ОБЪЕАИНЕННЫЙ ИНСТИТУТ
ЯАЕРНЫХ
ИССАЕАОВАНИЙ
A.T.Filippov

SPECTROSCOPY OF MESONS,
HADRONIC MOLECULES AND QUARKS and calculating THE CABIBBO ANGLE

E2 - 11435

A.T.Filippov

SPECTROSCOPY OF MESONS, HADRONIC MOLECULES AND QUARKS and calculating the cabibbo angle

Submitted to International Conference "Neutrino-78"

Спектроскопия мезонов, адронных молекул и кварков и вычислени угла Кабиббо
Построена феноменологическая теория спектра масс обычных и очарованных частиц с учетом примеси "молекулярных" состоянии. Определены массы кварков, и в модели Вайнберга-фрича вычислен угол Кабиббо. Пред ложена теоретическая формула для угла Кабиббо в модели, в которой отания 1280° овательных кварков постояно. Теоретическое значение равно $12,80^{\circ}$.

Работа выполнена в Леборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978
Filippov A.T. E2-11435

Spectroscopy of Mesons, Hadronic Molecules and Quarks and Calculating the Cabibbo Angle
By carefully analyzing the spectrum of the all known mesons in terms of a universal mass formula the strong interaction symmetry breaking effects are systematized, and the constituent quark mas ses established. By using the modified weinberg-Fritzsch formula
the cabibbo angle is expressed in terms of a symmetry breaking parameter r , and by applying the stability condition $\mathrm{d} \theta / \mathrm{dr}=0$ the formula $\operatorname{tg}^{2} \theta_{c}=\frac{\sqrt{1 / 3}-1 / 3}{\sqrt{3}+3}$ is derived. The predicted value $\theta_{c}=12.8^{\circ}$ and the assumptions on the quark mass spectrum used for the and the assumptions on the quark mass spectrum
derivation are in nice agreement with experiment.

The investigation has been performed at the Laboratory of Theoretical Physics, JNNR.

Preprint of the Joint Institute for Nuclear Research.
Dubna 1978
(С) 1978 Объеднненный пвститут ядерных исследованнй Дубна

In refg. $/ 1 /$ the following mass formula for mesons $\left(q_{i} \bar{q}_{j}\right)_{\alpha}$ was suggested (in what follows the masses of mesons and of quarks will be denoted by their respective symbols):

$$
\begin{align*}
& M_{i j \alpha}^{2}=4 m_{0}^{2}+2\left(m_{i}^{2}+m_{j}^{2}\right)-\frac{\left(m_{L}^{2}-m_{j}^{2}\right)^{2}}{M_{i j \alpha}^{2}}+2\left(m_{i}^{2}+\mu_{j}^{2}\right)(L+\beta N)+ \\
& +4\left[\mu_{F}^{2} \delta_{L O}+\mu_{F}^{2}\left(1-\delta_{L O}\right)\right]\left(\vec{S}_{i} \vec{S}_{j}\right)+\mu_{L}^{2}(\vec{L} \vec{S})-\frac{4}{3} \varepsilon_{i j \alpha}^{2}\left(M_{i j \alpha}^{2}\right) \tag{1}
\end{align*}
$$

Here $i, j=u, d, s, c$ (and we also use the notation $m_{i}=q_{i}$, $m_{u}=m_{d}=u, m_{s}=s, m_{c}=c$, etc. $), \quad \alpha=\left(\mathcal{J}_{1} L, S, N\right)$, or $\alpha=S, V, T, A, P \ldots \quad N$ is the radial quantum number (e.g., $N=0,1,2, \ldots$). In addition to relativistic kinematics, we here aooount for a symmetry breaking in the Regge trajectory slope and in the radial exoitation energy, whioh are supposed to be defined by the same effeotive radius $R_{i j} \sim\left(\mu_{i}^{2}+\mu_{j}^{2}\right)^{-1 / 2}$. The μ_{F}^{2}, μ_{L}^{2} and m_{0}^{2} may have somewhat different values $\bar{\mu}_{F}^{2}, \bar{\mu}_{L}^{2}$, and \bar{m}_{0}^{2} for the oharmed mesons. However, the main symmetry breaking effeots are supposod to be included in m_{i} and $R_{i j}$. For $I=0$ states we have to take into a,oount the quark mixing effects, and this was successfully done in $/ 1 /$. Here the effect of the mixing
parameter $\varepsilon_{i j \alpha}^{2}$ is a mere shift in $M_{i j \alpha}^{2}$ which is signifioant only for pseudosoalar ($\alpha=P$) mesons, and the dependence of ε^{2} on M^{2} is appreoiable only for $M^{2} \leqslant \eta^{2}$. For large mixing the mass formulae are neither linear nor quadratio in masses, while for $I=1,1 / 2$ states (and for $I=0$ otates with small maing, $\varepsilon^{2} \rightarrow 0$) they are linear. This oan easily
be proved by defining the effeotive masses $q_{i \alpha}$ of the quarks. For example, for the vector meson nonet we have

