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A Theoretical Investigation of the Bound States
and Resonances in the NA System

By solving the Hilbert-Schmidt problem for the Faddeev
equations it iz shown, that under the condition of p-meson
exchange between N and Ay, in the system NA g4 bound and reso-
nance states are absent.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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1. INTRODUCTION

The problem of the bound states and resonances
in the NA system is very puzzling both from the
theoretical and the experimental point of view.

The experimental situation up to 1969 was summa-
rized in/Y . Since then some new data appeared /%,
One can argue in the NA final and intermediate
states peaks are present, but it is not proved ex-
perimentally whether one can associate these peaks
with bound states and resonances of the NA systemn.
The theory could help in this respect, but it only
complicates the situation. Namely, the poles in the
. NA amplitude should show up as poles in the =»d
scattering amplitude and consequently as loops in
the 7nd Argand plots, The latter were found theore-
tically /3/but an argument was given in /4/ that the
Argand loops do not necessarily imply the poles,
but might be due to the logarithmic singularities.
The latter fact is known as a pseudoresonance phe-
nomenon /%, The experimental phase-shift analysis
in the =4 system is absent at present, but even if
it would show the existence of Argand loops, we
could not deduce from this fact the experimental
evidence for the existence of NA bound states and
res onances,

Theoretically, three. different approaches were
tested for the NA system, In the potential approach
one considers NA as a two-body system with the
specific exchange potential of ‘oscillating character



due to decay pion exchange, EFig, 1* In the first
investigation of this kind /7% the exchange potential
was found to be weak and therefore no bound states
‘and resonances were predicted (note the overall
wrong sign in the definition of the potential in /7/
which changes the notion of attraction and repuision
in different spin-isospin states). The subsequent
paper of Arenhodvel /8/ contained additionally the po-
tential due to the non-decay pion exchange, Fig, 2,
which is usually called a direct pion (or boson)
exchange, In ref, 8/ a bound state **  of NA was

\ i
T\ !B(TC,P,&J,G'?)
\ ‘ I
N A N N
Fig. 1 Fig. 2

predicted with the spin-isospin JP, T - 2%2. A more
extensive paper/9 contained also the p and » ex-
change in the 27,2 state and again predicted

a bound 2% 2 state.

In the second approach the unitarity and analy-
ticity for the properly defined resonance-particle
amplitude result in the N/D equations with the dyna-
mical input corresponding to the diagrams ‘of _

Figs, 1 and 2 treated relativistically in the momentum

*A detailed review on the NA potential approach
can be found in/®/

** Note that this is not a bound state in the usual
sense, since it is unstable against NN» decay,



space/ 10'11/_’I‘he calculations for the NA system were
performed by A,B,Badalyan and M.ILPolikarpov / 11/
with a negative answer to the existence of NA
bound states, with £=0 (only pion exchange in
Figs. 1 and 2 was taken into account,

A similar investigation for the negative parity
states was performed by J,Tjon and one of the pre-
sent authors (Yw.S.) which resulted in a very narrow
peak in the JP=0" state; the effect, howaver, could

" arise from the narrow-width approximation in the

NA phase-space factor used by these authors.

A third approach deals with the Faddeev equa-~
tior, If the two-body t-matrix is replaced by the
separable Breit-Wigner form with off-shell formfac-
tors, the Faddeev equation reduces to a one-di-
mernsional Lippman-Schwinger-type equation. In pa-
per/12/ the Faddeev equations were solved for the
7NN  system, A possibility of the formation of bound
and resonant states in such systems has been stu-
died. The »N interaction was described by a sepa-
rable t -matrix with parameters fitted to the Pgq
phase shifts, The influence of the NN interaction
has been neglected. In the non-relativistic version
of the calculations two resonances with quantum
numbers IF,T=272 were found. In the relativistic ver—
sion, however, no definite conclusion could be made.
One can summarize the theoretical results as puzzl-
ing and contradictive. First of all, the potential
approach is not very reliable because it treats the
exchange interaction of Fig. 1 in the configuration
space as a local potential, In reality it is -a rough
approximation since 1) the exchange diagram of
Fig, 1 results in a nonlocal and energy dependent
interaction, 2) this potential oscillates in the confi-
guration space with an amplitude decreasing only
as an inverse power of r and special care should
be taken to treat such an ili~-behaved potential,

