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BaauMo.oeHcraue Heo.uaoMepHbiX KnaccuqecKHX Q -conuroaoe 

C nOMOlllblO 36M HCCneJIOBBHO B38HMO.ll8fiCTBHe JlByMepHbiX 
11

38p5DKeH-

HbiX" (x,y, t) G- conHTOHOB a paMKBX penSJTHBHCTCKH-uHaapHaHTaoro 

ypasaeHHSI KneHaa-fop.uoaa c aaCbillleHu:eM aenuae:Haocru. 
B peayllhTaTe HCCnenoaaaust no6oBbiX cTonKHOaeanH conuroaonono6HbiX 

pellleHHH H8fill8Hbl o6naCTH 3Haqeaui1 II8p8M8TpOB, B KOTOpbiX HMeeT MSCTO 

KB83Hyiipyroe B38HMO.Q8i1:CTBH8 comt:TOHOB, a T8K>K8 o6HapyJKeHO H8nJi'tJ:H8 

CBSI38HHbiX COCTOSIHHfi JlBYX COnH:TOHOB. l1ccne.llOB8H8 o6naCTb yCTOi.f:<tiHBOCTH 

conuToaonono6HbiX pe111eauH. 

Pa60T8 BbinOnHeHa B fla6opaTOpHH BbPHICnHTenbHOfi TeXHHKH H 

8BTOM8TH38IUUI Ol1.HVI. 

npenpHifT Q6'bellHHeHHOr,O HHCTHTyTa !lllepHblX HCCnenOB8HHii. Jly6Ha 1978 
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Interaction .. pf .No~0me .... Dirilensional CV3.ssical Q 
Solitons 

The stability region and the head-on collisions of two-space 
dimensional "charged" (x,y,t) solitons have been investigated via 
computer in the framework of the Lorentz-invariant Klein-Gordon 
equation with the saturable nonlinearity, 

The ·region of pa,ra meters has been found where: 1) quasi­
elastic soliton interaction occurs and 11) the formation of two 
soliton bound states takes place, The collision of solitons may 
lead to their decay, 

The investigation has been performed at the Laboratory of 
Computing Techniques and Automation, JINR. 
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© 1978 06be/lHH8HHbiil HHCTHTyT H/l8pHb1X HCCfle/lOBBHHil ,ay6HB 

During the last few years the great interest of elementary 

particle theorists has been attracted to the models having 

soli~on solutions, It is sufficient to mention some International 

Conferences 
111 

and Reviews 121 considering this problem, 

It is not surprising,since the solitons, essentially non­

linear extended solutions, have interesting and very peculiar 

properties, namely, c~nserved charges which are not connecte~ 

to La~rangian symmetry (topological charges), the possibility 

of constructing relati~ely light objects from very heavy cons­

tituents (the great mass ~efect, quark confinement) and so on. 

We do not ~iscuss in detail the sollton properties con­

sidered at greater length in review~ 121 . Notice only that 

at pr~sent time the static soliton properties have been inves­

tigated In full for the application in elementary particle 

theory, We mean the solitons in four-dimensional Minkowski soace, 

Note, that stable nontopological soliton soluti~ns exist only 

in theories with internal symmetry, It is na~ural, that the 

studies hav,.. re<>n P' rformed st'lrting with th"' simplest models, 

e.g., Q soli tons in 'f'" theory ( U ( 1) symmetry), Then higher 

symmetries have been taken into account (part of which can be 

spont~neously brnY.enl , i.e. 

SU(3) e SU(3) e SU(3) models. 

SIJ(?)eSU(2), SU(3) e SU(]l, <~nd 

I~ is int~~e~ting tha~ for a sufficiently complic,ted 

model at a rroper choic~ of r~rameters ~he au~hnrs 131 have 

succe~dPd to describe with e gond ~ccuracy such prorerties of 

nucleon9 as th~ ratio of macnetic mo~ents of the rroton ,nrl the 

neutrnn, the r<~tic of axi"l ~nd vector constants of the )5-
decay and the root-mean-square radius of the nucleon, 

If the ~tatic solitnn rroperties can be successfully in­

vesti:ated by analytical methods even for complicated models, 

the interaction of non-one-dimensional solitons can be studied 

in the meanwhil~ only by a computer, In this case the way from 

simrle models to more complicated on<>s is natural, 
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Bel0w we rresent the results on the interaction dynamics 

of two two-dimensional Q solitons (U(1) symmetry) in the 

framework of the Klein-r.ordon equation with saturable nonli­

nearity 
z. 2. t.)m n1 -+. 1¢1.. =o 

(at -ox -&:~ r + 'r- '+' J.+I'P/2. 
( 1) 

