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Uccnenopanne CHOHTAHHO HapyWEHHBIX KaMUGpOBOYHLIX TEOPH,
L. O6mas CTpyKTypa M NepeHOPMHPOBKa

B cepur paGoT aBTOPOM HCCeNoBaHE CIHOHTAHHO HapylleHHbie XanuGpo—
pounsie Teoped (CHKT) npumeHrTennho X sdppexTam, KOTOpHie MOTYT GHTH
paccMOTpPeHRbl MO TeOPHR Bo3MyulenHl, B nanHo# paGore npeacrapneHs:
o6mas crpyxrypa CHKT s xamufpopouyHo mHBApHaHTHa# NMpOrpaMMa lepeHop-
MHDOBKH AJIA MpaKTAYECKHX pacueroB. [0KasarenbCTBO NepPEHOPMHPOBKH
Jin n 3uHH~)IOCTSHA pACNpOCTPAHEHO Ha Haln Oo6mEl CiTyaaf.

Pa6Gora snwonnena b JlaGopaTopun Teoperndeckoli duaukr OWAU.

Npenpunr O6vennHeHROro BHCTHTYTA SNepHLHIX ucclenopanufl, [dy6ua 1978
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Investigation of Spontaneously Broken Gauge ’Hﬁe'ories'..
I. General Structure and Renormalization

In a series of papers we investigate spontaneously broken
gauge theories, heaving in mind mainly applications to effects which
may be treated perturbatively. In this Part we exhibit the general
structure of SBGT's and set up a gauge invariant renormalization
program for practical calculations, by extending the proof of
renormalizability of Lee and ZinnJustin to our general case,

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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1. Introduction

In the last decade a very promising field theory has
emerged which has all the characteristios of being capable to
describe elementary particle interactions. We have in mind
spontaneously broken gauge theories (SBGT) which are locally
gauge inveriant Yang-Mills theories /1/, providing well-defined
minimal vector interactions, and where the gauge symmetry 1is
spontaneously broken via the Higgas mechaniem /2/, mo that in
spite of the spontaneous symmetry breaking éno can get rid off
the Goldstone bosons /3/ and in spite of the local gauge
invariance one can have magsive charged (and neutral) vector
particles, It has been shown /4,5,6/ that such theories can be
renormalizable., In the framework of SBGT's elegant models
were constructed to unify electromagnetic and weak interactions
(7) and in the last years these models have been extended and
generalized in many directions, It has turned out that gauge
theories show also other remarkable features : non-Abelian gauge
theories (NAGT) (and under certain conditions only they) can
exhibit asymptotic freedom, i.e,, vanishing of the invariant
coupling constants at high momentum transfers /8/. On the other
hand, there is a conjecture /9/, that infrared problems in
unbroken HAGT's are so seriows that low mowentum transfer
effects can be treated only non-perturbatively and such effects
lead to ar unusual particle spectrum in the theory and, in

particular, to colour and gquark confinement in quantum



chromodynamics (“infrared slavery"). The recently discovered
inetanton solutions /10/ for the unbroken NAGT's indicate that

the structure of such theories indeed differs /11/ from the
femiliar perturbative picture, and there are hopes that confinement
effects can be treated by saturating Peynman integrals by
instanton-like solutions.

The aim of this work is to set up a general framework for
a systematic investigation of gauge theory phenomenology. At the
first stage we want to deal mainly with features which can
presumably be treated perturbatively, i,e.,electromagnetic and
weak phenomena and some strong effects in asymptotically free
theories. We will work with a general semisimple compact gauge
group, comnected with a possible Abelian factor, and consider
arbitrary fermion and scalar multiplets. In this part we
discuss briefly the structure of the GT Lagrangian and describe
a renormalization procedure which is essentially a generalization
of /5/. In future publicatione we shall deal with the Green
functions of the theory in one-loop approximation and try to
get constraints on the general theory both by comparing it with
experience and by making some simple assumptions which may be
suggested by the experimental facts.

The plan ofthis Part is aes follows: In Sec, II write down
the Lagrangian of the theory and discuss lowest order (tree
approximation) features, Sec, III, touches briefly the problem
of quantisation and gives the definition of the generating
functionals of the Green functions and the Green functions
themselves, This section contains also the Ward identities

written for the vacuum functional., We discuss the renormalization

of the symmetric theory in Sec.IV and the renormalization of
the spontaneously broken theory in 8ec.¥Y, Pinally, in the
Appendix we give the propagators, vertices and gauge invariant

counterterms we will use in future calculations.

