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Bnonue HHTerpupyeMeie raMullbTOHOBbLIEe CHCTeMbl, CBs3aHHEIE
C HeCaMOCOIpsAXeHHbIM olleparopom HHPBKB

B nacrosameft pa6ore paccMaTpuBaercs ONHOMepHbil HECAMOCOINPSKEHHbIH
onepatop [upaka:

1 X
Leilg_Dar * Gpy o0
raoe KOMnjleKCHo3HauyHbie ¢yHKUMH Q(X) K P(X) YAOBAETBOPHIOT YCI/OBHAM
q(x) » Qs ® p(x)-'pi, npu X - *oo, Qp,= QP _. B npeanofntoxeHun
KOHEYHOCTH M NPOCTOTH! [JHCKDeTHOro crnekrpa oneparopa L peuwedb npsmas
H ofpaTHas 3adau# paccesHdus ansg oneparopa L., Ha ocHose nonyueHHmIX 1. INTRODUCTION

fbopMyn clleapa onucaH Kiacc SeCKOHe"lHOMeprIX raMHl1bTOHOBbL'X CHCTeM

H BLIMHCIICHb MepeMeHHbIe AeficTBue-yrof. The inverse scattering method (ISM) for solving

Pa6ora Bunonnena B JlaGopaTopuu Teoperudeckolt duaunku OUAU, one-dimensional non-linear evolution equations (NLEE),
invented on the example of the Kortweg-de-Vries
equation /v2/ , became very popular after the pers
of V.E.Zakharov, A,B,Shabat, and L.D,Faddeev’3'%%
In refs,’ 3% the one-dimensional non-linear Schr&-

MpenpasT OBbenMHEeHHOro MHCTHTyTa saepHsix uccrnenopaHud. [y6Gua 1978 dinger equation was solved:
. 2 +
Gerdjikov V.S., Kulish P.P, E2 - 11394 Tuy + Uy + 2ufu =0, =1, —o <X, <, (1.1)
Completely Integrable Hamiltonian Systems, Connected . .
with the Non-Self-Adjoint Dirac Operator Equation (1.1) has a wide application in plasma
We consider the non-self-adjoint one-dimensional Dirac opera- physics, non-linear optics, and in a number of
tor 0 qx other physical phenomena /%/. It can be considered

., 1 0 d
LE](O_I)-Ex—+(p(x) 0).

. . o as a Hartree-Fock equation for one~-dimension
where the complex-valued functions q(x) and p(x) satisfy the condi- als q nsional

tions §X) - 9+, PX)-p: when X+t , q,p,=9¢_p_. The direct bose-particles with a -¢¥X) interaction, As natural bo-
and the inverse scattering problem for the operator L are solved, undary conditions, under which non-singular soliton solu-
Pf‘OVided u‘mat the discrete spfectrum of .the r?;?erator L is fml.te.a.rxi tions exist, we consider: ¢=1 (attr‘action): u(x,t) - 0,
simple. Using the correspording trace identities a class of infinite . . .
dimensional Hamiltonian systems is described, for which the action- X} » 0§ e=-1 (r‘epulston). |u(x,t)| > const # 0, |x| » oo,
angle variables are calculated. The former case corresponds to one-dimensional

The im-estigation has been performed at the Laboratory bose-gas with a finite density, These cases are
of Theoretical Physics, JINR. interesting also because the corresponding quan-

tum problems are exactfy solved and it can be de-
monstrated that to the solitons (particle-like soluti-
ons) after ?uantization there correspond quantum

7

Preprint of the Joint Institute for Nuclear Research. Dubna 1978 particles /
Initially the ISM consisted in finding such a

pair of operators L and M depending on the solution
of the NLEE u() t), that Lax's evolution equation

© 1978 O6seauseHHsIA HHCTHTYT saepHbix mccneaopaHuh [yOra



L, = [LM] is equivalent to the corresponding NLEE,
Today there exist other formulations of the ISM, where
the NLEE is the integrability condition for a pair of
linear operators X and T (i.e.,, NLEE < [X,T] = 0).
For more details see papers /8-13/,

