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High Momentum Transfer Processes in QCD

A unified approach to the investigation of inclusive high
momentum transfer processes in the QCD framrework is proposed.
A modified parton model (with parton distribution functions depending
on an additional renormalization parameter) is shown to be valid
in all orders of perturbation theory. The approach is also applicab-
le for studying wide-angle elastic scattering processes of colourless
bourd states of quarks (the hadrons). The asymptotical behaviour
of pion electromagnetic form factor is calculated as an example,
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Preprint of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 O6veauHeHHLIA HHCTHTYY A4epHEIX #cciaenopanuit [y6ua

Introduction

Quantum chromodynamics (QCD) is considered to be a lealing
candidate for the fundamental theory of strong interactions, and
the application of QCD to high momentum transfer processes
attracts now a considerable attention/1_14/. Just in these pro-
cesses the unique property of the QCD,asymptotic freedom, reveals
itgself. The task is to utilize this property for justification
of parton model ideas and to work out a systematic way of calcu~
lating the higher order corrections to parton model results.

It is well kxnown that for deep inelastic scattering the
approach based on the operator product expansions leads to a
modified parton model, with the parton distribution functions
depending on an additional renormalization parameter (see, e.g./15/)
In this paper we present the results of investigations (they
have been published in a shert form in refa./8'14/) which allow
us to assert that the use of the modified parton model for
investigation of cdther high momentum transfer processes (massive
lepton pair production in hadronic collisions, high~- PT hadron
production, etc,) can be justified from the QCD viewpoint. The
approach developed to prove the above statement appears to be
also applicable to exclusive wide-angle lepton-hadron and hadron-
hadron reactions at high energies. The colour neutrality of the
hadrons plays a very important role in this consideration. The
result is the parton model of-a new type, which uses the so-
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called parton wave functions



Deep Inelastic Scattering

Parton model contribution is given by the well-known

"handbag"-diagram (fig. 1a)
4 v - .
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Expanding into the Taylor series

- X x < TN o x| xhw
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we obtain an analog of the OPE. But the matrix element of the
opefator :T\,(Q\%“TI\»@: possesses in renormalizable theories‘
the divirgences which cannot be removed by the ordinary R-opera-
tion. One must add the recipe of the composite operator renor-~
malization charaéterized by a parameter H .

One encounters a similar difficulty in trying to formulate
a prescription of calcuiating the higher order corrections to
the parton model results. In principle, one may considér any
diagram having a parton and a virtual photon in the initial
state to give a higher order contribution to the cross-section
of the parton subprocess. On the other hand, there is a risk
of double counting the same diagram (one may believe, for
instance, that the outlined part of the diagram tb must bé added
to the parton distribution function, i.e.,that the diagrams 1a
and 1b are identical. It is also worth noting that the contribu-
tion of the diagram 1c is proportional to eh Q?/KL , Where K
is the partoﬁ momentum. In accordance with the parton model ideas,
the partons are only slightly virtual:\K2\<‘7n: , hence in the
calculation of the corrections to the ﬁarton subbrocess cross

section one is faced with the infrared problems/z/.

These difficulties are caused by the absence of a distinct
definition of the parton distribution functions and of the parton
subprocess cross-section., It is imblied, however, that the parton
distribution functions accumulate the information about the
large distance dynamics (that is, they must be regularized in the
ultraviolet region) whereas the parton subprocess is a short
distance phenomenon and the corresponding cross-section must have
an infrared regularization. One can choose the boundary between
small and large distances by convenience. It is, of course,
necessary for a self-consistency of the whole scheme that at small
distances (or at large virtuasl momenta -KZZ Hz) the effective
coupling constant is small: °{S (-KZ\/]\' < ds(l@)[—“ <<4, 1
this region the value of the boundary ‘* is arbitrary, and the
physical results must not depend on a particular choice of f‘ .

To characterize the virtuality of a momentum going through
a given line, it is more convenient to use the ol -representa-
tion/16/ rather than the momentum one. The propagator is given

in the &\ -representation by the formula

A - 100 )

