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High Momentum Transfer Processes in QCD 

A unified approach to the investigation of inclusive high 
momentum transfer processes in the QCD fram'ework is proposed. 

A modified parton model (with parton distribution functions depending 
on an additional renormE.llization parameter) is shown to be valid 
in all orders of perturbation theory, The approach is also applicab­
le for studying wide-angle elastic scattering processes of colourless 
bound states of quarks (the hadrons). The asymptotical behaviour 
of pion electr ol1'lt':tgnetic form factor is calculated as an example. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR, 
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Introduction 

Quantum {)hromodyuamics (QCD) is considered to be e~ lea·llng 

candidate for the fundamental theory of strong lnteracti.ons, and 

the application of QCD to high momentum transfer processes 

attracts now a considerable attention/1- 141. Just in these pro­

cesses the unique property of the QCD,asymptotic freedom, reveals 

itself. 'l'he task is to utilize this property for justification 

of parton model ideas and to work out a systematic way of calcu­

lating the higher order corrections to parton model results, 

It is well known that for deep inelastic scattering the 

approach based on the operator product expansions leads to a 

modified parton model, with the parton distribution functiDns 

depending on an additional renormalization parameter (see, e.g./ 15/J 

In this paper we present the results of investigations (they 

have been published in a shGrt form in refs./8 • 141) which allow 

us to assert that the use of the modified parton model for 

investigation of~her high momentum transfer processes (massive 

lepton pair production in hadronic collisions, high- pT hadron 

production, etc.) {)an be justified from the QCD viewpoint. The 

approach developed to prove the above statement appears to be 

also applicable to exclusive wide-angle lepton-hadron and hadron­

hadron reactions at high energies. The colour neutru.lity of the 

hadrons plays a very important role in this consideration. The 

result is the parton model of a new type, which uses the so­

called parton wave functions/ 141. 

3 



Deep Inelastic Scattering 

Parton model contribution is given by the well-known 

"handbag"-diagram (fig. 1a) 

\t4v( ?,q):. ~ ~e ~'\'X. (P\: ~ (-~ ~~~ ~c:(-:x.)'(~ ~l ~');\\>)d«t~1) 
Expanding into the Taylor series - ..... ~~t:1:)r ~(~):= L; 1\-CO)Ou .. SLI rt.ytQ); :x,.~ .... :l(~ 

~-:o r·~ r'O\ \"\ '. 
(2) 

we obtain an analog of the OPE. But the matrix element of the 
-'t'\ 

operator: ~lQ} o r "\flO)~ possesses in renonnalizable theories 

the divirgences which cannot be removed by the ordinary R-opera­

tion. One must add the recipe of the composite operator renor­

malization characterized by a parameter ~ • 

One encounters a similar difficulty in trying to formulate 

a prescription of calculating the higher order corrections to 

the parton model results. In principle, one may consider any 

diagram having a parton and a virtual photon in the initial 

state to give a higher order contribution to the erose-section 

of the parton subprocess. On the other hand, there is a risk 

of double counting the same diagram (one may believe, for 

instance, that the outlined part of the diagram 1b must be added 

to the parton distribution function, i.e.,that the diagrams 1a 

and 1b are identical, It is also worth noting that the contribu­

tion of the diagram 1c is proportional to en Gt;'r<.2. , where K 

is the parton momentum, In accordance with the parton model ideas, 

the partons are only slightly virtual: \\< 2\""' Yn~, hence in the 

calculation of the corrections to the parton subprocess cross 

section one is faced with the infrared problems/21, 
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These difficulties are caused by the absence of a distinct 

definition of the parton distribution functions and of the parton 

subprocess cross-section. It is implied, however, that the parton 

distribution functions accumulate the information about the 

large distance dynamics (that is, they must be regularized in the 

ultraviolet region) whereas the parton subprocess is a short 

distance phenomenon and the corresponding cross-section must have 

an infrared regularization. One can choose the boundary between 

small and large distances by convenience. It is, of course, 

necessary for a self-consistency of the whole scheme that at small 

distances (or at large virtual momenta -l-<2 ~ f'C?. ) the effective 

coupling constant is small: o{s<-K2)/1t'~~s(l-'~)ht<<i. In 

this region the value of the boundary ~ is arbitrary, and the 

physical results must not depend on a particular choice of ~ 

To characterize the virtuality of a momentum going through 

a given line, it is more convenient to use the c( -representa­

tion/161 rather than the momentum one. The propagator is given 

in the d. -representation by the formula 

\' 

00 

d d. e x. p { d. c ~a - ,... 2..-+ \ q \ 
0 

:. 
W\1..-~1..-\i. (3) 

i.e. ,small oL corresponds to large ?2 • The contribution of 

any diagram can be written as an integral over the o( -parameters 

of all lines of the diagram: 

T ( fh···" ~~ 't V\1) "'" \"oo \)d~,. eX? r (l(ci,?) 
0 J)2C~) l ~Cal) 

- L otcr("rn~-~£) l 
cr 

G C ~"', ... 1 ~n \ 'Yn ') • 
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where the functions l), G 1 Gl are determined by the diagram 

topology. Let us consider an arbitrary diagram (fig. 2). It 

contributes both to the parton distrihution function (large- ol 

contribution} and to parton subprocess cross-section (small- ol 

contribution}. Our task is to separate these contributions. lie 

consider first the variant when the incoming large momentum 9, 
c;oes through all the lines of the diagram V , that is \< ~ ::> GL2. ' ...... 
for any line. In the d. -parameters language this means that 