II. General structure of the gauge theory Lagrangian

In thie section we recapitulate the familiar escheme
of a SBGT (seeye.g.,/12/) mainly with the purpoee of introducing
the objects we Bhall work with, The gauge group is G - < xN 3
W is an arbitrary compact, semisimple group and N ie e
possible Abelian factor which is absent in HAGT's., We denote

the generators of & by e, ; they satisfy the commutation

relations

(eu,eg) = (au0y ey (1)
with completely antisymmetric structure constants C} o A .
Por the adjoint representation e, =Ty with(7¢\p":-ﬁqlﬁ‘ .
for fermione (~ ) we use the notation e, =t, , and

for scalars (@) e, = Jd . We note that gauge couplinge

are included in the normalization of L , 80 that if { Fd ‘
are some etandard generators, €y = qua F‘\ with %,‘ﬂzc“w ;
[Ty X Q—} o ( q can be taken diagonal, with constant
elements within a simple factor of ¥ ), For o ¢ N Yupy = ©
and

=TT Ty = g%, Cal) .
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The Lagrangian, locally invariant under the gauge transformations
"SI ¢ | b . v en .
AN AN %Q:=\€434»‘Q‘ 3)
B'\"‘ e .\iqu.((, AF(; +b‘.{,4



( P\‘:L is the geuge boson field) has the form
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T e e L I R

where
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P L) » the most general ( -invariant quartic

polypomial in ¢p: (which we take real) can bs written as

Ned Ul e At b LN 2. Y
Pl = 3oy QRitp, + 3 CiL @ig @y +;\ﬂi;u‘?;¢0\'%(5)
with completely symmetric coefficienta }A:') c ., and ‘ﬁ‘ .
The last two terms in (4) are mass countarterms., The fermion

ratrices t, w, \ $w and (' may contain the Dirac

matrices \ and "5 . (We note here that we use the metric

w1

. N * .
o\°’=-ck ah e 2NN ¥ =Ny Y= -IYYY (. Summation
is understood over indices occuring twice unless stated

otherwise),

Hemiticity of & gives

. = T =0 v (5= + ,
o 2wy TL =00 E W = 8w ‘(o._'\otx %) )
From global G invariance of f. one gets

(T : transpoaition)
* T
tashe (0,8 2 lY, (7.8)
(¢ Cw, V=0 \ (+e,¥°SwV =0 , (7.b)

R PEN S A R IER FINE S VY (T.¢)

’?q?- 8g: 30 ¢ [ po Teo (M SV =0) | (r.0)
Wou 017 = - dugieyg (7.0)

[ 44 -31\'\\hi-3.¢\gk£u . (T.2)
Spontaneocus breaking is introduced by postulating that the
vaccum value of the scalar field be different from zero and the
sxaot "mass* be positive semidefinite, Then writing <D, = A;
and = SN Ch +N; (where d:; has gero vacuum expectation
value) we obtain the lLagrangian of the SBGT., In tree approximstion
N: »« . and our postulates take the form

~

P oL oA . .

Vo barane T PR SR AR AN = 0te.8)
.51'9 = . st .. L.

bQ\‘NQ;\LF'\ s \*\\ "‘t 4 *Q“\'\‘g A .L&\\(‘Q m"\‘?"’-(s.b)

Prom (7.d~f) and (8.a) we have

¥ =0, (8.¢)
1.6, P! has sero eigenvalues for J,% 40 .(Goldstone's
theorem), @me gan introduce two subspaces in the scalar
representation with the following properties

T = {\\.p Lwp O =0 for all d‘lx 3 Wpnp! =8pp!
FL= '{“'T \\.T-\.F’k :.[3.4')" y %ty 381-1‘
wrimgy ¢+ weiwei =8 )
Then clearly ‘M ¢ F \‘.." Wy =0 ; We choose the vectors
in swch s way that \“‘Pﬂ‘ be diagonal, i.e.,

t Y .
B o= Pp npiney (10)



One can always use a gauge where all ¢ v = O /12/, that is
there are no Goldstone bosons (unitarity (U - ) gauge), In
such & gauge the renormalizability of the theory is not manifested ;
we shall work with gauges where renormalizability can be establis-
hed but unphysical particles are present { R ~-gauges ) .