One can also use the approach of paper /5/,
which is applicable provided that: i) the inverse
scattering problem for the operator L is solved, and
ii) that there exists a symplectic form on the mani-
fold of coefficient functions (potentials) of the operator
L . Then recalculating the symplectic form in terms
of the scattering data we can determine the action-
angle variables, As Hamiltonians we will choose the
functionals entering into the trace identities : there-
fore we need not use the M operator, It is this
approach we use in the present paper.,

As an L operator for equation (1.1) the one-di-
mensional Dirac operator is used:

. d 10
L = 103-3-; + Qx), Ig= (0 —1)’ (1'2)
where Q(x) is a matrix potential of a special type:
_( 0 a® ke
W= g > D = - @@= u. (1.3)

The operator L with zero boundary conditions
for g(x) and p(x) Iis investigated in detail, and the
corresponding class of NLEE is described in refs/8:12/
The inverse scattering problem for the operator L
with non-zero boundary conditions was considered
in refs, /47114 , but these papers do not contain
the complete solution of the problem, and a number
of formulae should be made more precise,

We are going to consider the general case of
a non-self-adjoint operator L, restricting only the
asymptotic values of the potential by:

limq®) = q4, lim p(X) =p,, 4P, =qp_ . (1.9)
20 50 x> Fo0 N

Although the continuous spectrum of the operator L
does not lie any more on the real axis, it consists
of two branches (see the figure) and, like in the
selfadjoint case, is doubly degenerated provided the
condition (4) holds. We use the standard methods

of the inverse scattering theory, which are reviwed
in detail in 715,16/,

T

The cuts C, and C g run along the arcs of
the hyperbola &y =uv, where =&+, Zo= U+ iV,

(see (2. 1))



In Sec,2 we consider the direct scattering prob-
lem for the operator L , (1,2), (1.4). Provided the
discrete spectrum of the operator L is simple and
finite we obtain the completeness rela tion, decribe
the scattering data of the operator L, and derive
its trace identities,

In Sec,3 we solve the inverse scattering problem
for the operator L, provided its discrete spectrum
satisfies the above-mentioned conditions, and discuss
the features of the reflectionless potentials,

The description of the NLEE as a Hamiltonian
system and the calculation of the action-angle va-
riables are given in Sec.4.

In the appendix we derive some subsidiary for-
mulae,

The authors express their sincere gratitude to
Academicians L,D,Faddeev and L T.,Todorov for their
support and attention, The authors thank V.K.Melnj-
kov, L.A.Takhtadjan and E.Kh, Khristov for useful
discussions,

2. THE DIRECT SCATTERING PROBLEM

Let us consider the scattering problem for the
operator (1.2), (1.4) acting in the space of a quadra-
tically integrable two-component vector-functions,
Besides we suppose that the complex constants q4,
P+ fixing the boundary conditions (1.4) satisfy the
relation:

=
qQp,= qp_-= zg, Zoy=Ug+ivg, u #0. (2.2)

*When =0, vy #0 the continuous spectrum
of the operator L divides the complex plane of the
spectral parameter A  into two unconnected parts
(see the figure). Therefore in this case the scattering
problem should be solved separately.

This condition guarantees that the spectra of the
asymptotic operators L, and L_ coincide, where

. d .

L, = logar lim Q(x). (2.2)

X Foo

We introduce two pairs of Jost solutions for the
operator L, which are determined by their asymp-
totical behaviour at x-w and x--«~ respectively:

LY(xAy) = AR YY), LOEAY) = AD(xAY),
_ (2.3)
Y(x,A %) = [PERAX), $(ZAX)] AR MY = |[(RAX), A A,

L ne X Qe ™
Y\ x) — ‘P+(X,&x)='~——~( ) . ),
i Vaxax) () 4 x)lX%, p,e X
(2.4)

i —-iyx
1 —q_elxx . (+xle X
(D(x,)\,x) —_— (I)_.(X,}\,x)=—-———-( . . )
X*— % Vexir+yx) _()H_x)elk'x p_e'IXx

