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Supercurrent

The axial supercurrent is the simplest superfield containing
both the energy-momentum tensor and the supersymmetry spin-
vector current, The existence of this fundamental object is proved
in the general case, An algorithm for its dedvation from an arbitra—
ry superfield Lagrangian is giver.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR,
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1, Introduction

In 1975 Zumino/1/ observed that the energy-momentum tensor
'E;u(x) and the Nosther supersymmetry current ;5;1 {(x} of a
superaymmetric Lagrangian are componente of one supermultiplet,
Ferrara and Zumino’z/ have suggested that this multiplet can
be put into an axial vector superfield VA (x, 6) which
obeys a ceriain "conservation" law containing the coneervation
lawa for both _f;w (x) and J;M {%x) . They have called
this new object \/)M (x,8)  "gupercurrent™ and have found
i1te explicit form for the two simplest examples: those of the
chiral and the general scalar superfields. However, they have
given neither an algorithm for deriving the supercurrent, nor a
proof that it exista in the general case.

The concept of supercurrent has become very actual in con-
nection with the problem of finding a minimal superfield formu-
lation of supergravity. As we proposed in 1976/3/, the super-
current YL (x, s) can be viewed as the source of a gravi-
tational axial superfield £v4(1% 8) containing the spin-
2-gravitational field and the apin -3/2-"gravitino™ field (in

direct analogy with Einstein's gravity where the energy-momentum



tensor is the acurce of the graviton).*) It is Just the time
to answer the question: does ihe supercurrent really exist and
tow to find it in the general case?

Ir the present paper we solve this problem and ahow how to
construct the supercurrent given an arbitrary Lagrangian, The
paper 1s organised as follows. In Section Il some genersl proper-
ties of the supercurrent are reminded and discussed, Alamo, in
this ssction the final formula for the supercurrent is given for
convenience of the reader, In Section III some identities follo-
wing from the bamic invariances of the Lagrangian are derived
and uged in Ssciion IV to prove the exlstence of the supsrcurrent.
In Section V, the general fermula obtained is illuatrated by the
two simplest examples of Raf.12/1 Appendix A explains the nota-
tion, Appendix B is devoted to th’hg —current and ite connection

with the supercurrent.

II. Definition of the Supercurrsnt

We shall start with formulating the problem. Let
;fﬁqijilicfﬁlilti}3ﬂe-) be the lLagrangian for a supersymmet-~
ric system, It depends on the superfields CF}{]% 9} (L is

«)Several recent papera confirm the adequacy of the supercurrent
approach to aupergravity., Ferrara and Zumino/4/ discuss in a
geometrical framework the free Lagrangian for the superfield
Af‘(lq 6) obtained in rer.’?/. Wema and zumino’?/ reduce the
general supergecmetrical approach and their resulte in the line-
arized limit seem to be consistent with oura/3/. Quite recently
Stelle end Weat and Ferrara and van Eieuwenhuizen’ﬁl succeadsd

in constructing of a closed local supersymmairy algebra and of an

invariant action of supergravity, They used a minimal aet of fiaslde

which correspords to the content of the axial superfield A/" x, 8.
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a Lorentz index) and on their first and gecond apinorial deriva-
tives Qh‘?{iiaii}aqzﬁ (for definitions snd notation see

Apperdix A), The action of the system

3= [d'd 0L (F, 0.7, 0.0 ;) o)

is invariant under translatione and gupersymmetry transformations.

Pheraefore, following the FNoether procedure, two congerved currents
can be constructed: the ensrgy-momentum tensor 'Z;VLC() and the

aupersymmetry spin-vector current J;td (x) obeying the conaer-

vation laws

’B”L:O, D”‘;“:O (2)
(Note that Juuv (%) and ‘;;x (x) are bullt out of the or-
dipary coumponent fields entering into Eq.(1) efter the integra-
tion over DUB is carried out).

According tc the observation of Ref./1/, these two currents
ares members of a representation of the supersymmetry algebra
which is,in general, reducible. Indeed, the eymmetrized temscr

?;mv describes two spins: 2 and O (the latter i8 represen-
ted by the trace 7ﬂf‘;4 ) and the spin-vector <2;1¢ conta-
ins epins 3/2 and 1/2 (the latter being the spinor ( /‘ﬁ L/E )d Y.
The gpins 2, 3/2 and an additional spin 5 can form & supermultip-
let with superspin 3/2 /7'8/. The remaining spims 1/2 and O can

*
be combined into a chiral multiplet {superspin 0) ).