The scalar vacuum value also gives mass to some of the
vector bosons and to the fermions, The vector mass matrix is

Wiun = O30 ),

11)

The generators, for which JA’) =0 , farmw a subgroup S of
C.  which remains unbroken. We can again introduce two subspaces
in the adjoint representation space with basis vectors (Sn € )

having the properties

ShuSaq +SyuSeq=bap TPV TP Guc‘-u“:su'“g
Shu Swu 20,

- 1
LA : Cauy, \ hA:SA.{A“" \‘jA’) =C\NAA\’O

.8)

(12.1)
r " . 1
Q\( x €y, ey N A\( 2 G\LJP' ‘o (')\5,( 5\- r}\lhy 8\‘\4‘,(12.0)
The gauge bosons connected with the unbroken subgroup S remain

wassless, The W - and T - spaces are in one-to-one correspon-

dence thus if we define the matrix

AR =\)«\($’\& , YAl =8%«p=0 (13.a)

the matrix Rkt i invertible :
i) [ -1 - l V
Qur Re't =~M 8y, v Sy "H: Ser | (13.b)
Finally, for the fermion mass matrix one gets

. = W +P:f>\\' . (14)

The following relatione can be useful in practical calculations:

(e p* Y = Qui Cei v dued ) = Do 1t ¥s0 (1500)
CTu My £ =0 2L, 1IN = (Ta M Y20

(:;u-ui.l.\) = R 1y -5“‘“-“*'“\:0(15.0)

Opapr =Tanwk = (eq **197931\11"0' (15.4)

At the end of this seoction we write down the lagrangian
one obtains by making the substitution ¢ - & +N in (4):

Lo i R TCuByg -Rip gy 40,0030 + TGE-& )y 4

+ 30 OB -FTG; - 0pdt Qu N Ay - .
TV T hep Rew ATy —4gpun dans Rur Aps A A 4
RO FLYTS JESCIN X Saty A% ¢{“&¢C@u3o\i'\ Avp Ap ‘\’Q-
S AT 1 B TSN ﬂcguh\d’:d(cbh\ -

TR UL 1 T TRE S SR C A R PNV P S
A gy §%¢;&p‘;(‘¢i -\»(l\'&p‘-'ﬂ)(d:; ) (16)

with
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Since N  is the exact vacuum expectation value of ¢ 9

this Laegrangian contains higher order contributions; in pertur-
bation calculations we shall work with the quantities introduced
above and the quantities (17) will be taken into account in the

counterterms.



III. Quantization, Green functions and Ward identities,

We investigate Green functions by using the functional
integral method and apply the procedure of Faddeev and Popov

/13/ to the quantization of the gauge fields. To simplify things,

in what follows we shall syastematically use compact notation, i,e.y

we denote by Q. any field, the index A g refers to any
characteristica of the field (including space-time variables)
and summation over Y contains also space-time integration.

In particular, we write
Av‘r GO -, \\0(‘\ -, ):u(x\-.@& \ Q((x\*q\(m.a)

E,(Li\-.i.l(gauge parameter), |, () — ¥« (ghost field)
(18.b)

5 -
e T UL S T SRL P PR CERY
D‘(\ :boa‘ b(\y " D.ng‘v.\t =8d“D8L‘(‘\\" b‘{\E D-.}(\‘(le.d)

Q.J\is TR« )A"\ B2 = Q‘d.kB 8“-\\) BL‘—QS ) (18.e)

o . - a _—
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#ith these notations the infinitesimal gauge transformations (3)
read
By = duv ey uv @) 2ie, Qg 4Dy .
We define  H(y) vy
Rup () =D oy (@) | H= D4V = 0 (A-o'V)z
T OH | Vyp=idy, ayg @y

Now, the generator functional of all Green functions, including

(19)

(20)

the Paddeev-Popov ghosts, can be written in the fomm

io

LWl Sgle) 4w (p i) 430, )

130): (M@, 8%, 8¢ o (21)

)
where

\ = -
3‘0.;\ 22 A dDyy i.:(\.bMUh (21.2)

is a gauge fixing term with the gauge fixing parameter

. . T

Ran + funypy tup Box-g) €46, [Te 810 (21.1)

and
4 + t |,

wlrim) =% Hlﬂffk RS PR PR, \ (21.0)
1, and 4%, \W« Ore the corresponding sources, (For
details about functional methods see /14/ and /15/. We note here
only that <, ‘cqg \ j + and their sources are anticommuting
quantities and integration over them has to be understood in the
sense given in /14/).

The generating functional for the physical Green functions

after integrating over the ghost fields, takes the form

As Gribov /16/ has remarked, the procedure, leading to this
expression, is in fact ambiguous and det ;r may lose sense
for "big" gauge fields, Since we use functional integrale only
for the purpose of generating the perturbation series, we ignore
this and other mathematical problems related to the existence of
the functional integral as a whole.