3) the effects of the width of A are not taken pro-
perly into account in the potential approach, But
even if the calculations performed within the poten-
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tial model are not quite correct, certainly they will
be correct in order of magnitude and from that we
know that the interaction in the NA system is strong
and is most attractive in the JT T=27F 2 state /8/.
From the N/D approach we can infer a negative re-
sult on the existence of bound states due to pion
exchange only. This result does not contradict the
predictions of the Faddeev equation approach /12/,
In principle these approaches seem to be rather
consistent in their treatment of the NA system, One
should notice, however, that it is not known whether
the approximation applied in paper/i2/to solve the
Faddeev equations above the NNr threshold is jus-
tified, Therefore it was necessary to reanalyze

the situation in the NA system and to search again
for bound states and resonances in the framework
of the Faddeev equation. Such an analysis is done
on the basis of a newly developed numerical proce-
dure for solving the Faddeev equations at positive
“energies’1¥ and a compute code for the calculation
of the eigenvalues of the PFaddeev-kernel described
in paper /14/,

2. METHOD

We begin with the zN two-body t-matrix, chosen
in the following form:

o - 870 o.F (DF(q"2)
t(q.q%0) = sind-e'° . F(q®)-F(g"?) = 7 2)1“( -
| DM i) o]
with the off-shell form factors F(qg?) e
o, g2 4y
. @ 4y
) q2 + ¥ 2 o .

[o-@m+MZllo - M - m)?] et P@) 2+t (3

plo} =+ " o




The orbital momentum of the resonance ) is equal
to 1, M is the nucleon mass and m is that of a pion.
The radius of the form factor y is chose to be 2m.
In what follows the NN interactions are neglected,
since according to the calculations/15/their contri-
butions will not be very important in comparison
with the #N interaction in the resonance region, We
shall consider the NA system as a nonrelativistic.
one, while the exchanged pion is treated everywhere
relativistically. Denoting the excitation energy by

e=Mg-M - m Z 160 MeV we now introduce the fol-
lomng dimensionless varlables
k?  ,_ k’® M E
y= sy ¥V = s W=\ ¥ = (4)
2ue 2ue M+M R © ¢

where k and k’are the relative momernta of the NA
system in the initial and final states which are. off-
shell momenta, ¥y, is connected with the kinetic
energy E of the relative motion of A and N. On the
energy shell we have y=y T= Y, -

We use the separable form (1) in the Faddeev
equations in the framework of the LS coupling, and
we denote by f the relative orbital momentum of NA
and by § the total spin of NA,J being the total mo-
mentum of the AN system,

Then the following equation is obtained:

] .
Fs P LYYy )=B£S'E~S-(y,y ,yo) +

+ 3 f.___.._—-o—-B S 0% A ,y)ME, e ,.(Y',Y";y ).
L ] B il °
s aly -y - —) '

o 9 .

The eq. (5) is represented graphically in Fig., 3
where the rectangular box is for the Born term (it
also enters into the kernel of the equation), the
circle is for the NA amplitude ME .o, A Is denoted
by the wavy line and N, by the straight line; the NA
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free Green function is given by (y ’_yo_j..l:._) I.One can
see, that in the narrow width limit [ +0 %e obtain
the usual two-body Green funclion, nevertheless the
potential term BJcorresponds to an energy depen-

-dent and nonlocal interaction as was stated above,

Thep and g, in (5) can be expressed through
y° and vy : .

oy Me_(1+y0—y ')[2m+e(1+yp—}’ gl

,a=p@y=y ). (6
M+ m o .0
Now the dynamical input B? was considered as the
diagram Fig. 4, with the form factors F(q), F(q")
at both vertices and with the proper LS-projection,
namely: .

s, . 2 . '2 .
1 fzslg.s,(y,y ¥ OF(I)F()dx

I 1
By 5. 7.y )=—-— A7
s, £°s & y’yo) n..fl -u(y,yy,) @
A Kk Rt
( - \ - ]
. \ = -
I - 7/ v
Jes om\ KR > Je’s
\ : ‘
N WJ
-K Fig. 4 K'



Here x is the cosine of the angle between kK and
k- (see B Fig. 4) and u is its value at the pole of
the pion propagator:

M+Mp (2m+e)(M+M )