*) In some particular cases this chiral multiplet may vanish, A
neceasary condition is '7—/1M>2 { which means that the action

is scale invariant and 7?;4.v im “improved“lg/.



The problem now is how to put these representationes with '
supersping 3/2 and C into & single superfield connected 1in some
way with the Legrsngian Z{Kf{’,fz}&‘ﬂ‘/ @[D/;"ﬂ The simplest super-
fipld containing superspin 3/2 is the vector one \4\4 {/I, 6}
{see Ref.fs/). However, it includes other superspins toc (1 and
1/2), S0, in order to extract only the two superspina 3/2 and

0 with physical meening, a certain differential condition

has to be imposed on % x,8) . The condition

(r ‘D)‘{ \z;; (3}

sirngles out pure superspin 3/2 /8/ but we can modify it slightly

to allow for the superapin 0 too:

(JTOLVL =2« DipsDA + D TOB. o
Hore 4 and B are some scalar superfields and @t)d_,—@/? and
6?_) 8 describe chiral superfields, i,e. superspin O (one
can verify the superspin c¢ontent in Eg.(4) more precisely uaing
the projeciior cperators of Ref./e'/), It 18 not hard to show thet
Eq.(4) 1 egquivalent to = higher order differential condition

involving \4;_ only

- - - v
D00V = 200u(p"0), V. (5)
The choice of the "conservation law"” (5) is finelly justi-
fied when expanding Eq.{(5) in powers of 89( . It i8 not giffi-
cult to see thet the vector superfield \44 (X, 6) cheying

Eq.{(5) hae the decompoeition )
\f (x,6)= Uy x) +§‘2 < x) 7 69?}43‘(1) t g 9}1;8?}”?(:“

.t elwga(tyﬁuw L eyungd 0 fia) ) + (6
+§ 65.64(: PAu0) =200 A00), 3 % (60)' (% %) -2340 ),

PO

where  {(1), }(1 ), {x)

“tfw. (x) satisfy the conditlions

v M A
(0"/4 %AV),,(:OJ ?;““’:fy"l; 0 t/lb‘:gl’tﬂ

are arbitrary and ﬂ/‘{x (1/)

(77
Then 1t is obvioua that the combinations

- _ A - » v
7/:*' - t/‘“’ Y/‘Vt Ay J;m = A/‘*“ (}"/“){ A )u (8)
can gerve as conserved energy-momentum tensor and Noether super-

aynmetry current, So the superfield \/ {x, 0)
atands after "-f /1,5-

has to be
in Eq.(6)),
One ¢an show that the superspin 3/2 multiplet in % {6) consinta

axial t/.tv

of the fields t/qv ; /‘/u and 'U/:[ (the latter i3 connec-
ted in a way to the /’5‘ -current; see Appendix B) and the
in © /* M
superapin O is formed by (}t )r“t ”, P %} JC and F
The superfield V (X 6) with its conservation law
(4) or (5) was defined in Ref.lz/ and was called "supercurrent®.
Now a question arises: does the supercurreni exigt in the gene-
ral caae? In Ref./2/ it was constructed by hand for two simple
cages only, Here we give the general formula for the supercur—

rent for an arbitrary lagrangian Z (‘P,_ ; @,L CP, , ,((),4 (3/5 ‘ﬁ )

Vi = 5‘}4;% +2(5}474;)“3"®‘@¢“ +
+ 5 DipupsD(a-B o g, ) r200. 6 . 9

Tha following notation is used in Eq,(9):

Vo = £ (pide 2+ Quits 20 +

HAEP DP 2 +9 PP Z
where £ = (/ Lj: qjl

(10)

im & boson superfield and £ = 7



for a fermion auperfield; JC‘E and ;:%; are variati-
ona) derivatives of the Lagrangian
;Za [ 5Z :Za l! . g"z
oL 56"'% ) p{/b jueoy 55‘5/3% (11
Further
Lo Lt
\Pflﬂ( = —gf (Ddﬂy)/b% zﬁ/s t