J.V: ~d.a-<.~/t-'2. (where ~,...fU. In this regime the diagram 

gives the identity contribution into the parton distribution 

function. All the momenta have an order of Gl , hence one can 

find the asymptotical behaviour of this contributj.on with the 

help of dimensional analysis. In a theory with the dime,.sionless 

coupling constant 

r~ ( -x .• Q_2.) "J Q2-l: d, Q L s, :: Q2- ~t~. (5) 

where t~ are twists (dimension in mass units minus spin} of 
S· 

the i-th external field. The factor Q ' is due to the fact that 

the gluon line can add the factor '?r "-Q , whereas the quark 

line gives U (?1"- Q., etc. The particles with spins equal to 0 

or 1/2 have t;.; 1 . That is why the subprocess described by 
c~v) o 

the diagram 2a has the asymptotical behaviour lz ..... Q , whereas 

that described by fig. 2b is damped by the factor ~fGL2 
In the remaining part of the region of integration over 

oL -parameters there is a subregion, corresponding to a flow 

of large momentum through a subctiagram V" (fig. 2>: ">-v <."It"'· 
" whereas all the momenta corresponding to the lines lying outside 

6 

~ are small:). '1\V~ ")' ~/p.2. ,Then the subgraph ~ contribut~ 
to the subprocess and the contribution of the subgraph v' v ... :.vi 
must be related to the parton distribution functions. Note, that 

as dictated by eq. {5) the contribution of the subgraph \f~ in 
... (v") ,....o 2 

the diagram 2b is r2 ....... ~ rather than 1/Q • Hence to cal-

culate asymptotical behaviour, it is necessary to consider only 

the short-distance contribution of the subgraphs having a minimal 

possible number of external lines. in vector gluon theories (in 

the Feynman gauge) the vector field .At" has zero twist and this 

produces aome complications which we will discuss later on. 

Then one must consider the region 'Av?.. .(-'\ f~'Z., bt:.t Ayz '7~/~2 , 
:A y

1 
\ \i,. ..,. ~ / }\ 2. ~ etc. Very important there is a factorization 

of large- and small-distance contributions. 

After applying the procedure described above, the contribu­

tion of any diagram can be written in the coordinate representa­

tion in the following form: 

~ r.i'~d~ ~ ~ v c :x,~/r. \Az) ~\1 (~.~)a,~; !'tz.\ + 'Rv t~.'\~\c6> 
'The function 1\1 ia the result of small- r:J.. integration 

( A..,.~·\[ f42.) 'Nhereas the function 'Y.. i1 is that of large- ol. 

integration. The function "Rv gives 0{1/Q2 } contribution 

into asymptotical form of F 2. 

Eq. {6) is valid for any diagram, hence summing over all 

relevant diagrams, we get 

~ \ ..1'£.~"1. ~i. ( ~. ~."\.: ~2.) 1. ~ ( ~ ,Y)."I ~. t ·, ~2.') + 
\ . -+ ~l't,Q,t). 

(7} 
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The functions fi. , 'X~ correspond to the following matrix 

elements of the Green functions 

fi. cx.~,'1"·\-lz!:\o\'IL Jl-x11(o'l:Lc~>~\(·tf)~\o>\ z (8) 

}' ,IR 

'J, l~, '1 'Q, ~' ~2)-- .(o\'1 l' 'j't l()~, ('1 ~; ¢.(c. )if?![)] \Q)I (9l 

~21 tT\1"' 

where ~i. 1 i;. are ·the "parton" fields and ~(o..) are those 

of external particles. The function ~ is by construction re­

gularized in the infrared region, whereas the function X is 

regularized in the ultraviolet one. The generalization of eqs. 

(8), (9) for spinor fields is trivial. To consider the particles 

which are the bound states of n fundamental constituents, 

1 \~,'1. ._a.,~.') \{2) -'t 'X.l~, "t, Cl-~." ... , a"'·)~~ ... ~"" ·, ~2): 
we change 

f :1 (10) 
= <o\ 1' l~ !f~ t~)~i. c-.,.): ~(~1) ... ~(QY\) ~c ~1). .. ~t ~"'}Jio). 

Applying s standard method/17 I (using the expansion~: ! \'t\"><.h\ ) 
one obtains matrix elements 

"Rea <. ?\ ~ ~- t£,) ~· { '1'1 ~ \ ?) 
<~~z.,vv " ' ( 11) 

The bilocal operator ~e~: ~\\~~~: remains finite in the 

limit~~ "1. , because the divergences of the matrix element 

.:::~ \: ~to'\a}t11 .. .'~..,. ... !f\o); \ ?'> are removed by the subtraction 

procedure ~~~~· A choice of the subtraction procedure is not 

unique, but it is, of course, necessary that the recipes of the 
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ultraviolet regularization (for the X -function) and of the 

infrared one (for the ~ -function) must be co-ordinated with 

each other, i.e.,the resulting asymptotical behaviour must not 

depend on p . In particular, 'R~~ 1"2. may be considered as the 

dimensional regularization d ~\{.., d ~ - 2t \( 4-'z} ( plus the 

1 t Hooft's renormalization (the removal of poles in € ). 
A representation (8) is nothing but the operator product 

expansion (OPE) on the light cone 

\ ~1(~)3\<>)1: 2; ( d~d"l_ ~~ (-x,~, ~; \-(2 ) \9i: (~,yt., tt2.) . 
" ~ 'i\ ' J- (12) 

,. "('i' 

Expanding the bilocal operator ~~:;~;,(l..}~,t'i)~ over the 

local ones, we obtain the OPE ln the standard form/ 18/ 

T \:{'1.) 'J(o)~= ~ F"'"' c-x2., J-t.') -.x. \4" ... ~14 .... 0~4 ... ,..~(o,p.zlt3> 
I.,Y\ -+ ~t'l{l . 

