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The Bohr-Sommerfeld Quantization of n -Dimensional
Neutral and Charged Pulsons

The spectrum of masses of 1) neutral and 2) having elemen-
tary charge Q=1, n-dimensional pulsons (i.e., localized oscillating
extended solutions) is found by numerical integration using
a computer in the framework of the Klein-Gordon equation with
the logarithmic nonlinearity. Computer experiments point out that
the pulsons under consideration are apparently stable at any g,

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR,
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The development of the methods for a quantization of
the Lorentz-invariant nonlinear (LIN) field equations is
the problem of a present interest of the high energy
theoretical physics. Indeed, the quantum chromodyna-
mics,which is intensively developed to describe the phy-
sics of hadrons, deals with nonlinear Yang-Mills fields.

“Then one of the possible ways to imagine a “naked”

”structureless” particle having nonzero mass, for
example, leptons (an electron, a muon) is to suppose
that it is an extended field “bunch” of a finite size, kept
as a whole by self-action forces.

Such models are described at the classical level by
the LIN equations. The quantization of the LIN models
is carried out,as a rule, by semiclassical methods (see,
for instance, refs. /1.2 3/ ). The first step to fulfil this
programme is the investigation of the localized solutions
(LS) of the LIN equations.

The most studied class of the LS of the nonlinear
evolutionary partial differential equations are soliton
solutions. We use the term ”soliton” to denote LS of the
type R(fb exp(—m)t) having a finite energy, charge,
etc., where R(%) may be, in general, a scalar, a spinor
or a vector. It is clear, that LS of nonlinear and, in par-
ticular, of the LIN equations, of more general kind can
exist, for example, the periodic ones, u(x,t+T) =u(X,t)
or still more general ones, which have |ju(X,t+T)||=||u® ||
and lead to periodic in time physical quantities (classi-
cal densities of energy, charge), H(x,t+T) =H(x, 1),
q(X,t+T) =q(x.1).  We call such periodic LS’ pulsons”/e/
for brevity.



The ’bions” (bound states of two solitons) of the
famous sine-Gordon equation (SG) are the examples of
pulsons in the case of one space dimension (n=1). In the
case n=3 the spherically symmetric (ss) scalar pul-
sons have been found and their stability has been investi-
gated /8/ (these pulsons are weakly radiating and hence
only approximately periodic). The importance of study-
ing of classical LS of the LIN equations, which periodical-
ly depend on time,as a possible starting-point for deve-
lopment of the nonlinear quantum field theory (QFT) is
demonstrated by }he following analogy pointed out by the
authors of paper 2b/ »_..the Bohr orbits of hydrogen are
not time-independent solutions to classical equation of
motion but rather are motions which are periodic in
time”.

The results of a semiclassical quantization (in the
case n=1 ) of the completely integrable SG-equation by
the functional integration technique (FIT) show that
a semiclassical re?ults may coincide/1.2/  with exact
quantum results /1 even at large coupling constants.
The Bohr-Sommerfeld quantization (BSQ) of the SG-bions
leads to the mass spectrum coinciding with one obtained
by FIT/lrngherefore, one might hope, that the BSQ will
give the reasonable mass spectrum even in those cases
when one cannot carry out the quantization by the FIT.
The BSQ becomes particularly valuable in the realistic
case n=3 because up to now not a single completely
integrable LIN at n=3 is found, having the extended LS
with the finite energy, charge, etc.

Apparently, the first example of the LIN equation
admitting at arbitrary n (in particular, at n=3) an exact
analytical soliton solution has been pointed out in paper 8

u_ —V§u+m2u—ﬂ—2 In(ju/®a")u=0. €9
In the present paper the BSQ of the LS of this equation is
carried out.

The properties of the classical LS of Eq. (1) obtained
in refs./89/ and in this paper, together with the propo-
sed ”improved” modification of the model (1) are presen-

4

ted in Sec. 1. The BSQ of these LS gives the mass spectra
of neutral ”particles” (Sec. 2) and ”particles” having an
elementary charge Q=1 (Sec. 3).