: — { ~p,l, ap ]
r (A y):;‘(*i' 2w by 0 G + D7 #s ) e
where {/l/uv'):'d"

to the superfield index (or set of indices) i:

ie the Lorentz generator corresponding

=T L[ B XL 0B L H TR, 2% |

4o (4 B2 ) DR Lot S R i
Due to the squations of motion for the auperfields CP, the

gupercurrent (9) obeys the following equation

f ~ o —_
(J 0LV =5 2 Dps D -207 0,y ) + D D6 )
which is in fact the conservation law (4) with
A= 1 (a-00™"p,), B=6

Now we shall prove all these statements using the pymmetry

{(15)

propsriies of the Lagrangien and the equationa of motion,

I1II,lagrangian, Invariencea, Identitien

Here we derive three basic identities which follow from

and ensure the invariance of the mction (1) under translations,

sypertransformations and Lorentz transformations.

Re— =

In general notatlon the superfields “p‘ undergo the

following infinitesimml transformations

SR = Cu |G, P+ (/:c)g ij"], (16)

L3
where Gq’_ ([;_) is the differentiml {matrix)} part of the
generators and Cq_ are the corresponding parameters (even or
odd elements of a Grassmann algebra). Then the variation of the

Lagrangian ig

0= 59‘3 (17)

( Z and —Z’x/; are defined in Eq (11)). Using the Euler-

+@"5ff’ 2L+ D3 S, ,,z;/j

lagrange equations (equations of motion) for the action ,J

E;‘:_ﬁ _"ﬂ"‘ L._
N U R AR M N a8

one can rewrite Bq.(17) as followa
5= CESH: B L D 5P XL+
SR DPDL, - DRISE Lk as)

How we put Eq.(16) into Eq.(19)
7= ca (UGB T3*0 ¢ 6 2P 2,1 +
G R BPBN L+ 6 DDPR Lk

e[} 6], RL (00T, Rz (526, 0 2, ¢
AN ¥ R AR A B

Here the sign +(-) corresponds to even (odd) LI



On the other hand,the invariance of the action integral
(1) undsr {be tranaformaticns (16) implies that §~;f hes to
be o spstiel or spinoriml divergence. This requirement is often
vaplaced by a atr?nger one: the Lagrangien ;r is gupposed to

trenzform & e gcalar under the corresponding group, i.e.

EXT(J&G&{_Z : (21)

Comparing Eg.(21) with Eqg.(20), one can derive identities for
the lagrenglien ;( which reflect its symmetry properties,

Yow we consider the three basic inveriances of ;Zf in
thia aspect,

413 Translation invarisnce, Here

(:72('7:5(3/%} ' :0; [9,(}(7“]: 0.
Asswning that Eg.(21) holds (i.e. that :ZT does not dspend

on 20w  manifestly) and cancelling the parameters C?q we
find from Fg,{20)} &nd Eq.(21)

— ¢ = ' P )
B L = (-1 G B DL+ 0D P 2,
) NAEE oy M TA ‘¢
U B DD L + %D"D P2y 22)
2} Supsrinvariance. Now '
o WG - .
G'(L:: b* = { (95« * s (?/B)d) = t(@i +£04/‘6?)d?ﬂ)
- g,
{‘J': 0 | { QD‘: 593} =0
The requlirement (21) means that the Lagrangisn ies s superfield
by iteelf (i.e. it dose not depend on (3, manifestly,)
Therefore Eqs. (20), (21) lesd to

10

U+ (PO UL = (D PD L + D PP L+

+D P DY DA ZME + 028D P, Zf; +

P BL[EDE L 37 2 + D BPR T +

KR
’ (23)
Eq.{(23) splits into two identities, The firet one is obtained
from the terms with (p/'0 ), and it coincides with
Eq.{22)}. This is not a surprise because the tranaslation inva-
riance is in fact a consequence of the superinvariance. The

second ildentity i1s
D = VR DL 2, D 2+

o = = L
4“&%{?%‘2)92)Atzhf + ZL'Z)PZDRC%%‘;ZPA . (24)
With the help of identities (22}, (24) formula (20) for

the variation of the Lagrangian can be simplified. If the gene-

rators G%x of some other invariance group have the form

w 9 « ]
Ca=Ad e T B Q= AL ®«+B“ﬂ9/“ (25)

we cem rewrite Eq, (20) as follows

S‘I:COLGQI +
Ca {I [5“j Ga]; Pt [5*1 G&]?ﬁfbcﬁ Z.; .
B4([B G ), P2 | +
D% o I3 i NV P ) (26)
B [ 2 0 PR+ D 2 ]