The transition from the OPE (1J) to a modified parton model is 

achieved by identifying the reduced matrix elements of the local 

operators with the moments of the parton distribution functions/15/ 

~ "'~ A, - r -a l \ ?"'? - r ?. p 1 T (~\'lfc-. \ 1l'~at'2 ... ~"" J~o.. ~ "\. ~"... t-'n 
~ \o ~ :xY\ ~ f <l (-x,\4') + l-~')V\ fa ('XI t-tz\1 (14) 

Due to a well-known direct relation between the asymptotical 

behaviour in the Bjorken limit and the light-cone singularities, 

we may take into account only the contribution of the lowest 

twist operator. From eqs. (1) and (1J) it follows that 
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F
2 

("- ,G..z.) "'1>~5c: 4= \ e.·"('\1-xll) a~.Y\ lf"2)~?:x:,J'(\ t" "'~ l:x~~- ;)::~~~a) 
~,Y'I J 

d 2 )( 1\ d 2. 't...l.. ,...., 

~ \ \.(\.'XIll(o "Y\. ~ r z.. 2. e L e u; rx11 1 ~ "'r) 1. 'X11 , ~ ) d x1, , 
\ '"' 

( I 5) 

wnere \l(..L\'')":.('X.l.Cl,)=-0. The matrix element of a higher twist 

operator must contain a dimensional parameter ~ 

<?\ o'~) 
h···~V\.. 

M t.- 2. { ~ ? l (} ~~) 2.. 
\?'/= .n' t'~··· t'"'-) ~ ... l~) (IL) 

Hnd its c0utri but ion in accordance with ( 15) is suppreL· ·>ed , f 

a factor\M/a)t'- 2 • 

Gauge '.l'heories 

'.l'he una lysis of gauge theories is complicated by L ·J fa,· t 

that in the simplest gauge (i.e.,the Feynman gauge) the vectur 

field At' has zero twist. In this case a subprocess .··m be 

described by a subgraph ~ 

nal gluon lines (fig. Ja). 

with an arbitrary number of exter-

Let us fix the form of initial subgraphs V 0 and U 0 

(fig. Jb). Joining the lines of the subgraph ~0 with tne llues 

of the subgraph \r~ in all possible ways we obtain the admissible 

combinations, and then it is necessary to sum over all the possi­

bilities. Every gluon line adds the field At' Ci'l into mat-

rix element (10) and modifies the propagator Sc (Y.J..-Y..f) belong­

ing to the function -f \1 : 
0 

~'\x,~.-x~)~ ~ jct'ft- A~('~!$cc)l.ci\"d,..'t ... S\?-'ir)(l7> 

10 

t\ 
1. The diagrams describing higher order corrections to the 

parton result for deep inelastic scattering. 

v~ 

~ ~. " .b 

)~ 
Fig. 2. The structure of leading terms contributing to asympto-

tical behaviour of the functions. 

a."'\ 
~ 

Fig. ). The structure of leading terms in a gauge theory. 

---+T·~ ... 
.l.) s < 

~~t~n·A 

= 

fi'V\/\, :: 

b'l 
Fig. 4. a) The propagator of a spinor particle in an external 

gluonic field. 

b) The propagator of a vector particle in an external 

gluonic field. 
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where "t'G. is the matrix of the gauge group in the quark repre­

sentation, llote that the sum (fig. 4a) 

;_c _r~oc _ ,.., (c-c A" <"'' _ 
~ c~J.. 'll~)- ;> C'i.,~. xr>) 'j >:> cv...~.-i'ftr ,.cr:) ~ c~ x~)+ ... <1s> 

is the propagator of a spinor particle in an external gluon 

field/ 191, i.e.,the solution of the equation 

\ -\_~t" 'tt"- 'M l ()C l~o{, X~')~- b4 l~.l-~ i>, ( 19) 

" "' 
where J:>,...-;. Or-\.~ Ar is the covariant derivative acting on the 

quark fields, and Ar= ~~'t'o... The solution of the eq. (19) 

can be written as ( "ir~.. A. 

-!:/" ('J.J.., ~~)-=- $ \x"' -'(~) ~ l"c. ex~\'-~ ) x: t' lr) d~ t' 1] ~2o) 
• ('\+ O(G_,...,1] '> 

where (J)tv:.L'Dr,'Dvl is the tensor of the gluonic field, and Tc 

means thnt the integral must be path-ordered.Thus,every propagator 

~c entering into f ITo \'~ 1,) "Xl must be substituted by '/;;c.. This 

means that the parton subprocess takes place in the gluonic 

field of the hadron rather than in the empty space. Any operator 

of the .QG ... Cb•. type has a twist higher than that of 0. Therefore 

we can neglect O(G~vl terms and find that in an Abelian theory 

all the exponentials are either summed up into a factor 
~ ~ i1 

e"(p(~~ \'l Al"\.1)d1t4J for a quark operator or cancelled for a 

gluon one. Hence the function f, ... (~ "1_\'X.-) remains unchanged, but 
u0 l 

in place of ~(~)l.f<~"\ there appears a gauge-invariant bilocal 

operator (~ 

(9(~ ~. un-:. ~e~ , ~ ~l"~,)eX\> ~ \.~) Ar C~)c.\'t. "']'V(yt): 
~·~ll' I \t 1_ (21) 
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Using the Baker-Hausdorf theorem/19/ one can expand it over 

gauge-invariant local operators resulting from the operators (14) 

by replacement () \" ~ ':D I" • 
In a non-Abelian theory the gluonic propagator is also 