With the normaliszation 2 (b\ 34 » the Green functions

can be written as

=) =8 .Y 23)
2 Ny k—-’r\ ‘3“ &:\"N : (23.a2)



Let us introduce the generating functional of the connected

Green functions as

COY «il23) | Cl):0 | (23.0)

then the definition of the connected Creem functions ise

[E9Y Y )
Crne, B3) - ﬁ.\'"aT“C‘L” . (23.¢).

The generating functional of the one~particle irreducible (API )
or proper Green functions can be defined by the lLegendre trana-
formation /17/

Y+ CGY) 43, ¢, 20 |

)
)(‘:-a_i'c(?)\, -{*\ for bosons ,

1Y v A\  for fermions
ENENSE G‘?(TS\ ' (23.4)
and the 1Pl Green functions themselves are given by
3 Cotwy § £
(AN () = 100 2 = C{x)
cova SBY T Be gy gy, PO (23.e)
) EN

N = A for fermions
AR o for antifermions and bosons .

The usual Green funciions are obtained in the limit 3 — Q
and o )respectively. We note that
0y Ce
t o1yl t
C\-‘.gvg‘t :Syt N Q\Qt iitC\\‘Cgﬁ‘ F \‘te’tc.t(cf. /17/)0
Por the ghost Green functions we have
§ & 8 13 ( .
. -gF‘ K\‘\ 31“ 51"2 3\‘\\‘}:\\;5
= hua V) 20 BY 3.0, (22.0)
Finally let us briefly fix the definition of the Pourier

zisv\...v

transforms,

Introducing the transformations

= SA.—E Q'.;‘P
‘B"\ (zr)"

Q‘P N Q.A.,

we can write

Gy = Cep t3g (1.n)“C.Pq(p) ECpra) ,

“
e = T2y 5 Y@ 6 (2 PP P

Por the formal proof of renormalizadility we need the
identities of the theory, Let us write Eq.(22) in the form

2(3) = s (1 ¥83) 2,03)
and perform in  €o(3) the transformations (19). With the
remark that

bWyl o SS‘ = —g:.‘((\ b‘!\ @ Huy €y
we get

Te%up Dpv Huy (383 ) 43 24 G ¥63) 12, (3) 10
or, using the relation

da T (EMa3Y3 4, (1883 = [ 3, au @ (1803 +

CW ALY 583 ) Dys Rusy et B (5 Y80 Ty ( Va9)e
SLPNELEN N M CA (EDLIIEITIIRER L)

the derived identity will have the form

(€, 2 ,—g‘ 2344 (2 %3) H'(:,( (7:751‘\'33(3\“(2”

(Slavnov /18/, Taylor /19/). In a perturbational sense this
identity makes sense only if we introduce an invariant regula-
rizsations we shall use the dimensional regularization method

of 't Hooft and Veliman /20/, and assume that our theory is
fres of ABJ anomalies /21/. The Ward identities for the Green
functions can be obtained from (24) by differentiating it with

resepect to }Y .



1V. Renormslization of the symmetric theory Chile) a=Chtp) = ~pTCu ),

(25.%)
" -
This and the next section simply generalize the work /5/ g Clp) = "‘(\“3 + (‘(P\‘P, ) (e 4% 020 \Nd\(\-\=o ) (25.¢)
of lee and Zinn-Justin to our general case.In ref./S/ they consider . Y ',\._ - : ’ '
ﬂ Vg™ | Dt O, PY:0. (25.4)

a theory with ( = SW(2) and vectors and scalars only; the , _
The superficial divergsnce of B,'C_ and fv is logarithmic,
analogous case for a general semisimple (& ig studied by Lee
that of of 1s linear; A- and (- are quadratically
in ref./6/ by using a slightly different method. \
divergent, THe WT identities read:
The task of proving renormaliszability is to show that one