1%



3) Lorentz invariance, The diffevential part of the gene-
rators
G, =T = D ~ X, L F 9:
@ = Juy v T 0%
is of the type (25), Further

[ﬁbﬁf J =" i— VQ))d 3
whers (yyﬂv)*d.

group representation corresponding to the index {(or set of indi-

ces) 1 of the superfisld t¥3£

&« — .
= (A

is the matrix generator of the Lorents

+. The invarisnce condition
(21) now means that the Iagrengisn is a Lorentz scelar. Putting
all thia inte Eq. (26) we obtain the identity

0= (00, )R, 2/ + (Do, )* 3PP, ;a,i +
+ i;d(ﬁwgv)/gqq‘

neo ‘ Bl ¢
20BN [F 2 F D77 +o' Z, | en

Coneluding this section we wigh to stress once more that
the identities derived (Egsm.(22), (24), {27)) are based on the
symneiry properties of the Lagrangian as well as on the aquations
of motion (18).

IV, The Derivation of the Supercurrent

Our goal ocan be formulated as followa, We wish to find
an axial supsrfield \/ (X, G)
Lagrangian ;f y 1ts variational derivativea Zf ;Z;;
and of the superfields Qﬁ{‘ and their derivatives inc¥% j
N 2%& P . The dimensionality of \64 has to be om~=
(l:\j*]_: LEephsO]. [ Tuu]= cm™ om = onPia0e Bqe. (6),(8)).

congtructed out of the

12

This supercurrent y;1(15 0) must obey the conaervation

law (4) due to the symmetry identities {22),(24) ard (27).
The starting point in our construction is the obmervation
that the translation identity (22) can be rewritten in the fomm

of a "conservation law" for a spin-vector “supercurrent"

— _
D “f/’“(x, 8) =0, (28)

where
W/.“( = % (r/‘lgjﬁ_’z + 9/.4(‘P£ Z‘("'

ﬁ o~ A
'f'("’) CP D Z/g.p( + 9 ,D 90 Zi/ﬁ . (29)

This new object contains the energy-momentum tensor. Indeed,

let us integrate Eq. (28) over al? g

0={d'6 3% Weu = Jd'6[~ 52 + 2% Gp)" g,

v
=00 ) (30)

6954 fx} obtained has in fact

= L”vaal"&. 96}4,,
The conserved tensor quantity
the right dimensionality cm"4 although it is not mym-
metric (the latter can be achieved only with the help of
Lorentz invariance),

Moresover,the spin-vector supercurrent contains the spin-

vector supsraymmatry current ];&ﬁ {JJ too., To gee this we
have to exploit the fact that the action ie superaymmetric,

Let us irtegrate Eq.(28) over o 4. cfff45)4 : _
0=Jd"6 (16), 2%, = Jd'6 (ue), [- i /)’f/%é:

:deg[‘(rﬂ?}a),c]* f Ja 0 4"0), QJ‘V%« - 1)



w=d-3 (5P 2]+ D DPP 2oy + (0t DAp DL ]

The second term in Eg, (31) has already the form of e conserva-—

tion law, 2¢ we have to examine the first one. Multiplying Eg.
(293 by Jl/q and using the supesrsymmetry identity (24)

one finds
()‘ﬁwﬁ}x = ﬁ'ﬁf;}x =

= ~z'23/5(]%2’+3_(9‘} Z/;} Diﬁf?g. Z/s;+(~7} 23 ‘??-QP,ZJ,/Q):
= (g2 -(/;@)dgﬂ'(jﬂ’"ﬂ)dcﬁ, (1 s s d/‘ +(T8) €

(32)

whers

(33.a)

<L @i B2 O VR LV GBI ZL] )

Cp= L{(3p P, 2+ (Bpa) DPF, Zoo + (0 Opp ) f, 2 % | (33.0)

J;c;'ﬁ Bipps) B2+ BT 2 0 Diprpe) RV ] (35,0

> Hog) Z; (D) a1 (B Y F) 577, J (33.0)
Fow we insert Eq. (32) into Eq,{31) and get

' 14
D=9 fdﬁﬁ['/éyf)d +{18), op it | =" foax), OB
i.,0. this is the conmervation law for a spin-vactor ourrent
J'Vd‘ (X}, having the same dimensionality as the Noether
supersymmetry current J/;d x)
Thus we see that the spin-vector supercurrent ‘fj‘“ (-T, 8)