modified (fig. 4b): 
C 0'\CA'll '\\C \ 

~\-'..., &o.'o~ ('J..d..-'1.~), Nl"v-=- ~t'v J..J <.')Lol.-'t.~) • 

C \c. e"'~ \ \.~ \ 'l(.l. 1\~ n') d.z ~) 1 \ ~ ... o <Gr"'l), <22> 
L~. o. ~ 

,... ~ ~ 
where At': 1\ t' <S'o.. , and 0'0 are the matrices of the gauge group 

in the adjont representation. To unite the exponentials corres­

ponding to neighbouring spinor lines one must perform the commu-

\ Tc. ~~?~'-<a\ 'l£Q. A ("!) d'i! t-t]J A \."t~) Be-: 
_\ "/.. t' n8 

~ 

tation 

~ ' \"l(ci A 1\ 
:: ("'C ),..~ ~ -r, e~? ~ ~~ ft (c)d~r J ~< 

-y:f:' I" (23) 

· (Tc.e~?l~'a \lLa 7\f"Ct\c:i~"'))~GI. 
For a eubgraph with a:~or external linea the additional 

exponential factors appear after the commutation (23) cancel 

completely with those entering into the representation (22) for 

~~~. For a subgraph with gluon external lines, on the contrary, 

this gives a gauge-invariant bilocal operator 

'. G 14"'(~) (\, e-t~\.i.~ \~ ~tcC~)dr~}) G~ l'ft} (24 > 
'1 

We have obtained a well-known result / 20/ that one must uoe 

gauge-invariant operators in the operator product expanro'c-n. 
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There exists a class of gauges in which a vector theory 

does not differ essentially from more simpler non-gauge theories. 

In a gauge theory _ 

t= c-x,Q.i?.),_,"b~c:.c:L: ~ ..... q.~~ .. 't~)l.<?\1f~ol4~(a~z-~~A~l) ... 
2. 'V\ Gl (25) 

... ( 0"'"- ~~ f\~.._)) '\Y \ ?) . 
From eq, (25) it follows that in the axial gauge, where 

\q, A\-=0, one can use o/" in place of :D t" • 'rhat means in this 

gauge (and in any gauge of the following type: ('1,Pt) + ~ CPA):oQ) 

the contribution of the configuration fig. Ja is 0(1/Q2 )1 211, 

One can use the gaugel~ A)- l "Yj ~ )::. 0 for a gauge-invariant 

bilocal operator\9(~,~~ • So far as one can use the straight 

line connecting the points ~ and '7, as the line of cntegra-

tion in eq, (22), in this gauge one also obtains the o~erator of 

the same type as in a non-gauge theory. 

Massive Lepton-Pair Production 

The procedure we have used above is in essence a reordering 

of perturbation series terms according to a definite recipe. As 

a result, we have obtained the representation which has been 

proved to be very useful for an analysis of the asymptotical 

behaviour of the process investigated. Now we are going to apply 

the same approach for an analysis of asymptotical properties 

of the massive lepton-pair production in hadronic collisions: 

ft ~..., ~-\, ~-)( • 
An analog of eq, (1) in this case is 

'W"" \ e \ Q'1- <~A\:~ Cx)~(~): \~,A.'>< ~~\:~la) ~\)(:): \?~) t~x> ·· 
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In the coordinate representation a dashed line (fig, 5a) ~enotes 

a factor lt:x.)a {. • It is evident that one cannot take the 

limit .A~O in the matrix elements of eq, (26), Hence we must 

construct a subtraction procedure for diagrams(fig. 5b), 

We consider first zero spin gluons. We assume also that 

the relevant parton subprocess is described by the subgraphs 

with 4 external parton lines. As a result, we obtain a repre-

sentation 

W"- \e "Qx d~,:x. ~~<?A\ \9~lf.,'1.·.,t'-1Wp,'><~a\~}~·~·,t-'t·nr8) 

~~~ ( :x, ~~ 'rt 1 d.,~)~~) d~d'?..dol.d.~ + ~ C.x) J· ( 27) 

The configurations contributing to 'R are shown in fig. 6, 

where the outlined subgraphs are those giving small - ~ contri­

bution. Expanding the bilocal operators over the local ones we 

obtain \.: \( (lu ,.,. 

~ ~ Q'( "" f'WI"" ( -:x2. u2. )l-:x.a\ o , . .._ ~ I"' w "- d 4X e L- ~i 1 I' V "· '\) .. \A,, • ... \(. 
"df' ., " 

. (28) 

·:x: ~ '~<+" :x.. ~'"" ':1. ~ < P \ a" \ o 1\?. ><? 'O -.~~ ... """t ) \o' v\(H... -J._ 1\ ~ ...... ~~ "" a\ ~ o 'e.t. 
cWI"~~~ 

The functions I•· in perturbation theory have the same (up 
\.~ 

to logarithms) singularities on the light cone. The contributions 

of the diagrams fig. 6 correspond to weaker light-cone singula­

rities of the t -functions. Hence, the ut.ility of the represen­

tation (27) depends on the relation between the light-cone singu­

larities and the asymptotical behaviour of the function W . 
By analogy with sq. (16) we rewrite eq, (28): 

The applicability of the light-cone analysis for the process 

.~'0-'t t'+f~ 'Mas often called in question/221, mainly because 
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~ \ ~CQ. 11 :X1;) + \CG...LX.J...\~ 'VYl-k \.,._,__ 
W -v L- € \Xu ?A) (-x\, tJ& J 

"b ,"m ..... Y.. 