(2.5)

where y=yA? -z2% . The function y is defined on
a Riemanian surface, the first sheet of which is
connected with the second one through the cuts C
and C, (see the figure); on the first sheet (the pla'lne
of the spectral parameter ) ) Imy > 0. Both pairs
of Jost solutions form fundamental systems of solu-
tions, since their Wronskians



Wiyl = det¥ (x,Ax) = -1,

Wig,¢l = det®(xAyx) = 1,
do not vanish., Therefore the solutions Y(xA,x)
are linear combinations of the solutions ®(x,A,x) :

¥(xAx) = OAXNTAY), T = ( (2.6)

b

-a b
ak

where the functions a,b,a and b depend only on A
and x and determine the scattering data of the ope-
rator L. They can be expressed through the Jost
solutions

a(A,x)

]
I

Wig ¢yl buy) = Widhe),

(2.7)

auy) = Wid gl by = Wigyl,

and satisfy the "unitarity" condition:
detT(Ay) = -a3 - bb = -1. (2.8)

The existence and the analytical properties
of the Jost solutions can be derived from the integ-
ral equation:

Y Ax) = Y, (xAx) -~
= J AYY, (Y (Ao (69) - Q¥ (3 A,
X

and from a corresponding equation for ®(x,A,y)
which are equivalent to the equations (2.3) with the
boundary conditions (2.4) and (2.5). Supposing that
the potential Q(x) tends to its asymptotical values
fast enough, e.g., so that

(2.9)

-0

0 K 00 K
foax|xCa® =g |+ [ dx|x]"la®) - q,f < e,

0
0 . o . (2.10)
[ oaxjxl lp)-p_| + [ dxixl [p(®) - p, | < o

0

-_—00

it is possible to obtain the necessary estimates and

thus prove the following theorem:
Theorem: If condition (2.10) holds for all k=0,1,...,n,

n>0, , then the functions eixx¢(x,)\,x) and e—ixxg[;(x,)\,x)
are analytic functions of A on the first sheet of the

Riemanian surface !, and e X* o (XA, x)and elxxl)[,(x,)\,x)
are analytic functions of A on the second sheet of
.  On the cuts C, and C, all the four functions
are continuous and n -fold differentiable with respect
to A. _

Corollary: The functions aA,x) and a(Ax) are
analytic functions of A on the first and second sheet
of R, respectively. On the cuts C; and C, the
functions a(A,x), b(X,x), a(\y) and b(\y) are con-
tinuous and n-fold differentiable with respect to .

Now it is possible to wverify, that the expression:

R(x-y,A,X) =
(2.17)

= (A0 B YA IE=Y) + B(% A3 Y My O = Vo
a(A, x) 1

is the resolvent of the operator L , Studying its
singularities with respect to A we can determine
the spectrum of the operator L . From (2.11) we
obtain, that the operator has a doubly degenerated
continuous spectrum, coinciding with the cuts C
and C,, and a discrete spectrum localized at the
zeroes of al)\,x) on the first sheet of R. In the
general case of non-self-adjoint operator L there



are no limitations on the number, location and multi-
plicity of the zeroes of a(\,x). Here we will not
consider all the possibilities, but we will limit our-
selves to the simplest case of a finite number of
simple zeroes located outside the continuous spect-
rum of L .,

Integrating the resolvent (2.11) along the infinite
circle in the complex A -plane it is not difficult to
obtain the completeness relation for the eigenfuncti-
ons of the operator L :

1 = -7
Lora—L yxn ) - KX (v o, -
f a()) WxNg a(\) A (2.12)
N b,
-1 zl—l/' (X)!/' (.V)a = 3(X-y),
i 2

where we have used the nota.tions]hi

: _ e UN%-22.i -
Ajtadsx;y) = 0, Xj= VA5=2%.j = Lu.N, (2.1

da
iT T i’ U0 = = x):