- (m+e)y -y-y’
° M 2M2 (8)
uy.y'y )= — ‘
Ra\/yy
and in the half-off-shell limit it simplifies to:
B-ay -y'/a
u(Y! Y’;Y) = - ¥ v (9)
2\yy’
where ‘
B+ € M.M ) a=-M_, (10)
oM MR R MR

it is easy to see from Fig, 4 that q2 and ¢’8 in (?)
can be expressed through k. k’ and x=cos(kEK"):

0% = c®k® + 2ukk’x +k° %= 2,u.€(ya +2ax\/yy +y9, (1)
Q% k%4 2akk’x + Pk’ % = 2ue(y + 2ax\yy  + £y9. (12)

Binally, we need the expressions for § £°s Ay v’ Y, X).
They are computed for the diagram of E‘ilg 4 usm.g
the LS-coupling and the usual spin-isospin recoupl-
ing coefficients r T. In the Appendix they are
given for the cases {=0,1 and 1Fo1t 270~  and all
T(T=1,2). We keep only the lowest value of { for
a given JP and neglect the admixture of higher va-
lues of f, Thus equations (5) reduce to one-channel
equatzons for the cases JF=1",2% and I¥=0", while
for 3% 17,2 even with this assumption we_ 0bta1n
two-channel equations. In the case J =0 there is
no admixture of higher { whatever, but in the cases
JPo1t 2% the value [ =2 is possible together _
with [ =0, We neglect =2 in those cases, because
we are interested in the near-threshold effects,



where [ =2 is suppressed by the centrifugal bar-
rier, So we are left w1th one~channel equations

for the cases J%- 1" 2 0 and T=12. Instead of
2quations (5) the corresponding homogeneous equa-—
tions with the kernel multiplied by 1/A (E)  have
been solved. The two largest eigenvalues were
found, which have both real and imagibary part,

We have used the fact, that ¢ (as is seen from the
Appendix) is the same, (up to a constant factor) in
all the JP-=1*2%and T=12 states. Consequently the
quantities BY are also the same and one needs to
solve only one homogeneous equation for all JF=1+2+
states, different eigenvalues can be expressed
through a single one, The same is true for J =07
and different isospin states. So one 15 left with ordy
two different equations, one for an 3t 17, 2% states
and the other for all J¥-0" states. ’I‘hese equaltions
were solved both below and above threshold using
the newly proposed computational procedure /14/ By
a simple transformation of the variables the eigen-
value equation corresponding to Eq. (5} can be
written in the form

A (9= Jd&KExy Db (1) (13)
with the kernel

@) 1 LX)
K(xx%y )= [ dy - (14)
: x' %= xZ —le{x) -1y - U(X;X":yo) '

Here fl(x LEL(xx%yy) and w(x") are nor-singular
functlons. The quangltles x and u are defined as

y .
x = SR , (15)
m+e/2
ly + ————]|
m+€ :
) eg +a(x® +2°%) (16)
u(z,x%y ) = , - .
(4} er
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with

M
_ R . 1 _. m+ e/2
a =-~—=:/ 2_=-=—sjgn[y + Bte&= ;. 17
M 8 & yo‘ m+ ¢ ] (19
The kernel contains logarithmic smgulamties x
at the points:
e
x’ S SR . Y 18
(1,2,3.4) 2a t a ( 432 ) ( )
and poles x;) defined by the equation
¥ %-x% il w(x’) =0. (19)
p o o p .

Thus we have reduced our problem to the same
equations as given in paper/14/ (apart from slight
differences which are not essential for the method
of solutions)., As has been shown in/1% a kernel
of the type discussed can be sgplitted Into four
terms containing the singularities in such a form
that they can be integrated over analytically. To
achieve this all non-singular functions occuring

in the splitted kernel are approximated by Lagrange
interpolating polynomials,

3. RESULTS

The results for the two largest eigenvalues are
given in Tables 1,2, We have quoted there only the
eigenvalues A(IY,T=1%2 and AJPT=0",2. Other
cigenvalues are obtained from these using the equa-
tions :

M2t 2y -t aet a2y At ,1)=--§-,\(1+,2)(2o)

A0, )= — _31—,\(0" 9. “ (22)

We see from Tables 1 and 2 that the eigenvalues
are never close to unity, even if the real part of A