·\.:x"-\'1.. ~?A ~~)Y- r :;~ ( :r 1~- 'If) ~2} q~( ~z )Q~ ( fldex,,d\~29) 
Unlike deep inelastic scattering, there is an additional 

factor e)( r i cG.l.'ll.L). Hence a higher twist contribution can get 

as an additional factor either\.M2 /G£j¥ or<Mz./G.~)'-. 
It is clear that the representation (27) may be useless in the 

region G.!_"'~ because one must take into account operators 

having arbitrary high twists. One can avoid these complications 

either by integration over ~ , then 

W ~ \ W( ~A. ~s•Q) dtQ.l. ~.L (dz~"e~(Qu-x,,) 
•J,"'Iol\() 

(30) 
'M~\<. ~ (, o \WI~\((- 0 '\"'.\~_ t '¥( ~ t= ~ 1 C ':!11 ) ~2.) \.'Xn r~ I ~~~ 1& l ~':X") ~ 

'2 2. 
(cf. eq. (16)), or by investigating only the limit Q.l."""' Q.,, "" 
"-S '>'> ~'2., i.e. ,the production of massive pairs at high transverse 

momentum. It is much more convenient to use a formfactor vvC~lGl') 

related to the total cross-section a~ldQ.2. of producing the 

pair with mass Q. : 

w (T, Q.z.\, ) -w c..?"'.~~.~> g +t "(2.-Q'2.') e t?~ t e~- \<.
0)d'\31) 

In these cases the contribution of higher twist operators 

is suppressed by a factor\M'/G..~)~ With the help of a more 

detailed analysis in the ol -representation one can show that 

the contribution from fig. 6c diagramms is also suppressed~) 

~)The same holds for gauge theories. 
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l 

o."' i:.) 

Fig. 5. The process A16_.,"'+~X. 

a'\ b') c'l 
Fig. 6. The structure of different contributions after applica­

tion of the subtraction procedure. 

__. 

Pt 
o.."'\ 

c) 0, 
\:.) 

Fig. 7. a-c) The diagrams dP<;cri h' ng a bremsstrahlung nf a 

massive 'TlrLunl phot.u•1. 

d) A generalized )t·ell-'hn process. 

li 



the functions F (:v_Z.) entering into eq. (28) have in perturbs-

tion theory only logarithmical singularities on the light cone 

which are much weaker than those corresponding to a contribution 

of twist-2 operators (see (13)). A matrix element<P~?~\Of'l~···f'4"'\f'AriS) 
is not equal to zero apriori, moreover it can possess an unpredic­

table dependence on $ . It is easy to see that such operators 

nevertheless do not contribute to the cross-section of massive 

pair production. 

Really, a produced quark must be on its "would be" mass 

shell, i.e.,\.\<')2. = ~~-G.\Z-:::::0 \ k 0 -G..0 > 0 (see fig. 7a). 

Hence only configurations having \(l ~ Q2 
do contribute to the 

cross-section. As a consequence, one must attribute the quark 

line corresponding to the momentum ~ to the coefficient func­

tion F (.'(2.) rather than to a matrix element (i.e., distribution 

function). One must answer now the question of how to obtain 

a very massive virtual quark. We get back the same problem which 

we have tried to solve. We must obtain now a massive quark 

rather than a photon - this is just the difference. The only 

way to break this chain is to assume that at some stage a very 

large virtual mass is a result of fusion of two particles which 

have the momenta X?,_. and 'f ?~ , respectively. A corresponding 

operator will consist at least of 4 elementary (parton) fields 

(fig. 7d). It makes sense to call such a configuration a genera­

lized Drell-Yan mechanism. The bremsstrahlung contribution (fig. 7c: 

is then a possible radiation correction. 

In gauge theories (in Feynman gauge) one must sum over 

gluons taking part in a parton subprocess (fig. Ba). Let us 

fix the number of gluons related to a particle }l taking part 
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in the EJUbprocens and tHua vver the gluons related to particle 

B (the gluon field of the A-particle will be der'o ted us A~ 

whereus that of R-particle,as "Bt" ). 
The gluon lineu L'orne; out of B-particle may be ju,ned 

either wlth the intern<d lines of the initial ouuprucess or with 

the external lines goinc; uut of B-particle (fig. 8b)•). 'rhe 

insertions into un eJCter·,wl spinor line give 

~lr.)~~C() "'~l~~, .. ~ \d~~~ ~\t,-l;.,)%le:~ l.\-l~~)+.<"J 2 > 

i.e. 7\f turns into t!tc rio ld operator of a spinoc particle itt 

an external gluou fleld of hadron B. lfe write the solution to the 
"' 

equu tiolll i.J\.l~ -m) ~ = 0 in the following way: 

¥\E.\ ::. '\V c~) ( rr, ex~ ~ 1.~ \ f; it' ( ~") d r I"]) \ "~ + o c ~" .> 1 ( 
33 

> 
ro 

The point "l0 fixes the normalization condition l±'l:o) ::.t_y(~0). 
In the final answer :C 0 disappears. Insertions into an external 

gluon line result in a replacement 

A~ (1:,) ~~a (C..):: A:((:,} ( Tc. ex~\~~ \t,~ (t:\J:c}41J 
t' t" 1 lr ~~ 

-o 

\ ~+ OCSrvl \ • 
( 34) 

After commutations of the exponential factor appeariur; in 

eqs. (20), (22), (33), 04) with 't" - and () -matrices, the 

gluonic factors cancel with each other and after summation ()Ver 

gluon lines going out of' A-particle we obtain as a result tile 

representation (27) in ternw of the gauge-invariant bilocal 

operators (21), (24). 