1. SOLITONS AND PULSONS OF THE KLEIN-GORDON
EQUATION WITH THE LOGARITHMIC
NONLINEARITY

By introducing dimensionless variables t,§,¢

1—n

- > > —_ [ - 2
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(2)
equation (1) is transformed to the invariant form
¢ = V3 —nj -(jb|Hé =0, (3)

The initial equation (1) is obtained from the variatio-
nal principle with the Lagrangian density
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in the case of the charged (complex) field and
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in the case of the real (neutral) field.
The invariants of equation (1) are written in the form:
the complex field energy
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the real field energy
Er=—;—sz_lfd"x[¢f+(Vx¢)2+(1—n)¢2—¢21n¢2], 7
and the charge
Q=1fa"lu u*-u*ul=iG° [d"x[¢ ¢*-¢* ¢]. (8)

The soliton solutions of (3) are /8

Y

SR 1) = exp(—iwﬂ-exp(—iwt) cexp(= E2). 9)
2

The Lagrangian density (4), (5) and the Hamiltonian
dens1ty (6), (7) are nonanalytical ones at ¢=0: d2U/d|¢[]2 (¢=0) =
=2m? off = @ The fact that the frequency o is not
restr1cted from above is just connected with mirr =0,
Thus, this model gives an example of soliton having the

finite mass at Wop =

It was noted in paper /9/ that equation (1),0r (3),
admits the search for its solution in the factorized form

¢ (X, 1) = z() -exp(—i;->, 2() =y () -expl—ip(®],  (10)

where y(t) and ¢(t) are real functions.
For such solutions it is easy to find the charge

Q=277n/202y,- y=y2l//t=const, 11
the energy of the complex field
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Fig. 1. The potential relief curves U (y). The arrow

shows the direction of y increase; RAVERN is the
curve connecting the points U, [ymm »l, ymln (N
at different y, —«—.— is' the same for {U [ymax(y)]
Ymax W === = = 10 Ly Gy O

E =n“/2‘02€_1[yf+y2¢/f+y2(1—1ny2)], y2l//‘t2=y2/y2 . (12)
and the energy of the real field (y =0)

B, =526 Iy 2y (- ny )], (13)
The formulae (12) and (13) express the energy conserva-
tion law at the motion of a point particle (p.p.) in the
potential relief (see Fig. 1)

U, =%[>/2/y2+y2(1—1ny2)1. (14)



The dependence y(t) describes the variation of the
radius of the p.p. at its orbital motion and the conserva-
tion of an orbital momentum y2y =y = const defines
at given y(t) the angular displacement of the p.p. ¢ (t).

The points y_ where the function U, (y) has minimum
at fixed y (or at fixed Q, it is the same 'thing) correspond
to solitons (9). The condition of minimum (dU,/dy=0,
d*U,/dy®>0) defines the region of the soliton stabi-
lity: o> wgp =1/4/2; accordingly, the maximum amplitude
of stable solitons y . =exp(-1/2 wir) =exp(-1/4). The
circular orbital motion  (y = const, ¥, = w=const) natu-
rally corresponds to soliton solution (9).

The p.p. radial oscillations in the })otential relief U (y)
correspond to more general LS of (1) 9/, the complex
pulsons. These oscillations take place with respect to the
solition equilibrium position y  and are restricted by
the turning points yy and y .Their amplitudes are li-
mited by the inequality y <y_.. (), where de /89 (Y pag)=0,
a% U,/ dy 2 (Y may <0, in other words, the p.p. should
remain within the hole of the potential relief U, ().

The motion in the potential relief Uy(y) restricted
by the turning points y =y  and yp =-y  corresponds
to the real pulsons (y=05.The maximum amplitude of these
oscillations y, .. =1.

Let us discuss the very important problem of the sta-
bility of these pulson solutions }n t}le Lyapunov’ s sense.