ﬂ:‘_ = \ dd exp { &(pa-ma.“a)} S
[+}

i.e.,small ol corresponds to large Pa « The contribution of

any diagram can be written as an integral over the o -parameters
of all lines of the diagram:
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where the functions I)‘(B. Gl are determined by the diagram
topoloygy. Let us consider an arbitrary diagram (fig. 2). It
contributes both to the parton distribution function (large- ol
contribution) and to parton subprocess cross-section {small - ol
contribution). Our task is to separate these contributions. We
consider first the variant when the incoming large momentum
goes through all the lines of the diagram V , that is Kf > Q2
for any line. In the % -parameters language this means that
)\VE Z‘*G 44/}4?- (where )A'vQ). In this regime the dlagram
g
gives the identity contribution into the parton distribution
function. All the momenta have an order of Gi , hence one can
find the asymptotical behaviour of this contribution with the
help of dimensional analysis. In a theory with the dimeunslonless

coupling constant

-¥d; AZTSE 2-Z%:
F, (1,03 ~ Q@ F% Q*™ = : (5

where t;_ are twists (dimension in mass units minus spin) of
the i~th external field. The factor QS; ig due to the fact that
the gluon line can add the factor?r'\-Q , whereas the quark
line gives L\(?.\’\-Q, etc. The particles with spine equal to O
or 1/2 have ‘\;.\=1 « That is why the subprocess described by

F W)

the diagram 2a has the asymptotical behaviour 2 ..,,QO , Whereas

that described by fig. 2b is damped by the factor «/Q.a .

In the remaining part of the region of integration over
ol —parameters there is a subregion, corresponding to a flow
of large momentum through a subdiagram V,‘ (fig. 2): >\V4< ’(lvz,

whereas all the momenta corresponding to the lines lying outside

-\Ir« are smalls )\V\V4> 4/}*2 .Then the subgraph -V; contribute_l_a_
to the subprocess and the contribution of the subgrapr\V"—_‘V‘
mugt be related to the parton distribution functions. Note, that
ag dictated by eq. (5) the contribution of the subgraph V,\ in
the diagram 2b is FZ(VO'\-Q.O rather than 1/02. Hence to cal-
culate asymptotical behaviour, it is necessary to consider only
the short—distance contribution of the subgraphs having a minimal
posgible number of external lines. In vector gluon theories (in
the Peynman gauge) the vector field _A_r\ has zero twist and this
produces zome complications which we will discuss later on.

Then one must consider the region r}\vz 44“(2 , but ')"\',‘274/}42'
.7\ Qz\‘v‘\ > 4/“2- 5 stc. Very important there is a factorization
of large~ snd small-distance contributions.

After applying the procedure described above, the contribu-
tion of any diagram can be w#ritten in the coordinate representa-

tion in the following form:
xdEdYZ % %v (x,En;, YZWY-\-T(E."L)“-Q ‘42\ +’Rv (x,2,6Y6)

The function gv is the result of small- ol integration
()\\,4\“1\2') whereas the function X T is that of large- ol
integration, The function RV gives 0(1/02) contribution
into asymptotical form of P?. .

Eq. {6) is valid for any diagram, hence summing over all

relavant diagrams, we get

v \didq Co(xB @) X (B a0l WY+ (1)
) + Rx,0,6).



The functions 'F& \ X v correspond to the following matrix

elemente of the Green functions

-9_\ (X, &N 92340\'{&3(113(0\ : ;)_\(EJ 3;(7135)\(»‘\

yZ)'IR(é)
X & a6y <o\ T|: @ (£)g,0): BOEE]\D]
KUy,
where ‘¢ \ i;‘ are ‘the "parton" fields and ®(2) are those

of external particles. The function -q- is by construction re-
gularized in the infrared region, whereas the function X is
regularized in the ultraviolet one. The generalization of egs.
(8), (9) for spinor fields is trivial. To consider the particles
which are the bound states of Y fundamental constituents,

we change

X (E\yl \q'% .‘l “23 - XLE\YL\Q(\“')Q“.)%4"' @M.n !“2) =

(10)

= <o\‘T‘K_'. QENQ, (M) B(a).. . B(a,) B(B)... é(Gwﬂlm .

Applying a standard method/ﬂ/ (using the expansion 43 Z\“7<“\)

one obtains matrix elements

.Re%{»t?',UY {P\: W-\(Q\\Qi(yn.‘ \eY . | G

The bilocal operator “e%-\?\‘.\\Q(YB remains finite in the
limit *2,% N, , because the divergences of the matrix element
£ \:\?(0\’6,‘&”‘1,‘“\{\031 \P are removed by the subtraction
procedure ?\Q%”z. A choice of the subtraction procedure is not

unique, but it is, of course, necessary that the recipes of the

ultraviolet regularization (for the x ~function) and of the
infrared one (for the '? ~function) must be co-ordinated with
each other, i.e.sthe resulting msymptotical behaviour must not
depend on }4 « In particular,Re% 2 may be considered as the
dimensional regularization qu-ﬁ dq-z":k (‘\z\e plus the
't Hooft's renormalization (the removal of poles in g ).