$$
\rho_{v}^{2}=s^{2}+m_{0}^{2}+\frac{1}{4} \mu_{F}^{2}-\frac{4}{3} \varepsilon_{v}^{2}, \quad u_{v}^{2}=u^{2}+m_{0}^{2}+\frac{1}{4} \mu_{F}^{2}-\frac{4}{3} \varepsilon_{v}^{2}
$$

and it is easy to verify that

$$
K^{*} \equiv K_{v}=s_{v}+u_{v}, \quad \rho=2 u_{v} \approx \omega, \quad \varphi=2 s_{v}
$$

If the parameters m_{0}^{2}, μ_{F}^{2}, and ε^{2} do not depend on the meson masses the simple relation holds: $\quad q_{i \alpha}^{2}-q_{j \alpha}^{2}=q_{i}^{2}-q_{j}^{2} \equiv \Lambda_{i j}^{2}$ To estimate the parameters let us take as the input
masses the following

$$
\begin{gathered}
\left.\pi, K, \eta, \rho, \varphi, K^{*}=K_{v}, A_{2}, K^{* *}=K_{T}, f, A_{1} \text { (or } \delta\right), B . \\
\text { Then } \quad 4 m_{0}^{2}+2 u^{2}+2 s^{2}=.7064, \Delta_{s u}^{2}=.1087, \\
\mu_{F}^{2}=.1107, \varepsilon_{P}^{2}\left(\eta^{2}\right)=\varepsilon_{p}^{2}\left(K^{2}\right)=.0605, \varepsilon_{p}^{2}\left(\pi^{2}\right)=.103, \varepsilon_{v}^{2}=.0020 \\
\varepsilon_{T}^{2}=.0114, \quad \mu_{F}^{12}=-.0132, \quad \mu_{L}^{2}=.2455,4 \mu_{s}^{2}=1.163,4 \mu_{u}^{2}=.9795 .
\end{gathered}
$$

The predicted masses of all other states with $\mathbb{N}=0$ prove to be in good agreement with experiment (up to some unknown mixing effects, whioh seem to be appreolable only for scalar mesons)

$$
\text { Assuming that } \quad \bar{m}_{0}^{2}=m_{0}^{2}, \quad \varepsilon_{c i}^{2}=0 \quad \text { and using }
$$

$\theta, \mathcal{D}^{*}=\mathscr{D}_{V}$ as the input masses we find

$$
\begin{aligned}
\Delta_{\mathrm{cu}}^{2} & =2.521, \quad \bar{\mu}_{\mathrm{F}}^{2}=.075, \bar{u}_{P}=.258, \bar{\jmath}_{p}=.418, c_{p}=1.609, \\
\bar{u}_{v} & =.376, \quad \bar{\jmath}_{v}=.500, \quad c_{v}=1.632 .
\end{aligned}
$$

The corresponding prediotions are

$$
F_{v}=2.131, \quad F=2.007, \quad \psi=3.263, \quad \eta_{c}=3.217
$$

The prediotions for ψ and η_{c} oan be signifioantly
changed by taking into account $\psi-\psi^{\prime}, \eta_{c}-\eta_{c}^{\prime}$ mixings
through $D \bar{D}, \mathscr{D} \bar{D}_{V}$ and $\mathscr{D}_{V} \bar{D}_{V}$ ohannels $/ 1 /$.
If $\bar{m}_{0}^{2} \neq m_{0}^{2}$ we need one more input parameter (eq. ψ)。
Then we can obtain the following prediction

$$
F_{v}=2.114, \quad F=1.997, \quad \eta_{c}=3.040
$$

Without incorporating the $\bar{D} \bar{D}$ ohannel's effeots the smaller value of η_{c} is extremely diffioult (if not impossible) to obtain, and so 1t is quite probable that $\eta_{c} \neq X(2.82)$ (a possibility of saring the hypothesis $\eta_{c}=X(2.82)$ was discussed in $/ 1 /$, in this oase the deoays of $X(2,82)$ are somewhat diffioult to explain).