It is well known (see, e.g., ref./*0/ ) that the scalar
nonl_}near field cannot form stable stationary solitons
¢(x) at n>2 (Derrick’s theorem). But the oscillating
LS, the real pulsons of eq. (1), are at any n nonradiating
and, apparently, stable field bunches. At present, there

is no analytical proof of their stability (it is difficult as
there is no analytical expression for y(t) in a dis-
tinct form), and making this proof is an interesting mathe-
matical problem. But one can apparently regard the fac-
torization (10) of eq. (3) solutions and the effective
reduction of the problem to the studying of the p.p. mo-
tion as arguments in favour of the stability of these

pulsons.
The computer experiments definitely indicate the

stability of both real and complex pulsons at all allowed

amplitudes. Really in computer experiments the pulson
solution z(t) exp (-x 2/ 2) was conserved with a high ac-
curacy during all the time interval which has been nume-
rically investigated (about 10° of pulson oscillations
have been computed). In particular, the pulson energy
contained in the region of the computer experiment was
conserved with the accuracy of the order of 10 -5 (and it
is the error of computation but not real energy radiation,
i.e., the numerical method leads to nonconservation of
the energy in computer experiments).

In other computer experiment the width of the Gaus-
sian bell has been increased at initial moment t=0 by
25 per cent: ¢(x,0) = y(0) expl «0.8%>) /2. The result of
such a pulson perturbation was that the pulson oscilla-
tions were accompanied by almost periodic (with the pe-
riod T,, about 4 pulson period T ) compressions-expan-
sions of the oscillating field bunch near the middle ”po-
sition”, described by the distribution exp(—i’z/2) . The
energy radiation to space infinity during the period T,
of such a compression-expansion turned out to be very
small, and hence it needs very much computer time to
follow the formation of unperturbed pulson up to the end.
But nevertheless the distinct qualitative difference of
the evolution of such a”broadened” pulson within the
framework of the model (1) from the evolution of unstable
“broadened” ss-pulson in the model of the real Klein-
Gordon equation with the cubic nonlinearity/ﬁh/ is clearly
seen (the size of the latter one is monotonously increased).

The above-mentioned considerations let to conclude,
to the author' s mind, that eq. (1) has a unique property.
Namely, it apparently has the stable real and complex
pulsons at any n, in particular, at n=3 (ss -ones). Thus,
taking into consideration the oscillating scalar LS enhables
us to avoid the difficulties expressed by the Derrick’ s
theorem’ 19/ (cf. with the results of /% ).

The potential U (y) = y2/y#%+ y2(1 —Iny? is not positi-
vely definite, nameiy, U (y) »-=<at y»~ When solving
the stationary Schrb'dinger) equation with this potential the
stationary energy levels are absent (onlyquasi-stationary
levels with a finite life-time might exist; in the QFT



unstable particles could correspond to them /1/ ). One
can ”improve” the model by replacing the term 1n|u|?

in the Lagragian and the Hamiltonian by -|in|u| ?|. Then
the Hamiltonian becomes positively definite, and the cor-
responding QFT problem is not a priori meaningless.The
factorization (10) and the classical LS corresponding to

it survives at |¢|<1. The field equation (3) survives at

|¢| <1 and transforms at |¢|>1 into (cf. with (3)):

¢, _V§¢+(z-n)¢+¢1n|¢|2=o. (15)

2. THE BOHR-SOMMERFELD QUANTIZATION
OF THE NEUTRAL n -DIMENSIONAL PULSONS

The real pulsons are the oscillating with the period
field systems having an infinite number of degrees of

freedom. The BSQ condition for them is (12 -1 =T

fd [a° .f—u = 27N (16)
"1 dug

Here N is the number of the excited energy level
N=1,2,. Using (5) and (10) we found

max

b

t
—»2 2
szdnx-exp(—L) fyfdz=2nN. 17

ty
Then passing to the integration over the one /fourth
of the period, substituting [ d®x.exp(-%2/2) = and

expressmg yt by means of the equations M +2U o =

iy (1 lny ) =20, (y,) we obtain the final form of the
BSb condition for real pulsons

2 n/2-1 Yo
N=2G"7""""1y): lyg) = [ dyy2lU(y,)-Uy(» . (18)
0

The integral I(y,;) has been numerically computed as

a function of the Yo at 0< Yo < 1 Dby the Simpson method.