1"



Table 1
ATET = 17, 2)

Yo ' ReA ImA Rea, Ima,

0.7 2,17  -1,19  -0,248 0,268

0.2  1.13  -1.71  -0.252 0,276

0 0.380 -1.67  ~0.210 0,289
-0.2  ~0.290 -1.09  -0,216  0.262
-0.3 -0.386 -0.703 ~-0.214 0,232
0.4 =0.346 -0,390 0,218  0.333
-0,5 -0.243 -0,179 ~0,214 0.343
~0.6 =0.130 =0.055 =0,230 0,340
40.8  -0.071 -0.047 =0,227 0,300
-1.0 0,072 6° 107> -0,243 0,356

is near to one, the imaginary part is quite sizeable
(of an order of 1); hence, there are no resonances
and bound states in the energy region considered

here (E < 240 MeV),

In addition, we considered the direct pion contri-
bution to BYJ . that is we have taken BJ to be equal
to the sum of the diagrams, Figs., 1 and 2. The lat-
ter contribution is again described by eq. (7) with
§, for JP=1* 2+ and T=1,2 given by:

-V

INCBIE Y)"-ﬂ\/'g—- °Erf)

€ ’

vV yy

(22)
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Table 2
AIEP T =07,2)

g, Reh ImA, ReX, ImA
1.5  0.204  -0.129

1,0 0,204  -0,125

0.5 0.167  -0.182  0.132  -0.0477
0.2 0.109  =0.224  0.0535 ~0.066
~-0.1 =-0.034  -0,187- 0,011  -0.056
-0.4 -0,058  -0.04  -0,037 0.04
~0.7  =0,050 0,80  ~0.009 0.039

Table 3.
AT, T=1,9with direct pion exchange

Yo ReA 1 ImA 1 Rea 2 | Im)\.2
0.7 2.11 -1.05 0,13 0.33

0.2

1.17 -1,61 -0.,25 - 0,27

13



where

3f f
V (2,2) = __Nnm AA7 - 05 (23)
° 47
) 5f o f
V19V (21~ N7 AT g (24)
0 0 477

We have used the wvalues for the coupling cons-
tants, in accordance with/g/, namely

2

t N
_NN7__ _0.08; --227_ -0.005. (25)
4n 4 '

The resulting figures for the eigenvalues A,
and A, in the state Jp_l T=2 are given in Table 3.

A glance at the flgures in Tables 1-3 shows
that the pion exchange mechanism due to the diag-
rams of Figs., 1 and 2 is not operative in producing
bound states and resonances in the NA system.
Specifically,the direct pion exchange, Fig, 2, is not
substantial as compared to the stronger decay pion
exchange mechaniem, Fig., 1.

Our results agree with the calculations of
AM,Badalyan and M.ILPolikarpov / 11/, where also no
bound states and resonances appear due to the
pion exchange mechanism in the N/D equations., At
the same time our results disagree with the results
of Arenhdvel /8/ ,who obtained a bound state in the
¥ T=2%2 state, In ref./% two-channel equations
were considered, in contrast with ocur one-channel
case with =0, however, it is not very like that
this fact is responsible for the discrepancy between
" the result of ref.’8 and ours. However, we know
from OBEP models for NN ,interaction that the one
pion exchange is also rather unimportant for £=0,1,
whereas o and ¢ exchanges contribute mostly to
the short range repulsive and medium range attrac-
tive NN interactions. The same conclusion can be
drawn from the potential approach formulas in /9/
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So, we believe that the »,p and s contribute es-
sentially to the NA interaction and might bring

about the bound states and the resonances in the
NA  system., These exchanges can be taken into ac-
count easily in our equations and will be treated

in a next publication.

APPENDIX

The expressions for g(y,y';yo;x)

F=0 J=1,2; any T
TJ . } .
f:_Lg[x(1+a2)+a(vi+vL)},
8 vy’ y
=1, JF-0"; any T

T .
_ S —3~x2+ L + a2+ax(\/—y'— v ¥ .
4 y y

4
Hete a=-—-M—--,
Mg
. 4
é. 4\/_2_1“0 7 MR
=2 w — T
2¢ M(M+MR)3/2 (¢ + 2m)3/2
-1/3, j=1
P £ IS S S ‘. ) .
1, j=2
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