The constants b; can be expressed through the cor-
responding eigenfunctions W (x) of the operator L
(see the appendlx)

b, = -ia, (_,{, dij(x)a-lt/lj(x))—l

(2.14)

Here, and in what follows the integrations over
the spectral parameter A run along the upper side
of the cuts C,; and Cp ¢ this, together with the spe-
cifying of A determines unambiguously the Jost solu-
tion, and therefore the X -dependence can be
dropped, '

10

Now we proceed to derjve the so-called trace
identities (see, e.g., ref.”1® ) for the operator L.
Suppos e ahx)has N simple zeroes located at
Aperdy o Then, using the analytic properties of
a(Ay) it is possible to derive the following disper-
sion relation (See the appendlx)

In a(hy) =- Ly G s X (1 + () +
2m o p=A
(2.15)
N Ay - )\ = Xj
+ 2 ln—-——-————-—
i=1 A x—Ajtx;
where by r and T we have denoted b/a and b/a,

respectively, o = Vp? -2%§ .

Starting with the quasiclassical expansion for.
the Jost solution U(x.\y), it is possible to obtain
another representation for 1n a()\.x) in the form:

In a(A,y) = 2 e )nf dx¢> (x), (2.16)

x -0
where ¢(n)(x)satlsfy the following recurrent relations:

(n) n—1 p
¢(n+1_) p-—(¢ ) + Zl¢(1)¢(nj) +Cp l_f)i’
i=
(M_ ,2 (2.17)
¢ = Z 0_va
c =——(k)(4z0) , € = 0.

Expanding (2.15) in series in the inverse powers
of 2y , ImA>0 we get the following trace identities:

S
! _(2.18)
n

00 _ N
f dx¢>(n)(x) S fd'us(n)(p)ln(lﬂ'(y)l'(p))+ P
2mi =1

—o0

11



where

s BRY D) o Bt 240D K

. k ! Z5 2m
(2k) (k12 k Ve 0
s (W=(~1) ~(40) méo Cm )(T) ,

sGED_ T e (ax DY,

k) okt A2 XS 2o
55 =(-1) X(4X) m?;O( )(XJ)

The first three identities have the form:
> 2 1 . dy - N
,-L dx(z - pg) = = [ In(+r@r(p)- j2= 121><J., (2.19)

1 o0
5 [ apa,-p,q) =
o 2% - N
=== duo(1+55)ln(1 + () ) -j_g_ 2 X (2.20)

00

J/ axlp,q  + (22~ pg?] =

N
=~ Jdupon(t + ) T() + P TX (2.21)

From (2.15), using the fact that a(A.x) - p_/p,

when A»e, ImA < 0, we obtain one more trace
identity:
p_ q i dy N A+ x
In-— = In— = — [ In 1+ () + T In—"1 (5 20)
p + q_ w o .l =1 A_] — Xj

12

The importance of (2.22) will become clear when
solving the inverse scattering problem, since it
connects the asymptotic values of the potential at
+00 and - with the scattering data.

3. THE INVERSE SCATTERING PROBLEMS

For the potentials, satisfying the restrictions in
Sec.2 we can introduce Volterra transformation ope-
rators (see, e.g., refs. /14, 15/) transforming the Jost

solutions ¥ (%, Ay) of the operator Lg;=io,— ix +Q (%)
into the Jost solutions of the operator L:
V(A =Y (xAx) + [ YR, 3.0 x). (3.1)
b ¢

Inserting (3.1) into (2.3) and using the completeness
of the eigenfunctions of the operator L (see (2.12)),
we obtain the differential equation:

iog Kx+iKy o, +Q(X)K(xy) - K (x,y)QO(y)= 0, (3.2

with the initial condition:
[03 K(x,x) 1= -1(Q (x)-Qq (x)), (3.3)

and the boundary condition limK(x,y)= 0 . Now, if
we insert (3. 1) into the completeness relation (2 12)
for the operator L |, and use the analogous to
(2.12) relation for the operator Lj together with (2.6)
we get the Gel’fand-Levitan-Marchenko (GLI\/I) equa-
tion:

K(x,y)+F(x,y) + [ dzK(x,2z)F(z,y)= 0, (3.4)

where

13



Fx.y)= L raaicry-rgany (@ 0u "6 .2 )e, -

= (T)=ToAN T €A '(y.0) 0y 1- S (x.3)+ 2 (x.y),

N T
2(x,y)= ijélcjlﬁo(xn\j)lﬁo(y . ‘,\J.)gl,a(,\j,xj)=0 (3.5)

No
. T
z (x,y)= 1j§1coj¢o(x,z\oj)¢0 (Y./\Oj)olv

ao(/\‘oj, XOj )=10

with €q, =bg, /a, . Let
S={r(a), t(A). Ay v ¢ 5 j=1,..N}
_ (3.6).
§,=1r, (). ro('\)"\m 1€y ¢ I=1, SN,

be the scattering data for the operators L and L, ,
where all Ay and Agjare simple eigenvalues of the
operators L and Lg, respectively, located outside
of the continuous spectrum, Then we can solve the
GLM equation (3.4) and obtain the kernel K(x,y)
of the transformation operator; using the initial con-
dition (3.3) we can reconstruct the potential Q(x),
corresponding to the scattering data S . The functi-
ons a(A,x) »b(A,x ), a(A,x) and b(A,x) entering into
(2.6) can be reconstructed knowing the scattering
data 83 and using the dispersion relations for
a(A,x) (see (2.15)) and a(Ar,y) . The asymptotic va-
lues of the potential Q(X) at Xx+-e« can be recon-
structed using the trace identity (2.22) and knowing
the asymptotic values of Qo(x) at x+t « .
Analogically we can obtain the corres ponding
formulae for the transformation operator, transforming
the Jost solutions with given asymptotics at X +—oe ,

14

Thus, in the framework of our restrictions made
for the discrete spectrum of the operator L |, the
inverse scattering problem for the operator L is
solved,

In particular, if Lo=L, , then ro(A)=Ty(A)=0,
23=0 and the GLM equation is simplifyed, In this
case we specially note the class of the so-called
reflectionless potentials, for which r(A)=T (A\) = 0.

In this case the kernel of the GLM equation equals:

Fa (x¥)==1 2 ey @)y, (o (3.7)

where ¢ ;)= (X,);,x;)is the first column of
¥, ®.,A.x) in (2.4). We look for the solution of the
GLM equation in the form,

N T
Ko@) = 2 k() v ;5o (3.8)

Inserting (3.7) and (3.8) into (3.4) we get a system
of linear algebraic equations for k.(x) ., Thus the
reflectionless potentials can be explicitly calculated,
The most simple reflectionless potential, corres-
ponding to N=1 has the form:

1

q(X)=q+-}-+—~Sl—V—1—, p(X)=p+—lis—1 L
1+Vy 1+Vy
(3.9
1 /\1+x1 ! 2X12

where Ay is the eigenvalue of the operator L ,
In (3.9) we suppose that 1 +V, 40 , which is not
trivial since ¢y , xy; and q, are complex numbers,
and if they are related by

Im—L—[@n+1)ri- m-1%s 1 g (3.10)
21xy 2><12

‘15



for some integer n , then 1+V, may vanish., For
N>1 the regularity condition for the corresponding
reflectionless potential is equivalent to the restric-
tion, that all the zeroes of the integral function

M(z)=det || Mij(z)ll’

i(Xj +Xj )z (3.11)
C. A+ + A+y. e
My (2)=8; + SRt Ay :

O +x v A +x )2x (A +x )
i j i i bl ] ]

are located outside the real axis Imz =0 . Since
the function M(z) has a denumerable set of zeroes,
appropriately choosing the constants ¢, , we can

always satisfy the condition (3.11).