•) Remember that we consider either a) diS"/dQl, Q2."':, or 

h) ,~1"';/JQZ.dQ_f, Q:_"' Q.2."'~ .• 
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It is essential that we project on the color singlet opera-

- - " tors~ ~ • If one projects on the color octet operator 1¥ 1:' ~ , 

there remains a factorTc.e)(.~ £1; At"(:l)d~}" pointing out that 
lo 

double-logarithmic terms appearing in some diagrams do not 

cancel after summation over all relevant diagrams. This circum­

stance plays an important role in consideration of asymptotical 

behaviour of hadron electromagnetic form factors. The investiga­

tion of colourless bound states form factors proves out to be 

an easier task in some aspects than that of (coloured) quarks. 

Thus, just as in deep inelastic scattering, taking into 

account the specific features of gluon fields results in additio­

nal factors (Tc: e't~l~ )~h~("l)dt•l).Hence the contributions 

of diagrams 6a in the axial gauge(.~h)-l'1_A)~O are suppres-

sed by a factor\11./Q.'l.yv with respect to that of fig. 5b. The 

investigation of vector gluon theories in a properly chosen gauge 

does not differ greatly from that of pseudoscalar gluon theory, 

e.g.,in a gauge(?A)+d.\~'A)-=0 it is most easy to show that 

the diagrams 6c do not contribute in the leading logarithm 

approximation/7/, 

Starting with relations similar to eq. (15) we obtain from 

eq. (27) hard scattering formulas 
-\ J.. 

w(G.2. rt1~\ ~ ( d'( L. _[ (':X \"l.).L ('f u2.) 
" 

0 
~ }

0
--::; o.,\:o 'io.IA " T~fe ., \. 

(35) 
",.,. r Q2. '\I X 'I · uZ.') Wo.'o\ \ )\" 

W\Q.\'\I't".ll"-
A t., 

\ ~ \ c:! 1 fo.1 (-:t,~t)~'o,~(--t,\"~) 
o -t o 't o.,~ A 

'UJ a.." ( Q z. l -r: I Y.'f ) 't' .L. I -:x '() ~ z. ') J 
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where 't' = Q.'2./s 1 "t.1.: Q_i IS . The functions 1J'o.' descriLe a 

parton SUll]•rOceRB (Ab..:t ~+,.c:x. Takinr; \": Q. we obtain for the 

total crosr.-section 
z. ~ .4 

cl~ \ _ 41Td. 't' ~ d-x ~ d..., "' e 2. • 2. - ----;; -- - L o. 
dQ A~..,t·'"~·tt-X "?>Q N, o -:x. o 'f o. 

\ ~ o.f A ( -:x 'Qa) f "O.fl?l ( 'i 'G..2.) & ( ~- 't I'J.'Il ~ 

-\- L fo,A (:x,G!)-+ f;. 1A ("l:,G.e)J -!~ 1~ ("'f1G.
2
)· 9(~- ~y)· Tc(R) 

. o.,~~l~· ~ \( ~- ;f,) + 2(('~.,)\(~-~i)e,<o:~-.~"t] 
+ \ r., ~ ~) ~ { '\-+ 0 ( ol.s C G.}\ l . 

, in For the differential cross-section d<S /dG..'2. d&t 

region G._I ...... Q 2 ""S 1 tai:ing u-:;~*) 1 we have 
I ~ ~ 

(36) 

the 

d<r \ _ 4rro~.2. 't' 2 d.~(Q.i.) \ d~ \ d'f 
'2. 2. - {. - -

dQ dQ.l. A'0 .... \-1-+\"-x 3Q. N"c:. 21t o Y- o ""~ 

G ( ~- n.1. -~) L e: \2. C2 (R) ~1: 2 ~x"'t2._2.l· 
~ I 0. 'l.'( L.l 

(. 'l..'f --c'2- 4 'X"' "t.l. 
1 O.fA (-x • Qi l f 0.(~ C '1, Q:_) ~ 'Te ( R) ( f ~/t\ (:I 'I Q~) + 

f 2 \ .r. 2. r ~~ -:x .... - 't" f(.'t" \G. 01) 
+ O.fA(:x,~)/1~/~l'f,Q.l-)\.~+~-+ t:..~.. ~'t'1J+ 

+(1-'r/:x'tJ2 }]+ ~A~~) '·[~-+OfolsrQ.t))], 
where fi(:. 3 ; c2 C9.) = 4 /3, \ c C R)=-~/2. 

~I~ ~~;aday experiments Q.l. <G. , that is why just the value 
of Q.i.characterizes both the effect i ·1eness of ol.s- expansion and 
the justifiability of neglectil!g the •:it;her twists contribution. 
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Exclusive frocesses 

In the preceding sections only inclusive cross-sections have 

been considered. We assert that the amplitudes of deep elastic 

scattering processes, in which only colourless bound states of 

quarks appear in the initial and final states, are also infrared 

insensitive. No principal modifications are needed to apply the 

technique we have described earlier for an investigation of these 

processes. We will illustrate this by investigating the asympto­

tical behaviour of the pion electromagnetic form factor. 