can eliminate UV  divergencies by introducing regulator i"f‘ O\‘V Gig 4 '\G‘C‘FJ 1 @agy C“F"‘t =0, (26)
dependent counterterms in the Lagrangian which are of the same By defining Zs(\ by
form as the original ones. The counterterms are determined by '—(\qt C\@.,( b= L2 GCQ.‘ .
the divergent parts of the corresponding proper Green functions one can write for the ghost propagator the oqu.tion
/22/; one can use subtractions at some suitable momentum or the C.((\ a D.q\' + Dy Z)»'CA‘ o
pole terms of the dimensionally regularized q)mntitios ('t Hooft's with
mathod /23/). The derived property of the counterterms is the 24(\ 2 e iBy T 3 :
conssquence of the gauge invariance of the theory. In practical 3ince the gauge bosons of the Abelian factor ‘N do not interact
calculations we shall work with the pole terms but the inves- with the ghosts, the corresponding ghost. quantitiem are those
tigation of the WT jdentities was carried out by using the of the free theory, i.e.,
subtraction momentum method, Since the infrared divergences do ‘ :
CJﬁ :b‘ﬁ ) ?Y* = o tor % on b eN,
not allow one to subtract on the mass shell, such an analyeis (27)
is quite lengthy , and in sketching what 18 going on we use For the proper Green functions (26) gives -
formal on-mass-shell arguments. (-1 dus & Tgu Yew =0 ﬁ-‘(p‘ Oy (‘9,,
1) Two-point functions with the inverse ghost propagator
The two~point Green functions are Cup = Oyp 410, Z, A

Going over to the momentum space we get equations

Tl G at™ A ) « o e Buoty® (25.8)
#0 I g R () e Bty . Cup %) = 0 Ty Cy),

ATeA, BT=8 (T, a} =0T, 8)a0, : : R
_] CApx L) et By e IIqa ™) 4 . (28,1b)
! + Cai LpMIT 4 QMY - fay Dra o)



Gy ()T (o) v Taw (M)Ca: L)z 0
o CeM T e vodps (prihal Le (28.¢)

or
-1 . -\ _

hup =-¢ [Bup +C¢{P;i Cp\ +f d('.-x :-P‘q,,(,(p’)‘ (28.4)

T 20 Sw S = Tl (I C T M) (g, e)

Taking into account (28,d), the vector Green function can be

written in the form
\"d‘;(‘,) == (q7p% el Yuptet) - (§40 * St P:} GiIPTRY (29.0)
and by inverting (25.a-d) one obtains for the boson propagators
Chpte) = - (g B l(f-fl) - e TP e
QL ) == Gl ) == Pt LunCa IR 6N | )

iyt = PH Y e Rup Cur M PO T) (20.0)
These equations show that the longitudinal part of the vector
propagator is not renorwalized and the divergence of A o
and Pa.p. is logarithmic, The corresponding function renor-

malization constants can be defined as

-3 4 ol '
?"‘,"f’ - 30‘“(0\ \ 2\)‘5 = I“e’(b\ " {T‘\?\XE[T‘\?_“:O('BO)
We define the scalar renormalization constants by considering

the irreducible components of the scalar representation Dg :

D¢= 7O D“‘ (& is the multiplicity parsmeter of the
(l
\g ©~ ) , and vectors in Dg can be labelled as @ L
Then \
NE* a W NS *va WEC W y\c-‘u.

2 V 1
\"‘ii='{;‘ ch‘%i N v‘.(i=?\' FKQQ"

and with a suitable choice of the mass counterterm Sr“' we

have

. -1
Coc' Y = e G- e Vg .
“
P = pue
Thus the subtraction for V;\; will be of the form
Lub 2 . -t
P"i =0 8 -r\.‘;i =087 Gt g
- WG ety WEm o (31)
"s;"%;' e 2; ;ﬂaﬁ\cbu\ﬁ-S:o \_‘,15?,
(28.c) shows that C(, wEw (o) must vanish st F'L = p\f‘s

)

thus C-&: does not mecessitate any suttrectior. of its
own,

The fermion Green function can be treated on the same lire
a8 the scalar case and we may write

r. wal

-

» » = -t
=P‘“n“ia'z (V—w‘3§1 \

g‘::%'\ ) (*%\§11=°» E}.EQ-; (32)

2. Three-point functijons

According to the final analyeis the only functions which

s o d
show overall divergence are ( [N y r;i‘ and the following
vy
pleces of Pd(‘l\‘ , P‘(\: , P\»ST; and pt v
Lprv s

d s Lpat) "“\t!‘\io»‘dg\. (U‘C\ry*cﬁrg‘)map\ Cp™-e D s
% %"\01, LALR (‘\%" PS \/ \

VAN teal) = pt bepy
P;\'\: Coa D = Cu{i (p"-c\"\,
COT Ceal) = YTa, 4

where a,b,c and d are functions of the invariants P'L . qq' R (11 .