A representation (8) is nothing but the operator product

expansion (OFE) on the light cone
T3] I %didn_ §EE3E O emyd
+ R

Expanding the bilocal operator OL:.‘\?;({\&?;(VD“ over the
local ones, we obtain the OPE in the standard fom“e/

ThwIo T F @yt a0, o)
W + Rx) .

The transition from the OPE (13) to a modified parton model is

+
13)

achieved by identifying the reduced matrix elements of the local

operators with the moments of the parton distribution functions”sl
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Due to a well-known direct relation between the asymptotical
behaviour in the Bjorken limit and the light~cone singularities,
we may take into account only the contribution of the lowest

twist operator. From eqs. (1) and (13) it follows that
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where K*L?\ =(¥34,)=0 . The matrix element of a higher twist

operator must contain a dimensional parameter bﬁ

. - (O
Z P\ 0\\4“.%& \P>= Mt\ ¢ { ?hw ?‘4,\_73 %W (16)

and its contribution in accordance with (15) is suppreused iy

a factor(M/Q t;—z .

The analysis of gauge theories is complicated by t:io fact
that in the gimplest gauge (i.e.,the Feynman gauge) the vectur
field Af‘ has zero twist. In this case a subprocess ..an be
described by a subgraph with an arbitrary number of exter-
nal gluon lines (fig. 3a).

Let us fix the form of initial subgraphs V, and

o 0

(fig. 3b). Joining the lines of the subgraph U, with tue lines

of the subgruph?s; in all possible ways we obtain the admissible
combinations, and then it is necessary to sum over all the posasi-
bilities. Every gluon line adds the field A () into mat-

rix element (10) and modifies the propagator f; (V&f é\ belong-
ing to the function -\:u :

%‘(x*-x?\% 9 Sd"é A; mSCCXJ-E\X"TQS°(?-¥P\W>
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Fig. 1. The diagrams describing higher order corrections to the

- - — )

parton result for deep inelastic scattering.

" V, 'q, . "z
E N, a " a, 9
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Fig. 2. The structure of leading terms contributing to asympto-

tical behaviour of the structure functions.
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Fig. 3. The structure of leading terms in a gauge theory.
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Fig. 4. a) The propagator of a spinor particle in an external
gluonic field.

b) The propagator of a vector particle in an extermal
gluonic field.
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where Ta is the matrix of the gauge group in the quark repre-

sentation., Note that the sum (fig. 4a)
o) (e, ¥ =S Xe)* 38‘5 (4 mrA DS (z- LI

is the propagator of a spinor particle in an external gluon

field/19/, i.e.ythe solution of the equation
A
. C 4
(LDFX"‘W’\ ’S (){,{‘xp_-.-% O ,-%

A A

é\ ) (19)

where 3,,.’* ’a‘r\-% Ar is the covariant derivative acting on the
A
. = \Q
quark fields, and A = P'F‘T:“ + The solution of the eq. (19)

can be written as

A s A= Sty - ﬂﬁ exe&w\ A p(Hdery].

. A+ 0Ce,u],
where ’N:E'D“‘DV] is the tensor of the gluonic field, and Tc

(20)

means that the integral must be path-ordered.Thus,every propagator
[ : : <

S entering into -f\ro(fﬁ'l'p(\ must be substituted by 5 « This

means thet the parton subprocess takes place in the gluonic

field of the hadron rather than in the empty space. Any operator

of the 06@: .

we can neglect 0(6’.\,\ terms and find that in an Abelian theory

type has a twist higher than that of O. Therefore

all the exponentlals are either summed up into a factor
E\(Pt\.% A Q\dzﬁ] for a quark operator or cancelled for a
gluon one. Hence the function ‘F (En\x) remainsg unchanged, but

in place of WQE\ l\»(VL\ there appears a gauge-invariant bilocal
operator

g m, w2) = 'Reca‘@ w&%\ex?‘»g& A (zﬁdznh’ o)

(21)
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Using the Baker-Hausdorf theorem/19/ one can expand it over
gauge-invariant local operators resulting from the operators (14)
by replacement 3\‘ -;Dl‘ .