If the pion is treated as a colourless bound state of a 

quark and an antiquark, the diagrams shown in fig. 9a are summed 

into {cf. eq. {27)) ~ 

~d'f.d\ d~d,.~ <t>'\ ~(£.'r"~1" (-rc:.e)(.? ~) A~ <r)d~~"). 
4 ~ 

· ~~'1) \ ~')\\"2. ·'C.~ (t,Yl., 0( "'~., ¥-2) ~o\ ~ <aY~s~" · 
~ " (38) 

C\c e~? "-\ \ ta ~\"'<~)d~t'}"\_\1(~)\?'>\l"a 
We have written down only the axial projection, because it is 

just the leading term. The projection onto other structures as 

well as the configurations fig. 9b are suppressed by a factor 

( M2 /G.2.). Expanding over local operators 

~ -
~\"'"··· ~'""~ ~ \is 't ~.,1>l4,· ·· ~ ~"'41\ "¥ (39) 

which may be considered to be the pion interpolating fields, 

we obtain QQ - 'L 
FCA) (Q2) :.i. L. T"'"" (\;\2.) 't.\'Y\"f\ l~ \~~\")).r\'\ (~2)' 

'lt Q2 ln,Y\~() \' {40) 
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where t""' "' f \"\ 
(3:1): 

are r·edqced matrix elements ol' tt.c "f•er·aturs 

\~ ~r<a\ A t-'" ... ~,J o , ~2. '\ \ P? = \ ~ ~~ ... r> \"'-.-.1 t.,, "'21· ( 41 ) 

. [ " ... (-f'\"'1 /2 
'rhe function,; f,..., ~.·"' may be considered tu LtJ mornE;r,t,; of 

parton wave furlCLo""/L /~(~,t'~ 
(" Y\ J ~ ~l£., p. 2 dt, = -tV\ q.c.2.) (42) 

0 
The wave i'urJctioll '-Y1,{, 1 ~2.") describes the decomposittc>tJ 

of the plon lnto twu qu.,cks r1aving momenta~+~)£/2. md~-~)P/e' 
reupectively (fl 1;. 10u). 'i'hen 

(A) (~ " ~ 2. r 1t ( Q.2.) = Jo d£, \ d"l_ ~.li:Cyt, \-\a)~z. 'C\t,\1.,~~. ~J\.f(~,~l.h 3 > 
~ 

The function Q...! E •S che amplitude of the parton <JU"prrJcess. 

Our wave function obeyu " peculiar normalization cot1di t ion 
A. 

f">}\ ~l~~~e)d~: .(o\"aso-J'f\?) = + Y-.) 
0 ~ 

(44) 

because this matrix element is known from the duta on decuy 

lT-'t\"V: f.,..::: O.'J5m •>. r'ormulas (39), (40) represent the 
,, Tt (' Ill 

sum of leading asymptotical forms {i.e., of the termu ( \.'f\0.2.) /Q2) 

of the diagrams 9a. 'l'hiu nwn, of course, does not depend ott !.he 

choice of parameter p !Jifferentiating eq. (40) with reul'ect 

to ~ , we obtain the renormallzation group equation 

\)() C>O d "' L \ (\A~ ..... ~ ~C~) o<'.) f>V\Y\1 bv.. ...... -t- zV\,V\ (9,) ~ .......... ~ 
~ , l \- G (45) 

....,.•:.""' 't'\ :.'f\ 

+ t:w.•-.... <~I~"'"'\ j 't""'"'' ( ~~ , %)-=a. 

•) We use here thi defiuctLon of f1t which differu t'r·om 
that uoed in ref. /12 by u L1ctor ~fz. 

23 



Anomalous dimension matrix i! V\'h' is triangular in the basis 

chosen ( 39) rather than diagonal one. Furthermore ~0 0 -= 0 , 

whereas other diagonal terms are negative: ~nv.<O for Y\~1. Hence, 

as \"2.-'too we havef"'<\4')~ f~\ where f~o) is a vector 

satisfying 
0o (O'\ 

2: 'l. "'"'' f"', :: 0 . (46) 
"''"-0 

This equation is easily solved, and as a result 

~W\ ~t~. \-t2.\~ 2 t \'\-~2). tt z -'t 00 2. 1t' 
(47) 

The factor 3/2 is due to the normalization condition (44). 

Taking \'<::Q. and using the Born approximation for C 
we obtain 

F.(A)(Q2.): &TC0.$(Q2.)f~ 
1t Q2.. 

~ 

c~ CR) \ \ a<~.G.') 
~ 0 ~-~2. 

where Q tt,)-: ~~f..') / t"lt • 

(fig. 10b)' 

\

2. 
d~ ' 

(48) 

The limiting curve (47) for the wave function has a very 

natural shape: the function is maximal at~:. 0 (when the quarks 

have equal momenta) and is zero at ~: { (when one of the 

quarks takes the whole momentum of the pion). Due to the normali­

zation condition (44), the magnitude of the integral entering 

into eq. (48) is very close to its limiting value equal to 3/2 

for all functions of this type. Substituting this value into 

eq. ( 48) and taking for the strong coupling constant e(S ( Q.) 
the asymptotic freedom resultd.~(Q)-=41t/'a ~Q?../f\~ where A: 

=0.5 Gev/22/, we obtain for Q'Z. =2 GeV2 the value F~'\a~::2)= 
a0.18 which is very close to that dictated by the ~ -pole fit 
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o."\ b) 
Fig. 8. The structure of contri but i one in a gauge t!Jeory. 

• H f\= ~ ~. ' o 

Q.'\ 0 
Fig. 9. The diagrams contributing to the form factor of a 

composite particle. 

·~~\i:.~ L 
CL) l) 

Fig. 10. a) Parton interpretation of eq. (38). 

b) Born approximation for the amplitude of the 

parton subprocess. 

e( 
a.\ .,, 

Pig. 11. The processes involving a hadron detected in the final 

state. 
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\~) 'Z.! \--\ <~)( a ' 2. 2 f="lf ::(-\•Qtm~l• namely~~ Q ~'2) =0.19. But forQ. "> 2 GeV 

the curve Fw {o\) decreases more rapidly than the curve F1T { ~) 
because of the presence of ols ( Q.) te:nn. 

QCD on the Light Cone 

In this paper we have summarized the physical ideas under­

lying our approach and have omitted some details of mathematical 

nature. 