The maximum p0551b1e N .x 18 directly proportional
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to ‘G2. By calculating from the condition (18) the discrete
values yon(@ (N=1,23,...,N;.z) we found (see (13))
the energy level spectrum E ((G):

E (0 =%6% T U, (v gy ) - (19)
From (18) and (19) it follows
E_¢ 70 (¥ ~n)
N 0" ON ‘ 20)
N 2oy

The numerical computations gave the universal within
this model framework dependence U,(I), i.e.,EG™%¢ , -n/2
on NG 27 "' 2/9. N jg regarded here as a contmuous va-
riable. It is shown in Fig. 2.
The remarkable fact is that E =~ const-N at small N
despite the nonanalyticity of the potential U(|¢|), U (D) =.

One can see in Fig. 1that ¢2®E/aN®<0 at all
Ne (O,Nmax) . thus the intervals between the neighbour
levels AE N —E -1 become smaller when N increases.

The mequahty a E/dN 2.0 means, for example, that the
N -th state cannot decay into the (N—l) -th and the first
ones.

Uy

{4

g

Fig. 2. The universal
dependence UQ (D at BSQ .

of the 7real pulsons

0_53337' of Eq. (3).

1



It is interesting to note that the semiclassical quanti-
zation of the bions of the SG-equation also gives the
spectrum, for which

M

A2E/dN? <O[E.=oM sin(D_N), N< —%1/ 1%/,
N 0

Mo m

The analogous spectrum should be expected for the zero
charge sector of the massive Thirring model because of
its equivalence /7/ to the SG-equation.

The analogous decrease of AEy at increase of N
takes place as the result of the BSQ of the p.p. motion
in the following potential reliefs:

1) U (y) ==TUgch ° (ay) ; —eo<y<tos,

R U,y = a|y|k, k<2 —o0<y <400,

3) Ug(y) - y2-Fy 4 0<iyl <1/v2ipl,

4) Uy(y) =1-cosy;, —m<y<+m.

In these models dzE/dIE <0 at all y’s  described
Yo

above. HereI(yO) ={ vel U(yo) -U(y)ldy .For the potentials
0

U, and U, this fact is easily verified analytically, for
U, and U, it is found by the numerical integration.

3. THE “DOUBLE*“ QUANTIZATION
OF THE CHARGED PULSONS

For the complex pulsons the condition (16) should be
replaced by the following one

T2 SO
J"drfdnef(-is—?—u‘r + of uy) = 2N, (16')
71 Ou; du,c,
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afterr transformations it takes the form
2
farfaélu,
1
Passing to the integration over the half of the period
of the p.p. motion in the potential relief (14), we find
the BSQ condition

1% =N, 1)

2 q
), y,=v2LU () ~U (9],

Y.
y t @2)

yl'
N = 26221 (yf N
vp

Let us impose the condition of the ”“charge quantiza-
tion” in addition, i.e., let us demand that the complex
pulsons under consideration would have an elementary
charge, Q=1 (the “double” quantization). With a given
value of G, defined by the constants m,?,a of the ini-
tial eq. (1) (see (2)), this condition determines the value
of y =(270/2GR)—1 and distinguishes the corresponding
curve Uy (y) . By choosing from the condition (22) the
points yr(N,)) for which N=1,2,3,..and E~EN,y=r"%2x

xﬂ_"Uy[yr (N,y)] corresponds to them, we find the energy
spectrum of n-dimensional pulsons having the charge
Q=1. So as not to restrict ourselves by the fixed values of
m,f,a, we suppose, that on every curve U_(y) the con-
dition Q=1 1is yalid and find the value @ "from formula
(11a) with a given y. Then the condition (22) may be
rewritten in the form

p y® . dy
N=—J (y"i+——-)—=
y

y7 ye y2 t

v (20, (y,) -yE(1-lny?)]
J dy. (23)

e oyelu(y,)-U, ()]

