1,2, «,8=834,..,p+2 determine two dimensicnal
surface V, with fundamental tensor g;; embedded into
the real flat space S,,, (the Riemann curvature tensor
of this space vanishes identically), then and only then the
following equations are satisfied:

Riwe = E €q(Dylix Doyt - Palit Pal), 3
b -h = - b
alij;k alik;] %eﬁ(”ﬂalkbﬁm “Bal) ” Blik
A (4)
Ve ro = Lo +tXe v v -v v Y+
fal ik Belkii Ty CyTyBli Yyalk T YyBik Vyal;

fm
+8 g boiae “Dgn baly ) =0, (5)

where R;,¢ is the Riemann-Christoffel curvature
tensor of the two-dimensional surface V, which has only
one essential component

2 2 N
R :hl_(gagleH d 81y _ PP
1212 2 du fag ! dudu 2 du Lau!
g -T_ T ) (6)
m, 21 F, 127 "m,e2" P, 11 7

I\ jx  is the Christoffel symbol
aglik . 98, _ 98 i )
dul duk du 1

- 1
L i,jk ?(

€, 1S a constant equal +1. ‘

In the string theory the variables u' are denoted
by o and 1 el = ¢ | uf_g 9x/dr - %, , 9%x/do =x’
and the surface V, is the world sheet of the string in
Minkowsky space. The semicolon means here covariant
differentiation with respect to the metric tensor

p+2 ) P .
g:zci’fﬁ}f__ g ki

b

5 g =5

Uoou=1 Foul gul ik i

The constants ¢, , =12 .., p+ 2 take into account
the metric signature of space 8 +o and they are equal

to *1. In the theory of the relativistic string Sy is the
Minkowsky space E1+2, 50 we put ¢ =-c =1, 1=23... p+2
At any point of the surface V; embedded into the flat
space Sp+2 the system can be constructed of the ortho-
normal vectors ng which are orthogonal to the tanggnt
vectors of the world surface of the string %" and x*

p+2 e ’a:ﬁ,
o ,un;; =1
p=1 wla L



p+2 =2
Ecnt‘xf‘ Ecn‘zx =0,
p=14# p=1 H

a,3=23,4,...,p+ 2,

In the chosen metric of space 8 pre the constants e
are equal to +1 for the time 11ke vectors r; ‘. and e a=1
for the space like 7% .From the physical view- pomt in
the string theory /5.6/ one puts g, =x% > 0, Bpgx &0
and all vectors orthogonal to X and X° are space-like
and as a consequence, e, =—1, a=34,...,p+ 2.

The world sheet of the string is the mlmmal surface,
so in the isothermic co-ordinate system /9/

-2 12__

=x* =—x =%x =0 N

11
the vector x¥ (o,r) which describes this surface obeys
the d’ Alambert equation

xF=x¥-0, p-12..p+2. (8)

If the surface is embedded into the three-dimensional
flat space (p=1), then there are no vectors VaBli- and
eqs. (3-5) are reduced to the first two ones, in this case
eq. (3) being the Gauss equation and 4) bemg the Co-
dazzi equation’ 10

In coordinate system (7) eq. (3), by virtue of (6),
takes the form

. W or \2 0 2y
By —By;+8 [(gn) -&,,)71 =
p+2

o 2 (9)
2(33( al11 a!22 a[12) :

The tensors b,j;; are defined by the derivation for-
mulae
pt2
X -5 e
o a=3

. (10)

aba|ij K

where q‘é is the system of the orthogonal vectors
introduced above. Taking into account (8) we get from
the expansion (10)

bam = ba|2‘2 , a=34,..,p+2.
In addition to eq. (7), one can 1y|po/se on the variables
x*(a,7)  the following conditions

s |’2 2
(x +x° =-q,

(11)
where q . are any constants. Substituting (10) into
(11) we get
2
2“(balll—ba*lE) _qi
If the string moves in four-dimensional Minkowsky

space (p=2,a =3,4), then the following variables

b3|11'ib3|12 = G, COSa +
can be introduced.
Eqs. (3-5) take now the form

béill ib4l.1.2 =qtsinai

- . 11 P 1 2 * 2 .
11 By +8 Eeip”~(& )" i=--2,q cosla, —a ),

(12)

a-+-—a'+=vlv-t/2,(;_+a'_ =V +vg, (13)