In a non-Abelian theory the gluonic propagator is also

modified (fig. 4b):

%\A"’&Q\:D (X& ?\—)% %YN’D g~ Pﬁ

LT e*?j\xz\ X mdzt‘ﬂ (A+0E], 2
g

where A PK , and G are the matrices of the gauge group
in the adaont representatlon. To unite the exponentials corres-

ponding to neighbouring apinor lines one must perform the commu-

tatson (- ew‘\%& A () dzf‘]) @M g =

4»

A
- 4 4 . d 4 n ) .
= (T e (TeexeUig) A @42 1) %¢
Y
g (23)
N
(Tcexplig \ (z\dz"]\ ¢a
For a subgraph with splnor external lines the additional
exponential factors appear after the commutation (23) cancel
completely with those entering into the representation (22) for
%y\) . For a subgraph with gluon external lines, on the contrary,

this gives a gauge-invariant bilocal operator
G L@ (T e*\ﬂ»g\ mdzt‘DG (M) (20)
1

We have obtained a well-known result /20/ that one must use

gauge~invariant operators in the operator product expanc®one

13



There exists a class of gauges in which a vector theory
does not differ essentially from more simpler non-gauge theories.

In a gauge theory

(3@~ Dise T 2z qf qfn <PIB (2 ié( A
o (Bp -1ty AFW\\\\»\Y», 25)

From eq. (25) it follows that in the axial gauge, where
Qq/ A\=O, one can use Bl‘ in place of Dr. « That means in this
gauge (and in any gauge of the following type: (\1, A‘) + (PA.\‘O)
the contribution of the configuration fig. 3a is 0(1/Q2)/21/.
One can use the gauge(& A\' ('Yz A\:O for a gauge-invariant
bilocal operator‘g(i\yi) « So far as one can use the gtraight
line connecting the points Z> and Yz as the line of .ntegra-
tion in eq. (22), in this gauge one also obtains the operator of

the same type as in a non-~gauge theory.

Massive Lepton-Pair Production

The procédure we have used above is in essence a reordering
of perturbation series terms according to a definite recipe. As
a result, we have obtained the representation which has been
proved to be very useful for an analysis of the agymptotical
behaviour of the process investigated. Now we are going to apply
the same approach for an analysis of asymptotical properties
of the massive lepton-pair production in hadronic collisions:

A8 ptuX .
An analog of eq. (1) in this case is

W ~ \e LQax 4L Lg(x\ug(o):\?Ax 9%\‘59(0\\?@; \P@gl;‘ex) .
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In the coordinate representation a dashed line‘(fig. 5a) denotes
a factor 1(1354_ « It is evident that one cannot take the
limit X290 in the matrix elements of eq. (26). Hence we must
construct a subtraction procedure for diagrams (fig. 5b).

We consider first zero spin gluons. We assume also that
the relevant parton subprocess is described by the subgraphs
with 4 external parton lines. As a result, we obtain a repre-

sentation

HW’\' \e LQx d"x K_ g < PA\ Oi (E,\rl-c,xia\ \?A><?B\O$(d'%'l PZW\FB)

?;5(1\2\%&‘@5 u2) dzdvz_doul(s-\-?(x\—l. (27)

The configurations contributing tolxi are shown in fig. 6,

where the outlined subgraphs are those giving small - « contri-

bution., Expanding the bilocal operators over the local ones we

obtain wmn¥ 2K aH 4

. A

ALV L A C T S A SN,

W'\- dx @ i o,\“' Ve

iéwnhk

)
(28)

x My ey Vi Xy <R\ 0 \0\\99493\0?“"'\)"(0)\?37

. @Au.yw

The functions F::“k in perturbation theory have the same (up
to logarithms) singularities on the light cone. The contributions
of the diagrems fig. 6 correspond to weaker light-cone singula~-
rities of the ¥ -functions. Hence, the utility of the represen-
tation (27) depends on the relation between the light-cone singu-
larities and the asymptotical behaviour of the function \Ar N
By analogy with eq. (16) we rewrite eq. (28):

The applicability of the light-cone analysis. for the process
,Ar%ﬁ H"“-\"X #as often called in question/zz/. mainly because

15
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Unlike deep inelastic scattering, there is an additional

factor exp 'L(QJ_YJ) Hence a higher twist contribution can get

o) B)
as an additional factor either (MZ/G )"f or (MZ/Q ) *

Fig. 5. The process Q- \ ‘X.
It is clear that the representation (27) may be useless in the A “ ®

region Q\."‘M because ome must take into account operators D ’—T ——
having arbitrary high twists. One can avoid these complications
either by integration over &.L , then 3 M
(Q\\ x\\ e
2 \
\w< P, 3, Q) d26y ~ Z a2y,
mn\(
mnk wm-K " (30)
T ('I% ) pz\ xy Pp.\ @\\?5‘\ &’\I\% N
0 a)
. N . ..Q 2 . .
(cf. eq. (16)), or by investigating only the limit Q_L ~ Q" ~ Fig. 6. The structure of different contributions after applica-
"‘§>5M?' , i.e.,the production of massive pairs at high transverse tion of the subtraction procedure.
momentum. It is much more convenient to use a formfactor W(TlQa) Q k‘
related to the total cross-section Ac|dQ% or producing the
pair with mass Q, : K 'y .
2\ = H(k2-G%) O (P4 £2- W®)dYK
Wr, 62) = [ WP, 2 KO 8 (k2-@M BB+ b~ WKy, = d o