For example: we have discussed the situation when all the 

lines inside a subgraph "11 carry large virtual momenta \(~::OtG.2). 
On the other hand, we believe that final state quarks are near 

their "would be" mass shell, i.e.,for these lines (also belonging 

to the subgraph '\)" ) k2."'0 • Our treatment is valid indeed for 

a zero-angle scattering amplitude 'T ( ~ 1 Q.2.) in the Euclidean 

region (e.g.,at \\J\<.i for deep inelastic scattering). A rigorous 

analysis leads, as is well-known, to a moment statement 

(\:-z \':I, G.')-x"" %= L. c: C1, ~<a)) ro. e-n, Q2) + 
o o. -+0{Mt/G.2.) 

(49) 

In the lowest approximation E!:: e~ . Treating ro.('\'l,Q~) to 

be the moment of a part on distribution function t (':X 1 Q a) , we 

obtain 

~ 

) r:' (::x \ G...z.) :I'Y\ d 'I: -= 
0 ~ 

" L. e!' ~ d~ -x'"" ~o.. ~:x,G. ') -t 
Q. o X 

+ oc~t/ at)-t oc ~-sf G.\) 

In general, however, one cannot derive from eq. (50) that 

(50) 

'f. lx Q'2.)-;: L_eJ ::x ~Q.(':l,Q.~)\~+Otf'.\t/G?·)+CC~sCG.))\ 
2 \ Q. (51) 
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uecuuse the moment inversion is a rather delicat" procedure. llut 

a more detailed analyGiu/ 2 )/ shows that outside L11e t'eGonortce 

region (i.e.,at 'X. not too close to 1) the relati<•tt ('.>1) w 

justifiable. This provides " <iCD-basis for parto11 nodel i.tew;. 

•rreating the procet:s i\'B-"1"4;.1"-}{ we must aleo comnJer 

the amplitude\(w,Q.2) at \Cl\<.1 (wherew=".f't-::.S/Q.2. ). 

·rtte function\Cw
1 

Q2.) has two cuts: at i:)';)1 anJ at w<.-1 

'L'he right cut discontinuity is proportional to a croHs-section 

d<r/dQ2 f'or the process A~_, ~+\4-X , whereas the left cut 

rliscontinuity is related to the processAB~f't+f-t-X (or 

i\'6~t'+f't. ). Hence it is a moment relation 

~" W<G2 "t} 't'"'-1. d·c.: L.. '\.J:'c G~f~t, ~ct"\) fQ.;A (Y\,\-{a). 
0 \ 0!,\! ,..... t '2. (52) 

. ~ t.ra (v-.,\-'2) -T o t t"t t a ) 
which is the result of our analysis. But by analogy with deep 

inelastic scattering one should expect that eq. (35), which is 

an inverted moment version of eq. (52), is valid for 1:" not 

too close to 1. 

'!'he treatment of processes having a detected budron in the 

final state ( t:/"e--l C Y..., f>rf6.:>t C.')(, etc.) is much wore compli-

cated. Using the methods sketched above it is easy to see tilat 

the gluon insertions into the corresponding subprocesses (fig. 11) 

result in the manifest recovery of gauge invariance. Hence, one 

must expect that all the double logarithmic factors ( ~'Z. ~2.Q"/thN 
will cancel with each other, and that the remaining logari.tilmic 

factors~ ~2. ~ G.2.{'(-l.lN together with the t'2. -dependent part on 

distribution functions 1 ( "):., \-'2.) and part on decay functionS 

J)C~,\42.) will combine into a ~'2.. - independent eombina-
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tion*). But there is a difficulty connected with the parton 

decay functions: it is well-known that they cannot be related to 

matrix elements of local operators/241. 

In conclusion we want to emphasize the decisive role of the 

light cone in our treatment. We were able to obtain a parton 

picture mainly due to the fact that the contribution of higher 
a; a twist operators has been suppressed by powers of ( M Q ). On 

the other hand, for the processes which have more complicated 

kinematics than that of deep inelastic scattering, the connection 

between the light-cone singularities and asymptotical behaviour 

of the process is not straightforward due to(Jt2)~~~ terms. 

But the effect of{X'2.\ \( factor is compensated by t"' term, and 

as a result we obtain a relation analogous to eq. (5): 

M,...., Q 4- ~-\:o, , 
(5J) 

\ 

wheretO.: is the twist of a composite opera tor 0 ~~ ... """' 
These operators appear after a contraction of the subgraph \( 

describing a parton subprocess, into point. It is also necessary 

that after such a contraction the resulting diagrams do not 

depend on large variables. The statement that the asymptotical 

behaviour of some process in which the hadrons are involved 

is determined by that of a parton subprocess,ie completely 

equivalent to the statement that the asymptotical behaviour of 

the hadronic process is dominated by the light-like distances 

inside the subgraphs, the contraction of which into point elimi-

*/Taking !"= P-r one gets rid of logari thmical contributions to 
the subprocess cross section. One can take also\"""~,. /~0 , or 1"2~ 
: 2.~~~~ ; but it is inconsistent to taket'-Z.:~(~,.W\'XI~. where :X. ~A 
and ?,/} are the momenta of partons taking part in the subprocess. 
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nates the dependence of the whole diagram on large variables. 

The parton picture and the light-cone dominance are the same 

phenomenon described in terms of two different languages. lt is 

worth noting that our approach differs from an old LC-analysis 

in that there is no need to have a product of two currents 

to begin with. Treating the pion EM form factors one starts with 

an expression (P1 \~"'(o)t?) possessing the only current. It 

is also possible (as for f\Y>-'tCX process) that an asymptoti-

cal behaviour is dominated by lightlike distances between the 

internal points of a diagram. 

A more detailed treatment of all the questions touched upon 

in this paper will be published elsewhere. 
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