The WT  identities for the 3-point functions are

‘;_.‘m'b(uc‘wn +Dps Cpuy 40pe Gpus 4
A _ (33)
+lasw 1 pawe Ry t-f@.(sw =6

17



Let us define the function E,,‘Y by
. . . ClaGye
Q'(“1$W \20'“"* = \zﬁﬁ\w‘ c‘l‘tcv‘v +u gy C‘T\'nl'.l'v‘ “ 254)
We have
Cupn= =BusTgpy 5 Zquy = - Cusy for oL €N,

Then in case of the boesons we get for the proper Green functions:

i+ Tvu Mg = gt 24 + &i'h‘\ Vg Cpuy 4+ (5 = ¢) (35)
The on-mass-shell analysis of these equations yields the following
resulte:
0,50, =0, = o s Gy A is completely antisymmetrioc

k.‘(\\' =If'p‘0“"\\.‘ -3..‘{\‘ (36-8)

Oup~x =beay =0 for o or f or\'eN,(BS.b)
furthermore, we get a relation between C..Hg and Z;‘\' .
The WY1 jdentities for the fermion proper Green functions

are

(-idyy *Z\.(\)Psa( = TagrTatud ¢ z&’xar

‘\" (37-8)

or in momentum space
Too M) e, PRt Lpat) + Vi S L) PEicpal) =
=08 PIT e Pla) ¥ T (alp) P (-q). (37.0)
These identities lead to a relation beiween A‘t and z.q,( ¢ -

2; and r are logarithmically divergent and can be

(ik
subtracted in the usual way, The corresponding renormaligation

congtants will be given below,

3. Four-point functions

The functions which are actually overall divergent are

P;iu, (it can be treated as in the usual (:e“ theory) and

rrww‘ ~PV

the following pieces of “AXE and |\ o« \-i 3

P:::: Cpald) = 1\":\"\*““6 *‘\‘wﬁv‘xzqwa *‘\“{“X,dpys \
"‘:VM Coatt) =™ Yo qii
the Y’ S  and Y are functions of six invariants,

The WT identities, which we do not reproduce hers, give:
'“:\u\\& = Xauxps = =X3 sy L8 = “ Qe pE ~ e EpY

-\
Quapes =%upe oo Aetvs |\ Jupvs +%""‘ﬁ"’“$=°(.33)

Writing
-\
Tapy T F a0y R
we have in tree approximation Cuay = Y upy o Then

assuming that up to wn-4 loop approximation
v 1Y LT 11 .
= =4, et s T H
?_ ‘(..\ ?'J.L‘ %.{“\\‘ (¢ Uy 3\(2 \ ? \ [ .(3 } 0’(39)
and writing down the second equation of (38) in n ~loop approxi=-

mation we get
w

“ w ' 1 .
[(Te 35 1-0T0 2%V iqupe2t ~2hneTe (EnT2ua0)
This and the global gauge symmetry relation
CTJ.\%;-\ T\:‘\l‘\\ 2';

yield
“ “
ELAL] 2:(\5 = 2.ln Feps
whence it follows that e is also of the form given

in (39), i.e.,by induction

-l T
Coapx = Ry wu QoY =2, (T2, V0.

(40)
Now (36.b) can be written in the form
Y=y b IR} -t
Lian :Z,‘k“\ Qulaw = (2, T2, L.ﬁ'ﬁx'n '
(41)
Por C_ .  , taking into account the relation mentioned in the

\



previous section, one odbtains
Cuie Tpe - Tpee Tury = 03002700 9y iy
B T ITR P

Using ths global symmetry relation

( E.n‘.i

b'd\\‘t E"‘i -~ Cae ')'.u.“ s iﬁ.:‘p.a'-.;“
wa get from here again by induction

Cuci = TR Tup L6700 870 (42)
where, by definition (327" ),q =848 for “ 0 eN
Then the W71 identity for Y  gives

Nupci = (3327, (’%,2:‘3 o (% FOAR AL TR

(43)
The treatment of the fermion case is similar and the final
result is
-t -~ ot = e
&‘.L = (?-3?-‘ \KJ.‘ E,'_ *J.\ E‘I. ) (44)

with (2437 \,,,=8,(, for o P &N by definition.

On the basis of (30), (31), (32), (40), (41), (42) and (44)

the wave function and coupling constant renormalisations can be

written as follows (renormalised quantities are denoted by

tilde)s

= %Z‘;QK; ) ®i =6 ;\ R €;7‘T" (45.a)
*"zsd(\ 7‘(‘

ﬁ.cl(\ = 2"5&& G.JQ ?-3‘;4 N %“‘-‘ -(2% “%‘fx (45.1)
= (2.3, w‘\““c‘, b.«=(2 %-‘ Yua 0.‘
0= FP‘; {83 z,..P“‘.(E,,\;t;\ =
= (610 Fag (RN (45.4)

it “'sp\\\ =t 1'-9<'\~.‘§u§u§u £
= f-\“\'g" gngh‘ (45.0)

fijer 4o 0% L) *Louges “pue 'R B

-3
ol LIUULL SR A

(4500 )
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).