(29) containe, in principie ,the two currents which we are

14

trying to combine into a superfisld, However, in comparison
with the axial supercurrent \;4 (X, 2) the spin-vector
one has too many superfluous componenta* ). So lf;(d. (%, 6)
c¢an gerve as a ground for deriving the axial supercurrent,

The only vector superfield with proper dimensionality obta-

ineble from \Ivjut ol. is

;= .
Vo= ‘2)}4,— ¥ (35)
(in principle one can add a term @)45}'/.4 )«tv ij but it can

be shown that it does not change the final result). So let us
!
caloulata uﬂﬁ@),‘ V/.‘ using Eq, (28}):

(oY = 2 [ 20-Dpsd)p e ]

Putting tke expansion (32), (33) into Eq, (36) we find

(36)

- (37)

The terms in the r,h.s, of Eq, (37) can be rewritten as follows:

(0L, = D0(ths2), a +DD.9, 8 +D D lps 57, €rcr

D2lps0)a =~ 3 (’}ﬂiﬁaﬂ“@ﬂz)d FAippsDa (38)

7) =0, DD ~(pN '

0D.0. 6 =2, 208 ~(p2), 2.0 4 (39)
To procesd with the third term iIn Eq. (37) we have to use the
rendining symmetry property of the Lagrangian**) .

*)11: is not the case in 2 or 3-dimensional space. There V;,‘ {x 9)
is the simpleet superfield containing /... and T/«d .

"}This latier step in the derivation of the supercurrent ias in
fact analogous to the well known Belinfante procedure for symmet-
rizaticn of the energy - momentum tensor 10 .

15



€MV-:Q)KR€“Va 2

where (40)

L .
boi =g By 75

£ . Y PFA 50
{'4 ﬂqﬂv)y (93";:t+'9?29ﬁlﬂ; +:Sﬁif:;i;l)
< J

therefore (41)
AR Vi ,
0y 0) e, - 3 (452, 02.95m g
Fal’d
HYD), [-2 (B VP -
0oL 2(app) P2 3 D0 30r J
S0, the r.h.a, of gy, WL 2y

(37) according t, Eqe

termg; (38)’ (39)'(42)3

containg two kindg of

nd the otherg have thg form

ed for redefining the initig]

. Tearrangementg
or the supercury
ent V
AN~ B

16

8ome of thep SoTrespond to the r,h,.g

2 A y A . A
AZ-:V: L 6/':" —?ME) "'TA_V"DV? g:f/-t + ‘Z/«v? 2"5;? -

-5 (000 =90, 0 ), 43)
where O;W is an arbitrary symmetric tensor, Indsead,

9’“67;., = { identically and A7;<v deea not change the foure
momsntum 8.4 = _f&{ 3‘.>c Ta/w
used to "improve" the snergy-momentum tensor /9/. In particulaer,

in Eq.(43))

x
). Such additiona are, in fact,
3
ths term (U/:,,I 7 M 07

67;1;» = “Q/W Bzm - %M(av o (44)
improves the energy~momentum tensor for tha scalar fiegld,

Juat the same situation is observed in the supeTcurrent
cass, There are terma which obey Eq. (4) automatically snd do
not change subatantially the currenta in the supercurrant decom-
position, One can prove that such terms cannot he conatructed
with the halp of one,two or thrae spirorial derivatives, Four
derivatives ars elraady sufficient for ths following nutomati-

cally osonserved combination

— A . M ] v oo -
5\//,* = 3"}%}‘5 2. D{'Ji prow, Fﬂi)trd&;.@. alf‘/q/“!yea Wi 0 (45)
where Wy  is an arbitrary vector superfisld. Tha opsvator
in Eq.(453) is in fact the opsrater of the fres equation of motion

for the vector superfield/:j/. This term (49) inoludes the addition

(42) to the energy-momentum tensor and the following automatically

*) Hote thai the operator in By, (43) is identical with ths
opsrater of the free squation of motion for a masalegy apin 2

field,

17



conserved addition to the supersymmetry current

— —_ Y _ i v 1 v
AJ/—\«J. - (?(P/A J"f«a ‘PV K} ra/“‘r LFy*‘z)"/\(/aJA lPl/ )a( (46)
( Lpﬁ +(3) ig an arbitrary spin-vector field). The particular

