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BaapModelicTBHe HeOOHOMEepPHBLIX KilaCCHYeCKHX Q —COMMTOHOB

C nomombio DBM HccneaoBaHO pzauMoAe#CTBHE ABYMEpPHLIX “3apsiXeH-
amx” (XY, 1) Q - ConMTOHOB B DaMKaX pelATHBUCTCKH-MHBAPHAHTHOLO
ypaphenns Knesina-Topaoda c HacbllleHfeM HeNHHeHHOCTH.,

B pesyimTaTe HCCIeNOBAHHS /OGOBBIX CTOMKHOBEHMH COMUTOHOMONOGHBIX
pemeHuit HaitneHbl 06/1ACTH 3HAYEHMH NAapaMeTpoB, B KOTOPbIX AMeeT MeCTo
KBABHYNIPYroe B3AHMOAENCTBHE COMMTOHOB, & TaKXe OGHAPYXeHO Hanudue
CBASAHHLIX COCTOsHHH ABYX cConuToHOB. Hccneloparma 061aCTh yCTORUHBOCTH
CO/IETOHONOAOGHEBIX pelneHH#,

Pafora BoimoiHeHa B /laGopaTOpHu BHIYHC/AHTE/bHO® TEXHUKH H
asToMaTtuaauuu OWAN.

Mpenpuur O6beAMHEeHHOrO WHCTHTYTAa siePHbHIX ccienosanui. dy6ua 1978

Makhankov V,G., Kummer G., Shvachka A.B. E2 - 11579

Interaction.. of :Noh-®ne-Dirmensional Classical Q
Solitons

The stability region and the head-on collisions of two-space
dimensional "charged" {(x,y,t) solitons have been investigated via
computer in the framework of the Lorentz-invariant Klein-Gordon
equation with the saturable nonlinearity,

The region of parameters has been found where: 1) quasi-
elastic soliton interaction occurs and 11) the formation of two
soliton bound states takes place, The collision of solitons may
lead to their decay.

The investigation has been performed at the Laboratory of
Computing Techniques and Automation, JINR,
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During the last few years the great interest of elementary
particle theorists has been attracted to the models having
soliton solutions, It 1s sufficlent to mention some International

s 2/ considering this problem,

Conferences and Reviews

It is not surprising,since the solitons, essentially non-
linear extended solutions, have interesting and very peculiar
properties, namely, conserved charges which are not connected
to . Lagrangian symmetry (topological charges), the possibility
of constructing relatiyely light objects from very heavy cons-
tituents (the great mass defect, quark confinement) and so on.

We do not Aiscuss in detall the scliton properties con-
sidered at greater length in reviews /2/. Notice only that
at present time the static soliton properties have been inves-
tigated in full for the application in elementary particle
theory. We mean the solitons in four-dimensional Minkowski svace.
Note, that stable nontopological soliton solutions exist only
in theories with internal symmetry, It is natural, that the
studies have heen p:rformed starting with the simplest models,
2.2., Q solitons in fq theory ( U symmetry), Then higher
symmetries have been taken into account (part of which can be
spont-necusly broken) , i,e. SU(2)®SU(2), SU(3) e SU(3), and
SU{(3) e SU(3) e SU(3) models.

It is interesting that for a sufficiently complicated

737 have

model at a proper choice of parameters the au“hors
succerded to describe with 2 gond accuracy such properties of
nucleons as the ratio of magnetic moments of the proton and the
neutreon, the ratic of axial nnd vector constants of the P
decay and the root-mean-square radius of the nucleon,

If the static soliton rroperties can be successfully in-
vesti~ated by analvtical methods even for complicated models,
the interaction of non-one-dimensional solitons can be studied
in the meanwhile only by a computer, In this case the way from

simple models to more complicated ones is natural.