In these cases the contribution of higher twist operators
2z v
is suppressed by a factor(M /G?'\) e With the help of a more

detalled analysis in the ok -representation one can show that o )

<) a

. . *
the contribution from fig. 6c diagramms is also suppressed. Fig. 7. a-c) The diagrams deccribing a bremsstrahlung of a

3 massive virtual photon,
*
The same holds for gauge theories.
gaug d) A generalized Drell-7an process.

16 1/



the functions F(N}\ entering into eq. (28) have in perturba-
tion theory only logarithmical singularities on the light cone
which are much weaker than those corresponding to a contribution
of twist-2 operators (see (13)). A matrix element <Pka\ or‘q---l‘n\PArB)
is not equal to zero apriori, moreover it can possess an unpredic-
table dependence on S . It is easy to see that such operators
nevertheless do not contribute to the cross-section of massive
pair production.

Really, a produced quark must be on its "would be" mass
shell, i.e.K')? = (k-GQ)¢ =0 k*>-Q° >0

2
Hence only configurations having \(Z 2 @° do contribute to the

(see fig. 7a).

cross—-section. As a consequence, one must attribute the quark
line corresponding to the momentum K to the coefficient func-
tion FQY?) rather than to a matrix element (i.e.,distribution
function). One must answer now the question of how to obtain
a very massive virtual quark. We get back the same problem which
we have tried to solve. We must obtain now a massive quark
rather than a photon -~ this is just the difference. The only
way to break this chain is to assume that at some stage a very
large virtual mass is a result of fusion of two particles which
have the momenta X ?A and Y ?3 , respectively. A corresponding
operator will consist at least of 4 elementary (parton) fields
(fig. 7d). It makes sense to call such a configuration a genera-
lized Drell-Yan mechanism. The bremsstrahlung contribution (fig. 7c,
is then a possible radiation correction.

In gauge theories (in Feynman gauge) one must sum over
gluons taking part in a parton subprocess (fig. 8a). Let us

fix the number of gluons related to a particle f\ taking part

18

in the subprocess and gum over the gluons related to particle
B (the gluon field of the A-particle will be denoted as j& ,
whereas that of  B-particle,as ‘SF ). )

The gluon lines going out of B-particle may be juined
either with the internal lines of the initial suoprocess or with
the external lines goin.; out of B-particle (fig. Bb)*). The

insertions into an exterual spinor line give

W) W () =yE - q | atg, SERIBED WD

i.e.,l¥ turns into the field operator of a spinor particle in
an externalAgluou field of hadron B. We write the solution to the
equution(L‘Dr]‘r—'W\\‘é{ =0 in the following way:

E »
W g\ =y (T exe M\z Brma%*‘]\ (Avocenf,

The point 20 fixes the normalization conditionq:’tio\ = W(2) -
In the final answer Zc; disappears. Insertions into an external

gluon line result in a replaci;ent 2,
Q G o~
AP () - oiﬂt‘ (&)= A ‘ (2) (TQ exp\ia \Eo%r(’&\dzf‘n

. (34)
TR

After commutations of the exponential factor appearing in
eqs. (20), (22), (33), (34) with T - and 6 -matrices, the
gluonic factors cancel with each other and after summetion over
gluon lines going out of A-particle we obtain as a result tie
representation (27) in terms of the gauge-invariant bilocal

operators (21), (24), .

) Rememtéer that we counsider either a) d¢/dQl, Q%~5 or
b) dﬁ/szdQ_L. Qi‘\. Qz'\"f, .

19
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It is essential that we project on the color singlet opera-
tors\-.‘yq . If one projects on the color octet operatorWT"\}I s
there remains a factorTceX? SE A (2\ d%?‘ pointing out that
double~logarithmic terms appearlng 1n gsome diagrams do not
cancel after summation over all relevant diagrams. This circum-
stance plays an important role in consideration of asymptotical
behaviour of hadron electromagnetic form factors. The investiga-
tion of colourless bound states form factors proves out to bve
an easier task in some aspects than that of (coloured) quarks.

