ОБ ЪЕАИНЕННЫЙ ИНСТИТУт
คAEPHЫX
ИССАЕАОВАНИЙ

$$
5 / n-78
$$

$$
\begin{aligned}
& F-52 \\
& 2384 /_{2}-78
\end{aligned}
$$

E2-11434
A.T.Filippov

QUARK SPECTROSCOPY
AND CABIBBO ANGLE

A.T.Filippov

QUARK SPECTROSCOPY AND CABIBBO ANGLE

[^0]

Фнллипов А.Т. Кварковая спектроскопия и угол Кабиббо На основе уточнения и обобщения идеи Вайнберга и Фригча получена формула, выражаюшая угол Кабиббо $\theta_{\text {с }}$ через параметр нарушения симметрии сильного вэяимодействияг. Нз условия стационарности $\delta \theta_{c^{\prime}} \delta \mathrm{r}=0$ найдено значение $\theta_{\text {с }}$ при достаточно простых предположениях о харахтере нарушения симметрии сильного взаимодействия. Простейшая полученНая таким способом формула $\operatorname{tg}^{2} \theta_{\mathrm{c}}=\left(\sqrt{\frac{1}{3}}-\frac{1}{3}\right)(\sqrt{3}+3)^{-1}$ дает значение $\theta_{\mathrm{c}} \simeq 12,794^{\circ}$. блестянее согласующееся с эксперяментом. Похазано, что феноменологический анализ нарушения $\operatorname{SU}(4)$-симметрии в слектре мезонов хорошо согласуется с предположениями, сделанными при выводе формулы для угла Кабиббо. Работа выполнена в Лаборатории теоретической фиэики ОИяи. Препринт Объединенного института ядерных исследований. Дубна 1978
Filippor A.T. Quark Spectroscopy and Cabibbo Angle The expression of the Cabibbo angle θ_{c} in terms of the \mathbf{u}, $\mathrm{d}, \mathrm{s}, \mathrm{c}$ quark masses is obtained by using a generalization of Weinberg-Fritzsch arguments. Introducing as the symmetry breaking parameter $\mathrm{r}=\mathrm{d} / \mathrm{s}$ and requiring that $\frac{\mathrm{d} \theta_{\mathrm{c}}}{\mathrm{dr}}=0$ we find for the simplest quark mass spectrum the formula: $\operatorname{tg}^{2} \theta_{\mathrm{c}}=\left(\sqrt{\frac{1}{3}}-\frac{1}{3}\right)(\sqrt{3}+3)^{-1}$. The corresponding values $\theta_{c} \approx 12.8^{\circ}$ and $\mathrm{r}=0.454$ are in very good agreement with experiment. The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
Preprint of the Joint Institute for Nuclear Research. Dubna 1978

Preprint of the Joint Institute for Nuclear Research.

Since the intreduotion of the generalized universality of the weak interaotion, based on a possibility of rotating the hadronio weak ourrent by the cabibbo angle θ_{c}, there were many attempts to oaloulate thi angle or, at least, to explain its amall magnitude $\left(\theta_{c} \approx 13^{\circ}\right)$. The iden of estimating θ_{c} is euggested by an empirioal relation $\operatorname{tg} \theta_{c} \sim \frac{m_{\pi}}{m_{K}}$, Whioh possib IJ tells us that θ_{c} is somehow related to strong interaction symatry breaking. In refse/I/, /2/ it was shown how the cendition of cancollation of divergences, induoed in the quarly matrix b_{y} weak interaotions, might give a relation like $\operatorname{tg}^{2} \theta_{c} \sim d / s$ (d, s denote the masses of the quarks d and s). In the appreach $/ I / 9 / 2 /$ the Cabibbo angle proved to be intrinsioally related to the etrong ohiral symmetry $S U_{2 L} \times S U_{2 R}$, and the amall magnitude of the θ_{c} was explained in terms of the small aymatry breaking paraneter.