1 L I Y -t
€ =7 \E 27, G A N N for N ) (45.1)

Sa S
Pl \ Pw\ and P\kk'.
corresponding representation apaces,

Then writing
1Y) - LLG) - ter (§)

we have

‘Lu(‘?\"{LT:(-,\)”\(Qot,.,w’b\l\“*\\,( '8:;

-*(%1 Me® -t «d GO (n- iy

*F &L Ew 51* P agRept e - (R0, %arﬁb‘*-«r“‘(\\

i SN NP PR ‘\“6'\“5 A,“,.A(WA Ay

sV CERA e T, - T Bur ¥ -

-, @ (RN Lz\l;‘\M‘-{‘S“‘BN“-\'
IS, SR RN G -

-~y . ~ . T T T A -~ a
N (e ; —c.;l\\tq;‘-h‘-h H\.(fg(‘\u \U.B‘Q‘f‘*
"* (r _P\\q\ \
(4¢)
~ ~ [3 - .~ < -~ 7 3
where [ ¢ =(\P'° e "\P‘i\ \ ‘i‘kht = “»qut ‘

We note at the end of this mection that by intrcducing the

renormalized sources by
-\ -
R S A
the renormalized Green functions can be obtained ae derivatives

~

with respect to ¥, , and the WT identities for the

renormalized Green functions read:.
(;’i-:‘ﬁ Y g‘i +9, (Rigp' Tping &/ﬁ, 4
+ 2'359.' LIS H;‘G‘ (-:- 8/;'-; )-) 2(5\: o, (47)
where (cf.(20))
= 2,042V,
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are all scalar projections in the

A'-

€



V.Renormalisation of the spontanecusly broken theoxy

It is important, that the spontaneously broken theory ocan
be made finite with the counterterms of the symmetric one. One
can demonstrate this by using the spurion method of /5/.

In the SBT one generally has . £ O (see(5)): this
condition may not be necessary, if cubic scalar couplings are
present, i.e., Ci{t + 0 . In any case, let us consider
s symmetric theory where \&.‘ is substituted by a positive
definite \A:' and let us consider the Green functions of the
theory at 3::X; , 3Ip23g z0 . Themn

8¢ = -0 0D S“ a =X,

83; 1458 Apiao VK LA (ps paze (48)
The formal action, which gives these Green functions im the
usual way (for all I o ), is

W, V) = W) + X1 .

Writing

Qi dia A YD)
we got for WL %) the form (16), with the substitutions

B = FOm) s BT e | Papd-pd 2o

Ag‘,.. T = AOY) Sp* (MY et ng Y =Ty (ACYY) 4Y

T, LAY = TCALYY) + &2A0Y). (49)

Fow the proper Green functions with NXY 4O oan be

expressed by the Green functions of the AG) =o case as

follows:
L h. - Ay (.
Tl M0 g et ) =T -
\I\“\\‘

This gives, that 1f (% ity Lpi0-0 10, g F,.8,0 ) ere areen

L? 00 \°|Q\P et )

functions renormalized according to the prescriptions of the
previous section, the functions -

T e\ v, 8,52 ) r b

Wiy
Wyem Bl FO a v T &

g ‘,.‘\‘_“\s(P"ﬁ‘..‘\O \O‘q‘\‘\c ‘1. \
‘n )*s ~—~

will be finite for finite N , where

AR S (50)

~
With Y =€Y one has in tree approximation (see (49))

TN S =%
VR ) (51)

8‘;" and 87\ = N- have to be chosen so as to kill

the tadpole contributions to (48). This last condition can be

reformulated by considering the global symmetry relation

&LL‘.K‘?-“‘?\,E— 2(;)=O~,

LXTY
which gives, by differentiating with respect to 3. and putting
1\' -T'L . \";i(?:o\t\(\\\l«iu r\k(\)“‘aiii‘
or

T lpao\ REN I RE) = -8, F
(52)
Thus the role of SQ-;" is to eliminate the divergences of
the transversal part of [ (pz0) 1left over after the wave
function renormalization and 57 has to be adjusted according
to this last equation.

