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Quarks in Quantized Space

Consequences are considered for the quark kinematics based
on the quantized space. It is shown that there exist only two space-
ordered structures composed of two or three particles, A geometri-
cal interpretation of colour is given, too,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. ON SPACE QUANTIZATION

A general statement of the problem is as follows:
The usual (¢ ~humber) coordinates of points Xy, Xy
X3 , X4 which form a differentiable manifold M 4(x)
(with a certain metrics) are changed by linear ope-
rators x; , Xp , )?3 , f4 y in general, noncommuting
with each other., Then, the question immediately
arises concerning the numerical ("measur‘able") coor-
dinates of a point event and the ordering of events
in this operational space, 3]14()?) .

The only reasonable answer to that question is
to admit a mapping of such an operational space
on a space of eigenvalues of x or of functions of
f(X) which form a complete set of variables., This
set should be sufficient for ordering points in the
four-dimensional Pseudo-Euclidean space.

Along this line, we postulate the space H(®)
of eigenfunctions ¢ of the complete set at each
point of space M (x).

Further, we will consider three examples of the
operational space, and apply the latter of them to
the quark theory,

Example I, Let )?#- i%_ , p# is the conjugate

momentum. Points p form the Minkowski flat space

m4(p) . Operators x, commute with each other

. . ip, x’
and possess commohn egigenfunctions, ® =¢ £ ¢ |
~
where xI’L are eigenvalues of operator x# .This



example is trivial: the space )ﬂ (x) corresponds to
the numerical (¢ -number) Space Myx”).

Example II, Let the momentum space M, (p) be of
constant curvature, The operators x# are then con-
sidered as displacement operators in this curved
space,

This possibility was pointed out by Snyder
many years ago and was thoroughly studied by Ka-
dyshevsky et al,

The space M, (p) was taken to be the De Sitter
space, the space with constant negative curvature,
Its geometry is equivalent to the geometry of the
hyperboloid in a flat five-dimensional space
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2 2 2 2 2 2
p1 +p2+ p3+p4+p5 =-1/a (1)

with py=ip g, p, = iq, ( Py» 4 o real). Operators

1?# (g = 1,2,3,4) are now noncommuting

[x#,}?v]ziagﬁl‘w, (2)

where muv is the rotation operator, 2 is an elemen-
tary length defining the curvature of momentum
space.

As follows from the commutator (2), the eigenva-
lues of operators x1 . x2 , x3 , x4 cannot form the comp
lete set of four variables. As shawn in refs, 723/ .
this set can be constructed in terms of the eigen-
values of the Casimir operator of the De Sitter
group S0(2,3):

ee
TR (3)

with £ , { = 1,2,3,4,5, This invariant operator is
taken as an interval operator s?2 . Asa-0 it
changes to usual operat%r of interval in the flat
. a2 J
space M, (p): s® = -12 —

It turns out that any gossmle eigenvalue of 2
is compatible with a certain value of a 4-vector N
directed along the interval s.

4

The "unit" vector N(N;,N, ,Ng ,N, ) is subjected
to the usual condition: N¢= -1 , or +1 for time-like
and space-like interval, r‘espectlvely. The wvalue
N®=0 (light cone) is excluded,

The eigenvectors ¢ (p) of $2 are different for
NZ= -1 and, N®=+1:

® (p)=<L,N|p>, or ®(p)=<A,Nl|p>, (4)

where L. and A spesify two series of eigenvalues
of operator s®*

w—L(L+3), L=-1,0,1,2.3,...N%=—1; (5)

2

3.2 ,
52-(_2.) tA(A+1), O<A <o, N =+l. (57

Therefore, points of the space M (x) can be
defined by four numbers, s s®and N, and by field ¢
which may be called the geometrical field,

As the eigenfunction of interval (4) depends on
vector N , the intervals for different N possess dif-
ferent eigenfunctions and hence are incompatible witl
each other (i.e., belong to different complete sets).
Therefore, each point of that space can be crossed
only by one (though arbitrary) straight line N . with
a discrete or continuous measure of lenght, (5) or
5 ).