R
ym

With small deviations y, -y, the curve Uy(y) may be

13



approximated by the parabolau (y) = U, (y,) + U”(y Yy-y )

it is easy to obtain, that U (y )=8(w —‘/2).Then the in-
tegral in (23) can be found analytically, and regarding N
0 2 1, H

as a continuous variable we obtain that N-N_(w)= ‘2"(‘0 - "2—)
at ¥,y (w).  Thus, the limit value N, #Q =1; this re-
sult contradlcts to the assertion of paper /12/ In this
paper the equivalence of the “charge quantlzatlon” Q=N,
and the BSQ for solitons R(x) exp (~iot) was stated.
The point is that the classical densities (of the Hamilto-
nian, charge, etc.) for such solitons are constant in time
as a sequence of the (1) -invariance of the theory.
Hence it is unclear how to define for them the period
having a physical meaning. The value of the period T
becomes definite when one considers the pulson oscilla-
tions of arbitrary small amplitude with respect to the
soliton equilibrium position y5. When the particles move
in the central fields (excepting the potentials U=C y
and U=C,y 1 C,,C,> 0 ) their orbits are not closed’ /13/,
hence the angle variation AY during the pulson period T
does not tend to 27 when the pulson solution (10) tends
to soliton one (9), and consequently T=27/w. That is why
N, #Q =1. When ys»0.N»1/2, at y >y ., N »e0,N=1
at ys = exp(-1/3) .

In the general case the problem was solved numerl-
cally. We chose the soliton amplitude ¥, (@)=exp(Ztw ?),
0 <y <Y g =SXN(- V4icomputed the value y=y% () o,
corresponding to it, and found the point Yp,x (y) cor-
responding to the maximum amplitude of the pulson
oscillations at given y.Then we took the point y, such
that y <y <Y .y (y), and found the point yg ,corres-
pondmg to 1t from the condition Uy(yg) Uy(y,) The
integral (23) was computed by the Simpson method; the
interval of the integration was divided into 2M parts

(M=500) .

The dependence of U=~ “/20 22-E on the continuous
variable N for different curves U, (y). is given in
Fig. 3. We characterize these curves by the value of

14
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0 1 2 3 4 V4N

Fig. 3. The curves at the ”double” quantiza-
tion of the charged px)’lsons for different values
a=Ygq (y)/ys max °

a=y /y max ysexp(1/4)(the dependences ya) and G2 (d) ,

the latfer at n= 3, are plotted in Fig. 4).

One can see, that at ”double” quantization, when
small values of o are considered there are the energy
levels with large numbers N;N_ ..« when «-0. When
a increases the value N __ gradually decreases; at
a>a; 2031 the only level with N=1 remains. It
survives as was shown above up to a,=exp(-1/3)/exp(-1/4) =
=exp(-1/12)at a>a, we have N 1. At «=0.92 the level
with N=2 appears again, at «=0.96 level with. N=3 appears
and so on; N_;, and N_ .5~ at «u»1. At a-1 these
levels have almost equal energy (see Fig. 3), Ux-U_ .«
where Um“~U),(yS max ) At ¥ = yS max * . Notice, that
at all «<(0,1) there is at least one level (with an integer
N ). The inequality d2E/dN®-0 is valid (the same as
in the case of the real field, see Sec. 2) for all cur-
ves U _(N).

15



L f Fig. 4. Dependences G¥w

GZ at n=3 and y(d.
041
G*h=3)
¥
021
0 - il
0.5 i

With a small « the “mass ratio” E2/E (=2 when «

increases this ratio decreases (EQ/E (- 143 at «=0.3).

When «-»0 then Un., -1 and U,-0, therefore
Un /U -~ when «-0

max
Thus, the BSQ of this model gives the semiclassical
discrete mass spectrum of the “particles” having the
same charge (Q=1)and spin(S=0) The "mechanism” of

arising of the charged ”particles” mass spectrum studied

in this paper may be useful as one of the possible QFT
approaches to the solution of the "u-e problem”. In
this sense the LIN spinorial models are of a particular
interest (in particular, it is very interesting to carry
out the ”double” quantization of the massive Thirring
model).

'The author is grateful to B.S.Getmanov, V.E.Kore-
pin, N.V.Makhaldiani, V.G.Makhankov, D.V.Shirkov for
useful discussions.
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