The parameters $4 \mu_{c}^{2}, \bar{\mu}_{L}^{2}$ are to be obtained by using the masses $\chi_{2}(3.55), \chi_{1}(3.51), \chi_{0}(3.41)$ whioh howerer do not satisfy the simple Ls-splitting rule: $x_{2}^{2}+2 x_{0}^{2}=3 x_{1}^{2}$.
dsswaing that $\bar{\mu}_{L}^{2} / \mu_{L}^{2} \sim \bar{\mu}_{F}^{2} / \mu_{F}^{2}$ we oan prediot the value of $\bar{\mu}_{L}^{2}$ ($\left.\bar{\mu}_{L}^{2} \sim .16\right)$ whioh is rather olose to $\frac{1}{2}\left(x_{\lambda}^{2}-\chi_{1}^{2}\right)$.
This probably tells us that x_{0} is rather strongly mixed with $D \bar{D}$-states, e.g., with a $0^{+\dagger} \mathscr{D} \bar{D}$ bound state whioh must exist if the moleoular oharmonium model is true (see l,2) An unoertaint_{y} of the mixing effeots prevents us from finding the exact value of $4 \mu_{c}^{2}$. In the two models mentioned above we only obtain $4 \mu_{c}^{2}-2 \div 3$. A more reasonable ostimate oan be found by oonsidering the radially exoited states $\rho^{\prime}(1.6), \psi^{\prime}(3.7)$:

$$
\beta \approx 2.00, \quad 4 \mu_{c}^{2} \approx 2.04
$$

$$
\begin{aligned}
& \text { The oorresponding predictions are } \\
& \varphi^{\prime}=1.83,{K^{\prime}}^{\prime}=1.72(N=1), \psi^{\prime \prime}=4.19(N=2), \psi^{\prime \prime \prime}=4.6(N=3)
\end{aligned}
$$

and the states $\psi^{\prime \prime}, \psi^{\prime \prime \prime}$ may be reasonably 1dentified with 1^{--}
$\psi(4.18), \psi(4,14)$. Using this value of $4 \mu_{c}^{2}$ it is easy to predict also the radially and orbitally exoited states of the D-partioles. The experimental observation of such states would allow one to solve the problem of finding the exact value of $4 \mu_{c^{2}}$ as well as to prove (or disprove) our ideas on the phenomenological description of the symmetry breaking effects.

To calculate $\Gamma\left(V, V^{\prime} \rightarrow e^{+} e^{-}\right)$we have to use some equation for the wave functions of quarks ($u_{i j}$) and to ohoose a potential. The simplest model whioh is oonsistent with our mass formula is provided by the equation

$$
\begin{equation*}
\frac{d^{2} u_{i j}}{d r^{2}}-\left[x_{i j}^{2}+\frac{(L+1)^{2}-1 / 4}{r^{2}}+V_{i j}(r)\right] u_{i j}(\tau)=0 \tag{2}
\end{equation*}
$$

Where $\quad \dot{k}^{2} \equiv-x_{i j}^{2} \quad$ is the relative momentum squared of the quarks in the c.m.s.,$r^{2}=\left(x_{i 0}-x_{j 0}\right)^{2}+\left(\vec{x}_{i}-\vec{x}_{j}\right)^{2}$ and the metrios is Euolidean. For the pion this equation essentially ooinoides with the Euolidean Bethe-Salpeter equation. Negleoting the spin- spin interaotion we may ohoose the potnetial in the form

$$
V(\tau)=\frac{1}{R^{2}}\left[g_{2} \rho^{2}+g_{1} \rho+g_{0} \ln \rho+g_{-1} \rho^{-1}\right], \rho=\frac{\tau}{R} .
$$

The value of $\quad \beta$ obtained above agrees well with the osofllator potential. However, the linear one, gives rather similar results, and even an admixture of the Coulomb and logarithmio potentials is impossible to exalude protided that $g-1$ and g o are not large. Suoh an admixture changes the dependence of $\Gamma\left(V_{N} \rightarrow e^{+} e^{-}\right)$on H, as

$$
\Gamma\left(v_{N} \rightarrow e^{+} e^{-}\right) \sim\left|v_{M}(0)\right|^{2} M_{v_{N}}^{-3} ; v_{N}(\tau) \equiv \tau^{-3 / 2} u_{N}(r) .
$$

Using this faot one oan obtain a good fit for $\Gamma\left(\psi^{\prime}\right) ; \Gamma\left(\psi^{\prime \prime}\right) ; \Gamma\left(\psi^{\prime \prime \prime}\right)$ with reasonably small admixtures of the logarithmio and Coulomb potentials, not spoliling the nioe result for the β.