The invontion of the 0 -quarl made the theory of the veak interaotion mere symetric /3/and gare rise to new appromohes for caloulating θ_{c}. The pairs $(u c)(d s)$ oan independentI_{y} be rotated by angles θ_{1} and θ_{2}, resp., while the hadronio ourrent $J=\bar{c}_{\theta_{1}} \jmath_{\theta_{2}}+\bar{u}_{\theta_{1}} d_{\theta_{2}}$ oan be represented in the standard
(C) 1878 Объединенный пвститут пдерных исследования Дубна
form $J=c s_{\theta_{c}}+\bar{u} d_{\theta_{c}}$, where $\theta_{c}=\theta_{2}-\theta_{1}, d_{\theta_{c}}=d \cos \theta_{c}+r \sin \theta_{c}$, eto. Using such rotations and some plausible assumptions on the form of the quark mass matrix in one of the bases, weinberg / $/$ / and Fritzsch /5/ disoovered new formalae whioh express θ_{c} in terms of u, d, j, c. These formulae ooinside with the Gatto et al. old formole in the limit $\frac{u}{c} \ll \frac{d}{s} \ll 1$.

As assumed in these papers, the mass matrioes of the pairs (uc) and ($d s$) satisfy, in the original mweak" basis, the relations $Q_{u c}^{(1)}=\mathbb{Q}_{c u}^{(1)}$, $Q_{d s}^{(2)}=Q_{s d}^{(2)}, Q_{u u}^{(1)}=Q_{d d}^{(2)}=0$. It follows that $\operatorname{det} Q^{(1)}=-\left|Q_{u c}^{(1)}\right|^{2}$, $\operatorname{det} Q^{(2)}=-\left|Q_{d s}^{(2)}\right|^{2}$, i.e., eigenvalues of the matrices, whioh are to be identified with the quark masses, must be of opposite signs.

For this reason we first propose a new derivation of almilar formulae starting from sonewhat different assumptions. When the weak interaotion is switohed off, the matrioes $Q_{i j}^{(\prime)}$ and $Q_{i j}^{(2)}$ are supposed to be diagonal, their elgenvalues being equal to the masses of the quarics $(u c)$ and $(d s)$, resp. These are the "constituent" quark masses, in terms of wioh the masses of the hadrons are defined. Switohing on the weak interaction makes $Q^{(1)}$ and $Q^{(2)}$ non-diagenal: $Q_{u c}^{(1)}=Q_{c u}^{(1)}=a_{1}, Q_{d s}^{(2)}=Q_{s d}^{(2)}=a_{2}$, where $a_{1}, a_{2} \in \operatorname{Re}$. Let us assume that the weak interaotion "ohooses" suoh a basis $\left(u_{\theta_{1}}, C_{\theta_{1}}\right),\left(d_{\theta_{2}}, J_{\theta_{2}}\right)$ that $Q^{(i)}$ are diagonal and, moreover, $Q_{u \mu}^{(1)}=Q_{d d}^{(2)}=0$. This condition is essentially equivalent to the vanishing of u and d "ourrent" quark masses, and in the new basis the ohiral $S U_{2 L} \times S U_{2 R}$ aym motry will be exaot. An elementary oaloulation, with the oondi-
tions $Q_{u \mu}^{(1)}=Q_{d d}^{(2)}=0$ properly taken into aocount, gives the relations

$$
\operatorname{tg} 2 \theta_{1}=2 \sqrt{c u}(c-u)^{-1}, \quad \operatorname{tg} 2 \theta_{2}=2 \sqrt{3 d}(1-d)^{-1}
$$

This results in the Weinberg - Fritzsoh /5/ formala whioh we rewrite in the form

$$
\begin{equation*}
\operatorname{tg} \theta_{c}=\frac{r-z_{1}}{1+r r_{1}} \quad, \quad r^{2}=\frac{d}{s}, \quad r_{1}^{2}=\frac{u}{c} \tag{2}
\end{equation*}
$$

If we had added a_{i} also to the diagonal elements of $Q^{(i)}$, we would obtain the same eq. (2) for θ_{c}, exoept for the relation between quark masses and $z_{1} r_{1}: r \rightarrow \bar{z}=\frac{d}{s}, r_{1} \rightarrow \bar{r}_{f}=\frac{u}{c}$. If the weak interaotion terms in the $Q^{(i)}$-matrioes had a more oomplicated struoture (e.g., a_{i} are added to all the elements exoept for $\left.Q_{u u}^{(0)}, Q_{d d}^{(2)}\right)$, the formula for θ_{c} would be the same, but the relation of z, r_{1} to the quaric mass ratios would be more oomplioated. The structure of the mweak" mass matrix is essentially dependent on a weak interaotion model used. As expressed in refs. $/ 4 / 3 / 5 /$ and in references therein, the matrices in the $S U_{2 L}^{w} \times S U_{2 R}^{w} \times U_{1}^{W}$ type theories probably meet our requirements.