We realiz~ thst this model is som~what rough and moreover it 

is nonrenormalizable M), nP.vertheles~,the qualitative charac­

teristic~ of the interaction under investigation are undoubted­

ly interesting from the ~oint of view of a further understanding 

of more realistic and complicated models, 

We find a soliton-like solution of the boundary value 

problem ( 8 2. 0 2. ~) / 1JI 2 
t - x - ".r 4> + ~ - ~ = o.~ 

t. +/<PI z 

where 

of> j = o -- " 'Ox Jr=o 
o<Pj 
'QJ' )'=o = C3 

'1> (x,J, t) = 'lp(x,/1) e '-/-'t . 

rp(oo_,oa, t) o, 

( 2) 

( 3) 

It is known, that a stable solution of problem (2) exists 

in the region 
./!!:- d../1_ < 0 ) 
Q -'!" 

where the "charge" a is 

Q = ./" j "f 2(x,,, t) ciKclt. 

( 4) 

( 5) 

To find the existence region of stable solutions to 

problem (2) we study the dependence 0(~ ), We observe, that 

for ~< 0,2 the function 0~) has an exponential rising, 

for greater ~ this function decreases and at~-- 1 it 

goes to a plateau, that indicates a broad domain of the 

existence of problem (2) stable solutions. 

We elaborate an algorithm of the Lorentz transformation 

for a soliton-like solution to problem (2) via a computer, 

which permits to investigate hea~-on collisions of two solitons. 

x} This fact will lead to Gomplicacies in quantization of such 

objects, However, since we work in the framework of classical 

field theory, this is not an obstacle, 

4 

The soliton velocities are v 1:-v2:v, 

to 0,9 with a step 0,1, ThP p~rame•er 

0.99. 

where v varie~ from 0,2 

)'4 ch!:!n;-~s f'r0~ 0.? t 'J 

We find, that at small velocities ( v ~ 0,1) ~f quasi­

solitons (called below as solitons, for simplicity), system (2) 

ls far from an integrable one. In this case a formation of 
. /4/ ~) 

bound bien-type states or two so1itonn (Figs. 1,~) anct a 

decay of solitons by a dissipative instability mode 
151 

(Figs, 

3,4) are possible, For gre~ter soliton velocities, i.e., in tho 

•ultrarelativistic"limit (v ~ 0,7), system (2) is near to an 

integrable 0nw, and soliton interaction becomes practically 

elastic (Figs, 5,6). 
Our numerical calculations show that soliton 12) interaction 

picture changes essentially with vari~tion of/" , At _r =0.2 

bound states of two solitons arise in a wide region of v's 

(0,2 ~ v ~ 0.7). But in this case the lifetime of the bound 

state decreases with v , For greater _;U 's (0,2 <_;41~ 0.71) 

the region of soliton elastic interaction expands, and the el~~. 

tic interaction takes place at v ~ 0,2, For further increase 

of _r ( ./"'~ 0.95), the bound states exist only for v ~ 0,2, 

But at v:0,3 after a collision a dissipation of moving solitons 

occurs, It is not surprising,since in this region of j'l 's eq,(1) 

is close to the Klein-Gordon equation with cubic nonlinearity 

(KG3). The result on this dissipation coincides with our previous 

calculations on KG3 161 , At v ~ 0.5 the soliton interaction he­

comes elastic, moreover for all ;w 's the inelasticity (the 

amplitude of perturbations of energy density in the c.m. system 

of two solitons atter collision) decreases with v, 

Notice also, that a collapse in the framework of system (2) 

at r ~ 0.2 does not go to the end, although a trend to contrac­

tion of the soliton arising after collision is observed, That is 

clear, since at small_lf 's the value /<P (x,y,ol/ » 1, there­

fore eq,(1) reduces to the linear wave equation, which solutions 

tend to the dissipation. 

Finally, note that in the region of v and~ , where 

stable 0 solitons interact elastically, there is some shift 

in their position after the interaction with respect to the 

initial one, at t:o (see Fig. 5). 

•)Energy density ~ is 

Je = /'fi) 2. +I V'lC /z +/ 'f!/2. + &.t. ( 1. r l<flz). 
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Fig. 1, Pound st3te of two 0 
~ 

solitons at v:C\,2, jW :0.95. 

Figures with isohypses corresponrt 

to plane cross sections of Fig. 2. 