case (44) corresponds to the particular case

= =~ U
which is obtained from Eq. (45) putting Wj..tﬁ%z?q[ﬁapfﬁrﬁ)gj
(here P and S are arbitrary pseudoscalar and scalar ‘

superfields). In this cage we have the identity

' ~ 2 ‘ = o2
(D), AV = £ Du(BD) P~ (psDhu(52)7S . (48
This means that the quantities A and 3B in the r.h.8, of
the conservation law (4) are changed by purely chiral terms,

for instance

ph=1B2g, 68=-1 2P, (49)
or AA:%?S}‘YDP: AB:_fﬁj‘fgs’ etc,

It is clear that if A and B (Eq.(15) were obiral or,

at least, if they could bs split locelly (i,e. without using
projection operaters) inte parts with superspine 1/2 asnd O,
thenr one could redefine \41 to eliminate the r.h,a., in Eq.(4).
We wish to point out here that neither }f § . -inveriance, nor

scale invariance of the action are conditions gufficient for

vanishing the r,h.s., of Bq, (4).

V. Examples of Supercurrents

Po iilustrate our procedure,we shall obtain in this seotion

the supercurrent for +two particular cases, just for the

general and chiral scalar superfields. The resulting expressions
are the same as those given in Raf.lz/ without derivation.

1) Genersl ecalar superfield. The lLagrangian for the freae
massive general scalar superfield CP(Q} ﬁ) is

L= 1 DDPPUDP ~2m P s Loy = DD P 50,
Then one has to calculate the quantities (10)-(14) and insert
them into Eq.(9). We are not going to do all this here, Instead,
we should examine only the terms m,b, and @0‘/&‘/"@“, in
order to clarify the situation discussed at the end cf Section

IV, The corresponding expreswions are

4 o
A= g DI(D*P 3, P)- LmiPp? (51)
é= BﬁﬁﬂyQ[ﬁ“CIQ. D P) (52)
= vy A S e Lo 1 & —
DO, = 20(PTLP) "5 ODPopOP) . (53
#hen M = O tne superfields (51),(52),(53) are chirsl snd

po are 4 anda 8 (Eq.(15)), Therefore, according to Eq.(47) we
can redefine the supercurrent V/M_ in order to eliminate
the corresponding terms in Eq., (9):
V =D 2 (D )5
o = Os o e 2 (Dpps ) DD Byt - (54)
o .

Eq.(49) now implies that A= £ = 0 80 the r,h.s. in
Eq.{4) can be made zero in the massless case. This means, in
particular, that the redefined supercurrent {54 ) containe just
the improved energy-momentum tensor (see Ref.fz/}.

The final result for the supercurrent (ineluding the maesive

19



" case) ia ms follows

l\//M = ‘zl 52)5“‘7’ ﬁ@(}‘ﬂ)ﬂ;@)u;cp T

+ MmO P (pups DD P - 5 i Dpups D (P2 4
+20 (D HEF(DD) +mt)p. 5}‘/*}45‘@ © (55a)

(J"ﬂg).va«: - %"‘-\Mi.(ai 5}45‘@ (Cpi) .

The last term in Eq, (55a) vanishes due to the equations of

(55b)

motion so 1t does not effect the conmervation of the supercurrent,
However, it could become crucial when discuseing the transforma-
tion properties of the superfisld ':P(I, 6) {gee Ref./Bl).
2} Chiral ecalar superfields, Here we prefer the two com-~
ponent Van der Vaerden notation (ses Appendix A), The action for

the free mmselesa chiral superfield ‘P and its conjugate CP+

is traditionally written in the form’fll/

S=fdudio [Pp? +

b (B e 56 Y ]

(56)

where (5{9,‘ and 5(5) are 4  ~functions on
Gragsemann algebra, In order to derive equatlions of motion from
this action one has to very the superfields ‘P) CP* in Eq.
(56) under supplementary conditions

o Diop? -
DP=0,0"FP" =0, (s7)

This approach is not convenient for our purposes so we shall
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modify Eq. (56), Let us introduce a new general suparfisld
‘Y (x, b, 8) and its conjugate W*(II g, g ) and
define

= DO CP+: 55‘ *
CP } ]0 + (58)
Thua the chirality conditions (57) are automatically fulfilled,
Then Eq, (56) becomes