Relow we prresent the results on the interaction dynamics
of two two-dimensional @ solitons (U(1) symmetry) in the

framework of the Klein-fordon equation with saturable nonli-

nearity
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We realiz~o that this model is somewhat rough and moreover it

is nonrenormalizable “), nevertheless,the qualitative charac-

teristics of the interaction under investigation are undoubted-
ly interesting from the voint of view of a further understanding
of more realistic and complicated models,

We find a soliton-like solution of the boundary value
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where
P(xgt) = V’(X:y)e“'/"t : (3)

It is known, that a stable solution of problem (2) exists
in the region

d
5T <0

where the "charge” Q 1is

@ ==JM_/5VZ(L;gt)¢¥xﬁy. (5)

To find the existence region of stable solutions to
problem {(2) we study the dependence Q(/H ). We observe, that
for M < 0.2 the function Og/u ) has an exponential rising,
for greater /u this function decreases and at /u-——1 it
goes to a plateau, that indicates a broad domain of the
existence of problem (2) stable solutions.

(4)

We elaborate an algorithm of the Lorentz transformation
for a soliton-like solution to problem (2) via a computer,
which permits to investigate head-on collisions of two solitons.

x)
This fact will lead to complicacies in quantization of such

objects, However, since we work in the framework of classical
field theory, this is not an obstacle,

The soliton velocities are v1=-v2=v, where v varies from 0,2
to 0,9 with a step 0,1, The parameter /ﬁ4 chanpas fpam 0,2 to

0.99.
We find, that at small velocities ( v < 0.3) »f quasi-

solitons (called belgw as solitons, for simplicity}, system (2)
is far from an integrable one. In this case a formation of
bound bion-type states 4/ of two soliteans (Figs. 1,“)*and a
decay of solitons by a dissipative instability mode /54 (Figs.
3,4) are possible, For greater soliton velocities, 1.e., in the
"nltrarelativistic’limit (v > 0.7), system (2) 1is near to an
integrable one, and soliton interaction becomes practically
elastic (Figs. 5,6).

OQur numerical calculations show that soliton (2) interaction
picture changes essentially with variation of /M . At M =0,2
bound states of two solitons arise in a wide region of v's
(0,2 £ v< 0.7). But in this case the lifetime of the bound
state decreases with v , For greater _/u 's (0,2 <M< 0.71)
the region of soliton elastic interaction expands, and the elas-
tic interaction takes place at v > 0,2, For further increase
of M ( /43 0.95), the bound states exist only for v < 0.2,
But at v=0.3 after a collision a dissipation of moving solitons
occurs, It 1s not surprising,since in this region of /u’s eq.(1)
is close to the Klein-Gordon equation with cubic nonlinearity
(KG3). The result on this dissipation coincides with our previous
calculations on KG3 / . At v 3z 0.5 the soliton interaction be-
comes elastic, moreover for all M 's the inelasticity (the
amplitude of perturbations of energy density in the c.m, system
of two solitons after collision) decreases with v,

Notice also, that a collapse in the framework of system (2)
at /M ~ 0.2 does not zo to the end, although a trend to contrac-
tion of the soliton arising after collision is observed., That is
clear, since at small & 's the value [‘P (x,y,o)[ > 1, there-
fore eq.(1) reduces to the linear wave equation, which solutions
tend to the dissipation,

Finally, note that in the region of v and./w , Where
stable Q solitons interact elastically, there is some shift
in their position after the interaction with respect to the
initial one, at tzo (see Fig. 5).

*Tg

nergy density ¥ is

H = Lo+ g+l * + b (2+191%).
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Fig. 1. Round state of two O ' Fig. 3. Decay of Q solitons af‘ter'
solitons at v=0.,2, m =0.95, ™ interaction at v_0.3,/1 =0.95. iw-
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Fig. 5. Elastic interaction of /\ Fig. 7. Elastic interactlon of
104
Q solitons at v = 0.9,,«: 0.7. ° 2 solltons at v=0.5, #=0.95.
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to plane cross sections of Fig,6.™ to plane cross sectlons of Fig.6.
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The most interesting result, from our point of view, is

that the interaction of two solitons in the vicinity of the stabi-
lity threshold (jM = 0.2, Q = ch ) leads, at sufficiently low
colliding soliton energies, to formation of a finite-time bound
state, which ig breaking up into two diverging solitons decaying
in their turn into constituents. Finally, the inelasticity of
soliton interaction at fixed "charge" Q decreases with growing

a relative velocities of solitons v —» 1 (this fact has been
known for interaction of one-space dimensional Langmuir solitons

some years ago 7 Y
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