( )Examgle 1II, Consider now in detail another possi
bility indicated in refs, /457,

Unlike the previous variant (example II) where the
flat space M ,(p) was replaced by the curved
space S,(p). this possibility is based on the quan-
tum gener‘ahzatlon of the Finsler space, F, (x)

/3/
* For the explicit form of functions (4), see ref. .
There exist also another, "spherical" complete set.



2, GENERALIZATION OF THE FINSLER
SPACE

In contrast to the Riemannian space, the Finsler
space is anisotropic. In this geometry, the element
of length (interva.l) ds is a first-order form of the co-
ordinate differentials dx(dx1 ,dx2 ,dx3 ,dx4 ):

ds =L (dx,x ) (6)

and depends on the direction of dx. The Minkowski
four-dimensional space is a particular case of the
homogeneous Finsler space because in the m4(x)
the space-like and time-like directions are distingui-
shed, Indeed, the length element in ds can be repre-
sented in the form characteristic of the Finsler geo-

metry
u
ds = N# dx (7)

where the vector N, is a zero-order form in dx |,
This form is different for space-like, time-like di-
rections and light cone, having three possible va-
lues, N%x +1,0.

The quantum generalization of the Finsler space
consists in the change of coordinate differentials
dx*  in (7) by the finite operators

Ai# = ayu (8)

with y#
length,

Then the forms (7) and (8) produce the operator
of interval as follows:

being the Dirac matrices and a a certain

A- A#
As N# AX (9)
for N2 =1 , and

As = LN A
i U

for N®=—1 and N?=0*. From (8) it follows that

[Ax” JAx ] =2ia? I,w , (10)
where 1, is the four-dimensional spin operator.
This commutator is adequate to the commutator (2).
The space determined by formulae (8), (9), (9°) will
be called P (ﬁ -space,

_According to (10) the eigenvalues of operators
Ax , AX ’ Ax , Ax,, do not form the comple-
te set. Agaln, this set can be built out of the eigen-
values of the interval AS and unit vector N. By
solving the equation for eigenfunctions "DA and eigen-

values of operator o (N)= %-Ag(N)i

it is not difficult to find the eigenvalue A
A=+ yN® fo N° >0, (12)
A =t -N? fo NZ? <o. (12°)

Therefore, the eigenvalues As=t* a , or 0, As to
the geometrical field ¢ , it appears that it cannot
be interpreted as a probability since for the tachyon
states (12) the invariant &, 8, =o0.

As follows from (9) and (10) the interval opera-
tors As(N’) arnd As(N”") for two nonparallel directions
N° and N” do not commute:

[AS(N"). As(N“)]=a® y"N'xN") ,, (13)

* This definition of interval differs from that given
in ref.’%/ but coincidences with the earlier defini-
tion of ref,



(symbol x represents the vector product). Hence, each

point of the quantized space | (1?) can be crossed
only by one (though arbitrary) straight line,

Next, we would like to comment on the choice
of sign for the interval, Since A= t1 |, we meet with
an ambiguity of the same type as in the Minkowski

. . 173 .
geometry in which ds=*y X dx] . We will choose
1

that sign in accordance with the concept of time r
and distancef ., For the time-like interval §=r ,N2=__1,
at each point, the rule

= t =
A=*1, <DA_<I>t(tN) (14)
gives two values ofr i.g., r=%ra | whereas for
the space-like interval s=7 , N? =41
/\t 1 , x + ’
+ (D)\ <D+( N) (14 )

only one sign is admitted, i.e,, /= a.