The hypothesis of ranishing the "ourrent" quark masses u, d gave us the nonmtrivial relations $a_{1}=\sqrt{c} u, a_{2}=\sqrt{d s}$, whitoh in prinalple oovld be satisfied in a unified theory of strong, eleotromagnetio and weak interaotions (of.,e.g.,/4/), As we are not in a position to really oaloulate a_{i} and u_{i}, d, i, c we instead will use a neoessary condition for the existence of suoh a relation-a prinoiple of extremality of θ_{c} with respeot to amall variations of a symetry breaking parameter
near its true value. Ls suoh a paraneter we ohoese Z, implring that $r_{1}=r_{1}(r), r_{1}<r, 0<r_{1}^{\prime}(r)<1$

This assumption oan be approximately satisfied in a theory of spontaneousiy broken $U_{n L} \times U_{n R}$ symetry $/ 6 /$. In this theory the spantaneous breaking of the $U_{n}-s y m m e t r y ~ o o o u r s ~ t h r o u g h ~$ an interferenoe of majagonal $M_{\mathcal{L}}\left(q_{i} \bar{q}_{i} \rightarrow q_{i} \bar{q}_{j}\right) \sim g_{D}$ and of mon-diagonal" $m_{n}\left(q_{i} \bar{q}_{i} \rightarrow q_{j} \bar{q}_{j}\right) \sim g_{E} \quad$ quaric--transitions. Far $g_{E} / g_{D} \ll 1$ the nonsymuetrio solutions of the self-oonsistent equations for the quark propagators are energetioally more farourable than the symetrio ones, and the sequential symetry breaking $U_{n} \supset U_{n-1} \supset \ldots \supset U_{2}$ oan be realised under conditions $\frac{u}{s} \sim \frac{d}{s} \sim \frac{s}{c} \sim\left(g_{E} / g_{D}\right) / 6 /$.
The same mechanisi of the quark-mizing expleins the large $\eta-\eta^{\prime}-m x i n g$, and $\varepsilon_{\eta}^{2} / m_{K}^{2} \sim g_{E} / g_{D}$ (Irow the mass formim lae we obtained $\left.\varepsilon_{\eta}^{2} / m_{k}^{2} \sim 1 / 5\right)^{1 / 7 /}$.

As the a_{i} implioitly depend on θ (e.g., in the simplest model of ref. $/ 27 a_{1} \sim \sqrt{u} \bar{c} \sin 2 \theta$), the requirenent $\frac{d \theta_{c}}{d r}=0$ seans to be neoessary to guarantee a self - oonalatent solution of all the oonstraints. A more formal argasent in favour of this requirement oan be deduoed from the quark oonfinement hypothesis. As seon as there are no free quarks, their masses q_{i} and the symetry breaking paraneter are defined by some averaging prooess/8/. Any physioally aoceptable solution has to be stable with respest to oorresponding fluotuatiens of r henoe $\theta^{\prime}(\gamma)=0$.

Fron the equation $\theta^{\prime}\left(r_{0}\right)=0$ we now obtain r_{0} and $\theta_{c}\left(\tau_{0}\right)$
$r_{1}^{\prime}\left(r_{0}\right)=\left[1+r_{1}^{2}\left(r_{0}\right)\right]\left(1+r_{0}^{2}\right)^{-1}, \quad \operatorname{tg} \theta_{c}\left(r_{0}\right)=\frac{r_{0}-r_{1}\left(r_{0}\right)}{1+r_{0} r_{1}\left(r_{0}\right)}$
With the cimplest asamption $r_{1}=x^{2}$ one can easily deduoe from eq. (3) the amsing formula

$$
\begin{equation*}
i_{0}=\frac{1+\sqrt{3}}{2}-\left(\frac{3}{4}\right)^{1 / 4} \approx .4354, \operatorname{tg}^{2} \theta_{c}=\frac{\sqrt{\frac{1}{3}}-\frac{1}{3}}{\sqrt{3}+3}, \theta_{c}=12.794^{\circ} \tag{4}
\end{equation*}
$$