In addition to the notorious $\eta_{c}-X$ problem we have a problem of explaining the states $\Psi(3.77), \psi(3.95)$, ψ (4.03). As their masses are almost equal to $2 D, \mathscr{D}+D_{v}$, and $2 D_{V}$ resp., and there are some arguments in favour of a rather strong interaotion between the pairs $\mathcal{D} \overline{\mathcal{D}}, \mathcal{D}_{V}$ and $D_{V} \bar{D}_{V}$ in the $y=1$ state $/ 2 /$, we may try to interprete these resonanoes as threshold resonanoes in oorresponding ohannels. If $\psi(3.77)$ is the $L=1 \quad D \bar{D}$ resonanoe, and $\psi(4.03)-L=1 D_{V} \bar{D}_{V}$ resonanoe, the $O^{++} D \bar{D}$ and $D_{V} \bar{D}_{V}$ bound states must exist due to exchange degeneraoy of the forces. Following this reasoning we speoulated in $/ 1 /$ that the $X(2.82)$ oould be suoh a bound state x). As the effeotive radil of the oharmed partioles are smaller than those of the old particles, and as the foroes between D and $\bar{\delta}$ have praotioally the same radius $\sim\left(2 m_{\pi}\right)^{-1}$, it is legitimate to use for desoribing the $D \bar{D}$ bound states the relativistio quasipotential equation $/ 3 /$ negleoting the struoture of D-particles. For soalar particles. interaoting ∇i_{a} the Yukawa exohange $\sim g \frac{e^{-2 m_{\pi} \tau}}{Z}$ the Todorov's version of the Logunov-Tavkhelidze equation seems to be most approprlate. (One oan formally derive the equation by considering z in eq. (2) as a three dimensional veotor and by introduoing in the potential the dependenoe on the mass of

[^0]the bound state: $V \rightarrow V / M)$. Then, by fitting the mass of the $L=0$ state $X(2,82)$ we prediot the mass of the $L=1$ state ≈ 3.74 whioh reasonably agrees wth the ψ (3.77) mass. Describing 0^{++}and $1^{--} \mathcal{D}_{V} \bar{D}_{v}$ states by the same equatIon with the same potential we prediot their masses to be 3.53 and 4.02 resp., and this allows us to identify them with $X^{\prime}(3.454), \quad \psi(4.03)$.

Having understood the pattern of the meson spectrum and af the symmetry breaking, we are now in a position to make a definite statement about the quark mass speotrum. Modifying the arguments of Weinberg and Fritzsch/4/, we can also give a very reasonable prediotion for the cabibbo angle θ_{c}. Assume that $m_{\pi} \rightarrow 0$ when $u, d \rightarrow 0$ while the parameters m_{0}^{2}, μ_{F}^{2}, and $\varepsilon_{p}^{2}\left(\pi^{2}\right)$ remain essentially oonstant. Then $u \approx d \approx \frac{m_{\pi}}{2}$, and we oan obtain the "true" masses of the oonstituent quarks:

$$
u \approx .070, s \approx .33, c \approx 1.59
$$

These masses satisfy a remarkably simple relation

$$
r^{2}=\frac{u}{s}=\frac{d}{s} \approx \frac{j}{c} \approx .21
$$

so as the Weinberg-Fritzson formula $/ 4 /$ may be writton in the form:

$$
\begin{equation*}
\theta_{c}=\operatorname{arctg} r-\operatorname{arctg} r^{2} \tag{3}
\end{equation*}
$$

In the original derivation this formula related θ_{c} to
the ourrent quark nasses and here we used instead the wonstituent" ones. In fact, we have presently derived the same
formula starting from other assumptions whioh are, to our mind, more oonsistent than the original ones (to be published). In our derivation the quark masses in the weinberg-Fritzsoh formula are to be unambiguoualy interpreted as the "oonstituent" nasses. If, in addition, we subjeot $\theta_{c}(z)$ to a natiral stability oondition

$$
d \theta_{c}(r) / d r=0, \quad r=r_{0}
$$

we oan derive from (3) the τ_{0} - After simple oaloulations we finally obtain an amusing formula

$$
\begin{equation*}
r_{0}=\frac{1+\sqrt{3}}{2}-\left(\frac{3}{4}\right)^{1 / 4}, \quad \operatorname{tg}^{2} \theta_{c}=\frac{\sqrt{\frac{1}{3}}-\frac{1}{3}}{\sqrt{3}+3}, \quad \theta_{c} \approx 12,79^{\circ} \tag{4}
\end{equation*}
$$

This result is dependent on neglecting the heavier quarks, on simplest possible assumption about the quark mass ratios, etc. However, the agreement of (3) and (4) with experiment is impressire!

References:

1. A.T.Filippor. Neutrinom 75 M, Badapest, 1975; "Neutrino-77", Nauka Publ., Mosoow, 1977; Proo. of the 18th Intern.Conf. on HEP, rol.1, pp.C129-152, Dubna, 1977.
2. M. Foloshin, L.Okun, Piama Zh.Exptl.Teor.Fiz. 23, 369 (1976). A.De Rujula ot al. PRL, 38, 317 (1977).
3. A.Logunov, A.Tarkhelidze. Kuovo Cim., 29, 300 (1963); I.Todcrov. Phys.Rev., D3, 2351 (1971).
4. S.Weinberg. Prepr.MIT, 1977 ; H.Fritzsch. Prepr.CERN, 1977.

Received by Publishing Department on March 31, 1978.

[^0]: x) This possibility was later oonsidered in more detail by a student of alne O.Rassi-Zadeoh; to be published.