Thus, just as in deep inelastic scattering, taking into
account the specific features of gluon fields results in additio-
nal factors (Tc eX?‘_U} SE"‘L’P: (?\d’t”n_ﬂence the contributions
of diagrams 6a in the axial gauge Q{ A\-(qA\‘ 0 are suppres=~
gsed by a factor(’\/Qz)Mwith respect to that of fige 5b. The
investigation of vector gluon theories in a properly chosen gauge
does not differ greatly from that of peeudoscalar gluon theory,
6.8+9in a gauge(? A\'hi(?’A):o it is most easy to show that
the diagrems 6¢ do not contribute in the leading logarithm
approximation/7/.

Starting with relations similar to eq. (15) we obtain from
eq. (27) hard sct’a‘tteringA formulas
-\J(QZ"C\:\ 2;:‘ S -d—y- T %a,A(OC-. 2\%6/3(\/-&‘&3

) o Y o6
o (G2, /XY 5 1) (35)

A
W T \ SRS I TR R IO A

']

Wae (QF  T/¥y, To 12V uy

— a2 -a? '
where TV = Q~/8 » Ty = Q /S . The functions Wa@ describe =

parton subprocers Qb }«"’F’I. Taking ‘4:@_ we obtain for the
total cross-section

2 A 4
j:la\ _;41\'0‘1+ ngquvzef.
N A SR A

&{Q/A('x\Qz\ -{-a/%(\!.cf‘\ §(h-They) *

« [ o, a8 5 @] (19 84- E - TE(R)

0 Z - £ 2GR 0B

+ RA*—»\B\} { A4 0(45(00\} e

For the differential cross-section dG/dQ,de_\_
region Q.L ~Q2~ S

, in the
, taking \‘:Q_L , Wwe have

e z\ Z hmd® 2 2 (A 'ax g:\\/
A9890Y lygaptyex | 3QF No 2w x—x—

o ¥
G(W \I_‘L JT*T_L\ Z e ga C (R\ Tz-\-x \{ 2-]
N Oy =T -4 xyT, T
-sc./ 'IQ_L\{:‘QI%(\I O\\*T (R\('?g/ (x Q.\.\ +
+ 'ea/ (x Q_\.\) "\:%/5(1 Q_\_) { '\*‘ :x\,-‘l‘ <1\D o

+ (4- T/xﬂzﬂ { AQBH E4+orozs(am],
where N<:3 ;C2 R)= 4 /3' "“(R\=4/2,

—_—
In nowaday experiments QL<Q that i
8 wh,
gi Q_Lcim}‘acterlzes both the effectiveness of g - gxg:gzlggea:glue
e Justifiability of neglecting the nigher twists contribution.
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Exclusive Procesges

In the preceding sections only inclusive cross-sections have
been considered. We assert that the amplitudes of deep elastic
secattering processes, in which only colourless bound states of
quarks appear in the initial and final states, are also infrared
insensitive. No principal modifications are needed to apply the
technique we have described earlier for an investigation of these
processes. We will illustrate this by inveetigating the agympto-
tical behaviour of the pion electromagnetic form factor.

If the pion is treated as a colourless bound state of a
quark and an antiquark, the diagrams shown in fig. 9a are summed

into (cf. eq. (27))

Sdid\q_d&d%<9\\\'(ﬁ\1ﬂv (Te e%?ug\ A (E\d%"‘)
Mvp\o)\ R E ML «Ap, 0 W<o\w(aws‘<u
(Te exp uz\ B W@ 92 Wial P e

We have written down only the axial projection, because it is

(38)

just the leading term. The projection onto other structures as
well as the configurations fig. 9b are suppressed by a factor
( MZ/G?'). Expanding over local operators

&

A\*‘\'“Vw: v HSYV:\D\‘?_“' 'AD Fv«]s 3\ (39)

which may be conpidered to be the pion interpolating fields,

we obtain

F‘ﬁ (Q2) = 4 Z % (Z\Em“(%&(y\\{:“(yzﬁ,

40)
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where J‘:M o {'“ are reduced matrix elements ol ti.e operators

(39):

n
RACOVA L 0By LR, B A8 A ()
= LAY /2
The functionsg $ \g.“ may be considered tou tie momerits of

parton wave funct .ons’ Q(E Fﬁ
SE QU w2 4E = £, (w2 - (42)

The wave function ¥(§|§42) describes the decompositica
of the pion into two quurks having momenta%*‘-)-?/e (nd@ {\ P/Q

respectively (fig., 10a). 'then
(A) A A
2 " ¥ A Q2
F (@™ = \odi, \)o 5"1“{ (‘QNZXQ;E(E‘Q’T{Z-%y'?(ﬁnk‘llb)

A
The functioeriZE i3 vhe amplitude of the parton suwvprocess.