H:~/'f :Je :2 2fl=.1!(t:120l.l' 
max' max 1 

'~~ 7 T-"20 

-Fig. 2 

Bound state of two 0 soli tons 

at v:0,2, ./' :0,95: 

a) Cross section in y- axis at 

the point x, where H(x.y:O) is 

maxiamal. 

b) Cross ~ection in x-axis. 
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Fig. 3. Decay or a soliton~ after! 

interaction at v:O.J,~ =0.95. 

Figures with is~hypses correspond 

to plane cross sections of Fig. 4. 

H:dt:/~ ,le :2,75=~ (t:80). -• 
max max ~ 

\ .. 220 

-
Fig. 4. ~ecay 0f ~ ~~!itcn~ ~ft~r 

interaction at v:0.3,JW :0.95. 
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Fig. 5. Elastic interaction of 

o solitons at v = 0.9,r = 0.1. 
Figures with isohypses correspond 

to plane cross sections of Fig.6.-
H:Jr/;r ~ :69 4•Z(t=12) ~c_,.~~4'-o~~.-~~~~.-~~~~~ 

max' max ' • 

~ 

~26 

Vf/ \X >,_ /"IS 

T=26 

~ 

rig. 6. Elastic interaction of Q 

solitons at v = 0.9, JU =0.7. 
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Fig. 7. Elastic interaction of 

Q solitons at v:0.5,Jf=0.95. 

Figures with isohypses correspond 

to plane cross sections of Fig.6. 

H:;t/;lt ,:J! :2,97:.1tlt:50). 
max max ~ 

11; :Y:X " ,~110 
I. ./ , 7/{7o 

~~\,~,\ {\ ) \ J \, 7 ,~110 

~ 

Fig. 8. Elastic interaction of 0 

solitons at v:0,5,JW :0.95. 
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The most interesting result, from our point of view, is 

that the interaction of two solitons in the vicinity of the stabi­

lity threshold (~ z 0.2, C = Ccr ) leadD, at sufficiently low 

colliding soliton energies, to formation of a finite-time bound 

state, which is breaking up into two diverging solitons decaying 

in their turn into constituents. Finally, the inelasticity of 

soliton interaction at fixed "charge" C decreases with growing 

a relative velocities of solitons v -. 1 (this fact has been 

known for interaction of one-space dimensional Langmuir solitons 

some years ago 7 ). 

References 

1. International Conference on Extended Systems in Field 

Theory (US~, 1976). 

!nternational Conference "Mystery of solitons" 

(Poland, 1977). 

~oliton Conference (Tucson, Arizona, USA, 1976). 

International Symposium "So~itons and their Usage in 

Scienc~ and Technique" (Heteborg, Sweden, 1a78). 

2, A.Scott, F.Chu, D,McLaughlin. Proc. IEEE 61(1973)1443. 

R.Rajaraman. Phys. Reports 21C(1975)227. 

P.Jackiw. Rev. Mod. Phys. 49(1977)681. 

A.Neveu. R~p. Prog. Phys. 40(1977)709. 

V.G.M~khankov. Phys. Reports 35(1978) 1. 

3. R.Friedberg, T.D.Lee, ft.Sirlin. Phys. Rev. 013(1976) 

2739, Nucl. Phys. B115(1976) 1; 32. R.Friedberg, T.D.Lee. 

Phys. Rev, 015 (1977) 1694. Preprint C0-2271-89. 

Columbia Univ. N.Y. 1977. 

4. A.Seeger, P.Donh and A.Kochendserfer. z. Phys. 134 (1953) 

171. 
B.E.Zacha~ov, L.A.Tahtadzhan, L.D.Faddeev. DAN USSR, 219 

(1974) 1334. 

P,J.Caudrey, J.C.Eilbeck, J.D.Gibbon. 

Nuovo Cimento, B25 (1975) 497. 

10 

~ ~.L.T.An~ersr~ •n~ G.H.D~rri~~. J.Math. Ph~s. 11(1Q?Ol 

131~. 

n.L."',.n_.,~,~~~n, .J. Mat~. !'h:•s. 1?(197 1 )'?1.'5, 

1 '.G .. '1akhank0~.r, ,JTNR, P?-103IS? 1 ~u'"lna, 1Q"?7e 

~- T,Bc:~lu~sk~, V,M,khanknv, ~.Sh~achka. PhyP. Lett. 

6:?< ( 1077\225. 

7. Kh.Abdulloev, I.Bogolubsky, V.Makhankov. Nuclear Fusion 

61 (1975) 118; N.Yajima and M.Oikawa. Progr. Theor. Phys. 

56( 1976) 1719· 

Received by Publishing Department 

on May 18 1978. 

11 