The relation $Z_{1}=r^{2}$ and the "extrenal" value of the symmetry breaking paraneter τ_{0} are to be oompared with the empirical relation between $\frac{u}{c}$ and $\frac{d}{s}$ obtained in /7/. Ons oan roughly reproduoe the results of this paper by introduoing the effectiremass $q_{\text {ia }}$ of the 1-th quark in a rector $(\alpha=V)$ or pseudosoalar $(\alpha=P)$ meson: $q_{i \alpha}^{2}=q_{i}^{2}+m_{\alpha}^{2}$, where q_{i} is the wtruen mass of the quark. Then, for states with saall mixing of quarks $\left(\varepsilon_{\alpha}^{2} \rightarrow 0\right)$ the $\left(q_{i} \bar{q}_{j}\right)_{\alpha}$ meson mass is $M_{i j \alpha}=q_{i \alpha}+q_{j \alpha}($ see $/ 6 /, / 7)$. Using the masses of ρ, φ, D, D^{*} as the input paraneters and exploiting the obvious relation $q_{i \alpha}^{2}-q_{j \alpha}^{2}=q_{i}^{2}-q_{j}^{2}$, one oen easily oalculate $u_{\alpha} \approx d_{\alpha}, s_{\alpha}$ and C_{α}. To find the true masses u, d, s, c we observe that in the limit $u, d \rightarrow 0$ the pion mass has to vanish, therefore $m_{n}^{2}=2\left(u^{2}+d^{2}\right)$. Performing a more rigorous oalculation, whioh aocounts for the $u-d$ mass differenoe and the quark mixing (see/7/) we arrive at the final result

$$
\begin{equation*}
u=.063, \quad d \approx .073, \quad s \approx .337, \quad c \approx 1.59 \tag{5}
\end{equation*}
$$

For these masses of quarks the relation $\tau_{1} \approx r^{2.11}$ is satisfied and the corresponding θ_{c} (as obtained from eq. (2)) is slightif larger than that given bj eq. (4). Negleoting the u-d splitting we have a remarkably simple pattern of symmetry breaking 1if the quaric massea: $\frac{u+d}{2}: 1 \approx \frac{j}{c} \approx z^{2}$, where $z=.454$ is rather alese te the mextramal value z_{0} in eq. (4). Rearark in passing that the relation $\tau^{2} \sim\left(\varepsilon_{\eta}^{2} / m_{K}^{2}\right) \sim\left(g_{E} / g_{0}\right)$ is also satisfied.
other asarnpiteng on "reak oorreotions and on $4, d, y, c$
mass speotrun (e.g., $\tau_{1}=r^{2+\varepsilon}$) would give somewhat different formulae for θ_{c}. However, the simplest one, given by eq. (4), is in the best agreement with the experimental value $\theta_{c} \approx 13^{\circ}$ and with the empirioal mass speotrum (5).

Referenoes
/I/ N.Cablbbo, L.Maiant. Phys. Lett. 288, I3I (1968).
/2/ R.Gatto. Riv. Nuovo Cim., I 514 (I969).
/3/ S.Glashot e.a. Phys. Rev. D2, I285 (1970).
/4/ S.Weinberg. Preprint HUTP-77/A057, Harvard (I977).
/5/ HoFritzsch. Preprint TH. 2358, CRRN, Genera (1977).
/6/ A.T.Filippov. Ins "Neutrino-75", vol. 2, Budapest, I975;
"Neutino-77", rol.2, Mocoon, WNauka"Publ., 1978;
Proo. of the I8-th Intern. Conf.on High Energy Physios, vol. I, pp. CI29-159, Dubna, 1977.
/7/ A.T.Filippov. Preprint JINR,E2-11435, Dubna; (I978). /8/ E.Poggio e.a. Phys. Rev. DI3, 1958 (1976).

[^1]
[^0]: Submitted to "Письма е ЖЭТФ"

[^1]: Received by Publishing Department on March 31, 1978.