V'l—ifz +g11q+q__sin(a+—a__)=0, (14)
where V1 =vagly 2 vg=v 43|2.In terms of variables

¢ =a ~a_ and g,;;=e~" egs. (12) and (14) part from
the system (12-14)

U -u” =2q,q_e "cosb, (15)

g -6 = 2q+q_e“ sing. (16)



These equations can be reduced to one by means of comp-
“lex valued function w =u +i¢

w -w” =Re" | (17)

where R=2q,q_ . So the theory of relativistic string in
four-dimensional space-time in gauge (11) is reduced to

the Liouville equation /11/ again. But in contrast to three-
dimensional Minkowsky space this equation is for the comp-
lex valued function w.

Obviously the Liouville solution /1Y can be genera-
lized to the complex equation (17). This equation, as in
the case of real function u/4/, has the soliton solution

eW/R:,A \/ﬁ sech(A—L=YZ_ , 5, (18)

R \/ 1 —v2
where ‘A and & are arbitrary complex constants:
A=ay +iag , 6=8,+i6,. Separating the real and
imaginary parts in eq. (18) we get

2. .2
" 4(a1+d2)
<] = B

|R|(ch2z + cos 2z ;)

; a ap+agythz tgz,
E— = ,
2 aluagthzltgzz )

where =z (=8 (o — VT)/\/tV_E_-i- gy, i=12.
Equations (15) and (16) are the Euler equations for
the Lagrangian density

f:%(hg—u’2)—-;—(é2—0'2)+Reucosé). (19)
The corresponding Hamiltonian is

H:%—(nﬁ+ u’2)—2i(ng +0°% +Recos@,

where 7, =d£/du -0 w;=0£/00=-0. The free Hamil-
tonian of the field ¢ is included in H with sign minus.

8

3. Let us go to arbitrary dimension (p>2) .of the
space-time into which the world sheet of the string is
embedded. We shall consider the sets of variables ba|11
and b,y , @ =34,...,p+2 as co-ordinates of two Euclidean

1 2
vectors b" = (bg)yy ' Dgj1g b1y} and b ~(bg1e by e sees D pyal10).

Introducing the variable ¢ as the angle between these
vectors we can reduce eq. (3) to eq. (15) again. Let us
show that the particular solution of the system (3)-(5)
is 6=0, Balj =0 and bg|;; are constants. Equation’
(4) is satisfies identically in this case and eq. (5) gives

1 2
b b )

@ :——«—E, a,ﬁ=3.4.---,p+2-
bl b=

B B

This is identity also as for ¢-0 we have . _\b2 where
A is constant. The essential equation now is eq. (15)
which is reduced to eq. (1). So in the case of space-time
with any dimension there are such string motions which
are described by one real Liouville equation (1). All re-
sults obtained in paper /% concerning the soliton solutions
of eq. (1) and the mass spectrum generated by these solu-

tions are valid here as a particular case.

4. The theory of the infinite relativistic string in
four-dimensional space-time in gauge (11) is reduced to
the investigation of eqs. (15) and (16) or one complex
eq. (17). In paper /1 as it was noted above, the same
problem was considered in gauge t-r and egs. (2) were
obtained different from eqs. (15) and (16). Here the
following question arises: Do the results of the geometri-
cal approach to the relativistic string theory depend on
the choice of gauge?In any theory with gauge invariance
the physical results have to be gauge independent. To
answer this question, we have to investigate the reduction
of eqs. (2) to (15), (16). If this reduction is impossible,
the mass spectrum of eqs. (2) and (15), (16) should be
compared taking into account the soliton solutions in
these systems.
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