S = jd "x 0“6 [.'a@ oD@t L (pB0p +i0t 5T ‘F")‘j
(33)

and the squations of motion are obtainsd by tha alandard veria-
tional procsdure, Now we can #9 on to the supercurrani, Pirat

®s axamine the terms A and B of Eq.(15):

Al {-SPPre fmlep o) -

72
- £ [020e9*) + D3 (P [+ Fm o @(\.a")wrﬁﬁrwﬂﬁw
B[ mleP-et D7) r0B009t) -5 07ep)-
—}M(&)ﬂ(w‘)-- ’55!!3*)‘} ) (69)
Once wors one can omit tha manifestly shiral tsrms 1in Ham.

(60}, (61) for the reasons discussed above, Then after some

algebra we obtain the final reault

v = _g CP"}-L\‘B (P“CPI‘,{) £F+- i qd{@-"/(f =y oo
=3 fa AR T2 )P

N
J

DL < B B () o
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Both expresaions (55) and (62) coincide exactly with those
in Ref./zl.

Some applications of the general supercurrent formula in
the supergravity theory will be given elsewhere,

It is a pleasure for us to thank Dr.%.A, Ivanov for numercus

diacuesions.

Appendix A: Notations

In the present paper the four-component Majorana notations

are mainly used:

%{'J"f&}!‘vﬁr%/\,{u:mgfﬁL*‘_); )"f:J"OJ’“)”J‘ﬂJ )

- Lr 1. 07121
Opv = f‘—f/‘)fd ;€ =1.
The spinorial variables 80( are Majorana mpinors
. L4
8" = ()" 6. .
where C = l‘;i 0/1.1

The notation Cﬂ

is the charge conjugation matrix.
for the matrix r means C/b_P Jr;_ f .

The apinor derivatives @o{ are defined as follows

®*:(£}75[ﬁ6)“ ) {%0‘1(/‘)/5}: [/’ﬂ)&/aila/w

In the chiral superfield case the two component Van der
Vaerden formalism ia preferable, It is the same as in Refs.

72/, except for the sign of the anticommutator

‘[Z)‘_’ﬁ;‘ﬁ:»zt‘%.z . |
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Appendix B: The Hs —Invariance
L &

In Ref.lz/ a guess was made that the axial vector field
X
U (%)

)45; -current of the lagrangian and ite congervation was connec~

in the decomposition of the supercurrent (6) is the

ted with the venishing of the r.h.s. of Eq.(4). Here we show that
thie is not true in general,
Let ua examine the consequences of /1; -invariance of the

action (1), For this case (mee Eq,(16))

Oipsgy 5 [9u, 61 ]= (200,
(Ta )“J. = (ps)

is ne ground to write the invariance condition in the strong

(63)

for the fermion superfields.Now there

form (21) and we shall weaken it:

BZ: CG;Z"“C:E(/:\-( )
D% 4.

ter. The transformation (63) bhas the form (25) 80 we can use
Bq., (26) and find

"z, =

— 4 \ ~ ok ~ Y - } '
= (Bps) P 2L HIDps) D L, Ly + DB F o
24,
term frow Eq, (26) are combined together into a aymbolic diver-
D% 2,

"
Now we multiply the conservation law (4') by -£ 2)° and

(64)

where ie the parame-

is mome divergence and <

- {65)

The divergence from Eq.(64) and the ’T.q.

gence in the 1l.h.a, of Eg, (65),

Y
find
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oA .= s
V= §V Bipps Dfa-Do*ag) - £ (526
If the theory is j4;* -invariant, then the identity (65)

takea place and one can show that b (14) 18 a divergence:

g = fifJ? o « Therefora

and Eq. (66) becomes

V- 1 51,/,,,-2)/51 By~ 52. 3] = 0. ey

Integrating Eq.(67) over 0{"9 we obtain just the
)4$‘ -current conservation law, However, it is clear that

this current does not coincide with the Tg;gﬂr) -component

in Eq.(6). It would coincide if the r.h.s. of Eq. (4) were /)
but /Jf -invariance is not a condition gufficient for this,
A convincing example is the general scalar superfisld of Section
V. It is not difficult to show that that theory possesses )4? ~

invariance even in the massive case (when the r.,h.,s, in Fq.(55)

doea not vaniah),
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