Our wave function obeys a peculiar normalization condition

A
Ev\o%(i.ya)di T gy W Py = £ T, (14)

because this matrix element is known from the data on decay

T \-A\? : ‘F =  0.95 W\“_*). Formulas (39), (40) represent the
sum of leading asymptotical forms (i.e.yof the terms (CV‘Cl?) /Cie\
of the diagrams 9a. This sum, of course, does not depend on the
choice of parameter y . Differentiating eq. (40) with respect

to YA , we obtain the renormalization group equation

2 Z \_(V * %5 %\ \Svm‘ w\'w\+ (‘D &‘Mw'

“\'—M Y\—v\ (45)

- 2
+ zw\\w\(%\ 8““\}Em\v\l <§—'2 \%\: 0.

—~——TT——_——
We use here the defiuition of which diff r
that used in ref. /12/ by u“thctor L‘r;“ thhern from
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Anomalous dimension matrix Z““. is triangular in the basis
chosen (39) rather than diagonal one. Furthermore Z¢o=0 ,
whereas other diagonal terms are negatlve Z <0 for nz4. Hence,

as ‘.\ 300 we have{h(‘l )—) 'Fh , where -f(ﬂ is a vector

satisfying

% (o)
Z z‘h\n‘ 'Fh' =0 - (46)
w=0

This equation is easily solved, and as a result

Q(E, ga\- 2 L G-E?). (47)

vz-aoo

The factor 3/2 is due to the normalization condition (44).

Taking ‘-(:Q. and using the Born approximation for £ (fig. 10b).

we obtain

(A _on
Fr (QE

8mts(caa\€“ CZ(RB\Xo(EQZ‘ t\
Q% N o A-EZ (8)

where Q(E)= (Q(E.\/'?“ .

The limiting curve (47) for the wave function has a very
natural shape: the function is maximal at E,=0 (when the quarks
have equal momenta) and is zero at = 4 (when one of the
quarks takes the whole momentum of the pion). Due to the normali-
zation condition (44), the magnitude of the integral entering
into eq. (48) is very close to its limiting value equal to 3/2
for all functions of this type. Substituting this value into
eq. (48) and taking for the strong coupling constant ol (Q.)
the asymptotic freedom result&s(Q\ 41:/9 QMQ /l\, where A_ =

=0,5 GeV/22/, we obtain for Q% =2 gev the value © (A‘(Qe‘zy_
=0.18 which is very close to that dictated by the g -pole fit
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Fig. 8., The structure of contributions in a gauge theory.

P
W

) \_// \\v\\:’JwJJ
N i)
Fig. 9. The diagrams contributing to the form factor of a

composite particle.

Fig. 10. a) Parton interpretation of eq. (38).

b) Born approximation for the amplitude of the

parton subprocess. P<

a) Pa b
Fig. 11. The processes involving a hadron detected in the final
atate.
25



-4 )
F:‘:(«»Qzlng\ . namely o (Q%=2) =0.19. But for Q%> 2 Gev?

the curve F“m) decreases more rapidly than the curve F.“_H)

becauge of the presence of dS(Q\ term.

QCD on the Light Cone

In this paper we have summarized the physical ideas under-
lying our approach and have omitted some details of mathematical
nature.

For example: we have discussed the situation when all the
lines inside a subgraph v carry large virtual momenta k;z:O(G,Zl.
On the other hand, we believe that final state quarks are near
their "would be" mass shell, i.e.,for these lines (also belonging
to the subgraph U )k2‘~0 . Our treatment is valid indeed for
a zero-angle scattering amplitudeT(\Q,Qa) in the Euclidean
region (e.ge,at \\0\4& for deep inelastic scattering). A rigorous

analysis leads, as is well-known, to a moment statement

A a
[ 00 T B gen Fatnd)+
¢ -+ O(Mz/ Qz\ ‘
In the lowest approximation E:;' aa. + Treating $Q(‘V\.Q2) to

(49)

be the moment of a parton distribution funection -?('.X,Qa) , We
obtain
4 2N yndy _ Y et SAd% ,IW_(;“Q;(,G,Z} N
SOFZQ‘J‘O\ X _;2-; " bl P
+ QMY at)+ O(&s(ay) -
In general, however, one cannot derive from eq. (50) that