4, NLEE AS HAMILTONIAN SYSTEMS AND
THE ACTION-ANGLE VARIABLES

Let us consider the manifold of pairs of complex
valued functions M ={q(x),p(x)}satisfying condition
(1.4). On this manifold we can introduce Symplectic
structure, defining the 2-form (see, e.g., ref,’18/):

Q= i;}:dx 8P (X)A 8q(x). (4.1)

If we consider the functional Hlq,p] on M , then
with the help of the 2-form ! we can define Hamil-
tonian equations of motion:

d -1 .« OH SH

- (p,q)=Q dH=i(<——,~-s=),

5 (P9 ‘(5q 5p) (4.2)
where the 1l-form dH is the external differential of
the function H and @~!is the mapping of the 1-forms
on M onto the wvector fileds, connected with the
form Q

16

Constructing the NLEE we can choose as a
Hamiltonian an arbitrary functional Hlq.,p] . For
instance, if we choose H= [dx¢®(xXsee (2.21)) then

the equations of motion (4.2) will have the form:

. 2
1, +q,.~2q(pq-2z,)=0,

: 2 (4.3)
P, - p +2p(Pq~z )-0.

In particular, if q=p*=u(x,t) and zgz m® , M =-real,
the system (4.3) reduces to the non-linear Schrd-
dinger equation (1.1) with an additional term, linear
with respect to u(x,t).

Equation (4.3) and all the other systems of
equations which can be_ obtained from (4.2) inserting
linear combinations of [ dx¢™ (x) instead of Hlq,pl,
can be solved by the TSM, We will consider this
in detail in a next paper, and now we proceed to
prove the complete integrability of the canonical
systems, described by these NLEE. We will not
need the explicit form of the corresponding NLEE.

With every point {q,p} in M we can connect an
operator L. and, therefore, scattering data S =
=ir(A )v—r(/\),)\j,cj;j=1,_“,N }. The properties of the fun-
ctions in 8§ were described in detail in Secs.2 and
3, where - the direct and the inverse scattering
problem for the operator L. were solved. Thus the
direct scattering problem determines a mapping of
M onto § , and the inverse scattering problem,

a mapping of 8 onto M, There naturally arises the
problem of recalculation of the symplectic form in
terms of the scattering data.

For solving this problem we use the GLM equa-
tion (3.4) and (3.5), which allows us to reconstruct
the operator L. from the operator L, . Suppose that
the scattering data S and Sy are slightly different,
i.e,, that r(A)-rg(x) and r_()\)—r—o(/\) can be replaced
by 8r(A) and 87T(A) . Then from equations (3,5) and
(3.3) neglecting the term KoF in (3.5), we can

17



express the variations of the potentials through the
variations of the scattering data:

ba(x) =~ 1 rar [sr)@PEAN*-sFM @D @an I

_22 (o, () wF redr izl (p Dan?,

Jd)\

i (4.4)
3p(X)= 2 [N (W B(xAN® =57 )G P (x, 1) 2l
N
@), \\2 d @, .2
+2j=21[80j ("ZIOj ®) +Cj Shja—;\; (¢0j (x) 1.

Inserting these expressions into formula (1) we ob-
tain bilinear combinations of the scattering data va-
riations, which coefficients can be expressed through
integr'als of the type:

f dx [(w(" .0 % & (x.un? —(w(‘f)(x.x))2(¢f)"(x,u))2.1, (4.5)

and their derivatives with respect to A and u . It
is well known how to calculate such expressions,
see, e.g.,, ref, s Finally we obtain the following
expression for the symplectic form in terms of the
scattering data wvariations: :

Q= 71; Jdxa(a)a(A)sr(r) A ST(A)—

- E%;zf dA fdp Z p)d In(A+rA)TA)) A8 In(L+1(u)T(p)) +

(4.6)
v 2L _gl [ AZOLA DS IMAT)TAD A 81 +
J:

w

N N
+2281ncj/\8)\.+2 2 Z(A, A BN AN,
j=1 ] i+ s=1 ] s J 8

)\y—zg

where Z(A,p) = prowm

18

Let us choose as independent the functions:

P(A)=-L m+r(a)T (1)), P, = 2ixr,,
Q(A)= 5 Inb(A)/ B(A)+ 4 (1- Symp, /p . (4.7)