-

o 4KV 1o asatisfy t\)s o , (49)
and (51) yield ¥ = %>\, Then in the limit w'=o , 5 = o
REY R \SP‘LLKL?\)\“\P:\ASV\LI\‘\\D‘F:\

>

Now, if we fix

and W L Y goes over into the spontaneously broken
Lagrangian (16). Purthermore, (52) will take the form

23



Clpso \RYTN oo (53)
which is just the Goldstene theorem.

Thus, to renormalise the SBOT we have to use the counter-
terms of the symmetric theory, renormalize A according to (50)
and choose Su* and 8% : N.% 80 as to make F; to
vanish (or equivalently, to satisfy (53), i.e.,make the transver-
sal part of the inverse scalar propagator to vanish; we remark
that, ae it was shown in /5/ [ (ezo) 1is free of infrared
divergencies in the Landau gauge).

In R-gauges the theory is not manifestly unitary; one has
to show that unphysical poles cancel in the S-matrix elements,
Here we don't want to study such problems: we shall assume that
they can be treated on the lines given in /5/,

As a last remark we notice that the WT  identities (24)
and (47) are valid also for the SBGT, In particular, we get
that the longitudinal part of the vector propagator is not renor-
malized in the SBT either and by using Ceg Co¢ =8y we
obtain (see 29.,a)

DYl - B Y k0 - (e 4 S Ve
(54)
and Eq's (29,b,0,d) with ¥ /3> = A™' . The fermion
identities (37.b) are valid toc and we will check them for the
functions calculated in one loop approximation,

In the Appendix we write down the Lagrangian we use in the
actual calculations, We give the general form of the action and
the propagators and vertices ém momentum representation with

the corresponding counterterms, All quantities are renormalized

24

ones but we don't denote them by tilde any more., The counter-
terms have to be determined by appropriate prescriptions for the
renormalised Green functions. The vertices for theAuaual Feynman
rules can be obtained by putting all 2 s and &'s equal

to one and taking &w =0 ,Sy.“'-.o, A=, e':c ‘.“‘=1‘
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Appendix
In the compact notation, introduced in Sec, 111, we have
W@ = Woly) 4+ Wy L) (a.1)
where

WbLL(\ = li('Qw \CYR;Q‘ )

Wi le) LA *iﬂv&%w@s +%xTws;QwQeQ£ ¥
*\"“‘..fv‘yu, "Q‘Qg ({tqu N . (A.Z)
WCyg = S; Ko N Xo. AN = SF “\""\u

Sy e

( Se 1 parity of the fermion permutations).
1o W we include ghost fields too. Below we give (. NI :k'Ls
and ¥ ¥, ¥, ip momentum representation, The diagonal fermion
mass  w is supposed to be free of X¢ and positive semi-
definite /24/,

k:\;\ (P‘ = c_("k_ M‘-\‘o ﬁ\" *PPPV (8‘(‘ ‘i‘if\\-’ (A.j)
IPRNE TR, M AR IR T Sty g e VS,
Mawo , W 20,0 8en )
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iy o) = (p?- \.-:‘\;i = hal Cpt- b YU
T \‘:;i LU *-‘:L(;iu’h'h L BT0, ke hpe
KT Y= (p-w)f =05 ¢p-2)wt
e B AN T B (MR aw %), w0z
it W) =-kh Cp) =Ru p"
Yo le) = ¢ 8ap
ahn @) = -(gf - t\‘}? TR WA %&11
= €ua {- (Pt IR RS —goe BEED Yy
By (o) = (\,'\-_\;x\';‘i + K&Ja:ﬁ\‘s 16 = wg; L‘E-f::?
8% ) = CCP-wy' IR =Gty ‘P:_:““Qi @t
Pilely) =- 0L (y) = Suo jpd P";(p‘-i‘
bup Cp \ = EAQ/p"

(A.4)

u\ \‘L

W) = (N8 EY: = T (A.5)
1) - (gt g A, :‘._r:';\'g L -\-J‘- (\tiu Mbehy
‘{i(‘ﬂ = Y\o"' (2-1) -V-"' syt s § 8\*‘% -‘\\ (A.6)

SIS N S S T Y L3 MMy
M O I R e W Y e A R LY
LR O T S e A e e A R PUE A
Wap = (VY23 £ 1) (137 )es’ (1,37 )pp
Yo Ce) =0 (2-)f-w 4w €, Bw€, 1%
W Ea g, 400N
\‘.q\(‘,\ = ot ('2-; -\ qp

(A.7)
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