F(x,0)= Te2 x §, (x a4+ 0LMY/ a2+ Olas(@) Y
@ (51)

(50)
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because the moment inversion is a rather delicate procedure. but

a more detailed analysiz;/e)/ shows that outside Lne vresonance

region (i.e.,at X not too close to 1) the relatiou (91) is

justifiable. This provides a (CD-basis for partou nodel li.teas.
Treating the proceus A'B-?H*}.\—X we must also consider

the amplitude | (U AR a3 (where O =A/T =S/ G2 ),

The function T(Gl QZ\ has two cuts: at (:))4 and at S <1,

The right cut discontinuity is proportional to a crogs-section

dG'/an for the process A‘B"D H*‘}(‘X , Whereas the left cut

discontinuity is related to the processAg-"rﬁ.ﬁ-X (or

R?_)‘)t{"h‘x ). Hence it is a moment relation

84 W(qZ,t) vt dr = sz wfc( Qz/y’-, () "E,A(ﬂ,ga) .

o~ 52
T org p?) + o a® >2)

which is the result of our analysis. But by analogy with deep
inelastic scattering one should expect that eq. (35), which is
an inverted moment version of eq. (52), is valid for T not
too close to 1.

The treatment of processes having a detected hadron in the
final state ( e+e_-" o 8 . AB~> X s etc.) is much more compli-
cated. Using the methods sketched above it is easy to see that
the gluon insertions into the corresponding subprocesses (fig. 11)
result in the manifest recovery of gauge invariance. Hence, one
must expect that all the double logarithmic factors (qz eManh;‘)N
will cancel with each other, and that the remaining logarithmic
factors(zaQN\.Qzl&lz\Ntogether with the ‘AZ -dependent parton
distribution functions -g('ﬁ\ }42) and parton decay functiong
D(Q’\Az‘) will combine into a }A?' - independent combina-
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tion*). But there is a difficulty connected with the parton

decay functions: it is well-known that they cannot be related to
matrix elements of local operators/24/.

In conclusion we want to emphasize the decisive role of the
light cone in our treatment. We were able to obtain a parton
picture mainly due to the fact that the contribution of higher
twist operators has been suppressed by powers of (Pﬂz/cf). On
the other hand, for the processes which have more complicated
kinematics than that of deep inelastic scattering, the connection
between the light-cone singularities and asymptotical behaviour
of the process is not straightforward due to@tzf‘sf terms.

But the effect of Iz\k factor is compensated by Sk term, and

as a result we obtein a relation analogous to eq. (5):

4 - T,
MN Q ot » (53)

where'toi is the twist of a composite operator 0‘\“&"‘\“"- .
These operatore appear after a contraction of the subgraph v
describing a parton subprocess, into point. It is also necessary
that after such a contraction the resulting diagrams do not
depend on large variables. The statement that the asymptotical
behaviour of some process in which the hadrons are involved

is determined by that of a parton subprocess,is completely

b}
equivalent to the statement that the asymptotical behaviour of

the hadronic process is dominated by the light-like distances

inside the subgraphs, the contraction of which into point elimi-

) N - . . . . .

* Taking K= Pr one gets rid of logarithmical contributions to
the subprocess cross section. One can take also Y"Fflﬂo s OT FZ=
:2@,\?‘\ 3 but it is inconsistent to takevt:z(?hﬁ"\'xlg, where IPA

and Pc/l are the momenta of partons taking part in the subprocess.
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nates the dependence of the whole diagram on large variables.
The parton picture and the light-cone dominance are the same
phenomenon described in terms of two different languages. 1t is
worth noting that our approach differs from an old LC-analysis
in that there is no need to have a product of two currents

to begin with, Treating the pion EM form factors one starts with
an expression <P'\3“(°\\P) pogsessing the only current. 1t

is also possible (as for ARFCX process) that an agymptoti-
cal behaviour ig dominated by lightlike distances between the
internal points of a diagram.

A more detailed treatment of all the questions touched upon
in this paper will be published elsewhere.

It ie a pleasure to express here our gratitude to D.I.Blokhin-
tsev, V.L.Chernyak, A.De Rﬁjula, Y.L.Dokshitzer, D.I.Dyakonov,
R.N.Faustov, I.F.Ginzburg, B.L.Ioffe, E.M.levin, L.N.Lipatov,
V.A.Meshcheryakov, V.G.Serbo, D.V.Shirkov, S.I.Troyan, A.A.Vla-
dimirov and V.I.Zakharov for helpful discussions and stimulating

remarks.
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