Q -ilnb +d(1- M 1 /

=1 -

i i ta( >(_)onp_
J

Then, using the dispersion relation (2.15) for a(\,y)
we can reconstruct all the scattering data from
{Q()\),P(/\),Qj P; | and moreover, the symplectic form
Q in terms of the variables (7) can be cast in the
canonical form:

Q= fdASP(A)A5Q(A)+25P 5Qi. (4.8)
=1 ‘

Thus the transition from the variables {q,p} to the
variables {Q(A),P(), Q;.P;} is a canonical transfor-
mation,

Now it is easy to see from the trace identities
(2.18) that if_Hlq, p] is choosen to be a linear com-
bination of fdx¢(“ (x) then in terms of 1Q()), P()\)Q P }
the Hamiltonian will depend only on half of the ca—-
nonical variables, namely, on the generalized momen-
ta {P()), P i, Therefore the NLEE corresponding to
such I—Iamlltomanb are completely integrable Hamilto -
nian systems, /5.7 17

We note, that in the literature (see, e.g.,refs, 7, 5
there exist two ways of calculating the action-angle
variables: one through the Poisson brackets, an<
the other-through the symplectic form, In our case
these two ways lead to different answers. The dif-
ference, is, however, unessential; the generalized
coordinates in the two cases differ by a function,
depending on the momenta only, This is due to the
fact, that using the Poisson brackets the scattering
data variations are expressed through the variations

19



of the potentials. Therefore the asymptotic values
of the potentials are preserved:

p : N
o “_ 1 dll - . . 8}\J
oln 5 ---;-[—;—5ln(l+r(p)r(#))+ Zji.l = 0,

4+ ]

(4.9)

and the corresponding scattering data variations sa-
tisfy the condition (4,9). Using the symplectic form
we express the variations of the potentials through
the scattering data wvariations, which are arbitrary
now. Thus the asymptotic values of the potentials
may change (of course, the condition q+p+=q”p.0=zg
always holds).

APPENDIX

Here we will derive the dispersion relation (2,15)
for a(A,y). Let the operator Ljbe such that it has
no discrete eigenvalues, and lel itls scalttering data
be determined by the functions a, ,b, {P and EO.
Then, writting down the Caushy integral formula for
the function x~! In(a (A ,x)\/—p”:7§‘:) and using (2.8)
we get the dispersion relation (2.15) for Inag(x, x ),
in which only the integral term will be present,

Using the solution of the inverse scattering prob-
lem given in Sec.3, we will calculate the functions
a; ,b;,a; and b; which determine the scallering
data of the operator Ll ; Ly has, as compared to
L, , an additiomal discrete eigenvalue located at
Ay . The corresponding solution of the GLM equa-
tion is

iCl

Kl(X'Y)'“'"l =
“01‘]0(’\1’)‘1)

T
where we used the notation:

WLy, (A O 0

}‘"'# ! =X (A.2)

Ty Q= [ay 4, 540 0, ) =

20

Inserting now the kernel K, (x,y) (A.1) into equation
(3.1 and letting x »~ o~ we get:

al(/\,x)=mlao(/\,x), bl(/\,x)=m1b0(/\,x),

(A.3)

&y (A x)= —}-n—l—il(x,x), By (hx)= & by (o).

where my=(A+x =A =X 1)/ (A +x =X 1+ X1 )

From (A3) we see, that the scattering data of Ly

and L1 corresponding to the continuous spectrum

coingide as it should be expected, i.e,, rl(/\ -_-':(p\)

and r(A)= FO(/\) .

Repeating this Rr‘ocedur‘e N times we get the

canonical factor .211"(’\+X-'\j“ X j)/(,\\+x_,\\j+xj) in (2.15).

J:

The relation (2,14) can be easily obtained from
the relation (A.2) letting x--~ and A,p - Aj; 5 here
we should also use the simplicity of the correspond-
ing eigenvalues, i.e., that in a small region around
A=A, a(/\)=(/\—/\j)'aj .
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