With this choice, at each point in the space-like
direction there can be only one ray( N), while in
the time-like direction two rays ¢ N). Thereby the
ordering of events is determined in the spacef‘4(§).
It is realized in the same way as in the Minkowski
space with the help of interval s and unit vector N,
The important difference is that only one line (for
N =-1 ) and only one ray (for N? .41 ) are admitted
at each point, The eigenvalue of interval for N® =—1
coincides with time r in the reference frame, where
N=(1,0,0,0), and for N°-+1 with length { in the
frame where Nx(o,ﬁ). As to the interval As=0 ,
N2=0 , it defines neither length nor time because
at As=0 operators 24 and xp (#= 1,2,3) do not
commute with AS in any reference frame, Therefore
the seat of points separated by the light cone N0
is undetermined, "

In the vicinity of every point A of space Iy(x),
one can indicate a neighbouring point B , for N®=+1,

defined by the eigenvector (DA(A,N) of operator

As (N) given at point A ., This definite geometrical
state can be achieved through two equivalent methods
due to the chiral degeneracy of field ¢y, . From point
A one cannot draw two or more lines connecting A
with B ,C,... (Fig. 1a). To any point A , in its
vicinity, one can extend arbitrary number of lines
from outside, e.g., from neighbouring points C,c’C"...
(Fig,” 1b),

However, distances between these points, CC”’,
C'C” , etc, will be indefinite, A vicinity of point A
of this type is nonordered, In the vicinity of any
point B , neighbouring with A , one can indicate a
new point C defined by the eigenvector Gg(A,N7)
of operator AS(N") at point B , and so on. In this
way, there arises the curve ABCD...,, consisting
of space-like or time-like intervals whose length
is multiple to Figs. 1lc and 1d.

The ordered vicinity of any point A consists,
at the most, of three points fFig. 1d).

This maximum ordering is possible only when the
contour ABC can be closed, however, it is not
always the case as intervals in I, (x) -geometry are
discrete. The fourth point can no longer possess
definite positron with respect to all the three ordered
points, because this would give rise to two con-
flicting eigenfunctions ¢, . For instance, definite va-
lues of interval BC, by relation (13). do not allow
definite values for BD (cf. Fig. 1c), For the same
reason, lines cannot intersect in this space.

Thus, in I(X) -geometry only two or three points
can be ordered relative each other.

The space I', (X)) can be embedded into the
space M, (x) like any lattice is only a part of
continuum,

It looks like, relative coordinates of points in

2 &) are subjected to some constraints.




% 9
(8)

Fig, 1, Vicinity of points in the space l';(f). Solid
lines represent definite intervals, dashed ones, inde-
finite intervals.
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3. KINEMATICS OF QUARKS

The kinematics of quarks we consider below is
based on the following idea: the gluon field § which
couples quarks q (or antiquarks q ) is defined in
the space I, ®), ie.,

G =8(&)= G(N.5(N)).

From the properties of F4 (f) ~-geometry we may
conclude that each quark has only one, directed to
a neighbour line N along which the one-dimensional
interaction can propagate., In other words, quarks
possess the directed wvalence, and what is more,
they are monovalent,

Space-like configurations which are completely
ordered and, consequently, possess definite inter—
actions between quarks, consist of quark pairs or
of triads only.,

It is just this conclusion that follows from the
above assumption on the gluon field.

Our second conclusion is due to the discrete-
ness of space Q(f ). Because of this property, the
space-like intervals cannot be smaller than the ele-
ment of length a. Therefore, quarks cannot be at
the same point that removes the well-known difficul-
ty of quark statistics: different positions of quarks
can be treated as their different colour., In other
words, the difference in colour of quarks can be
identified with difference in their position,

A reasonable picture of quark interactions fol-
lows from the merger of the idea of directed one-
dimensional valences with the assumption that quark
structures are formed only by closed valences.

For the quark traids, this assumption follows
straightforward from the geometrical properties of
the point vicinity in the quantized space.

As to the pair of quark-antiquark, (q,q ) it is
of the form shown in Fig, le, according to that
assumption (the saturation of valences). As fields
¢ and ¢q~ have two signs of chirality, the total

q
number of methods for possible ordering of the pair

1



(9,9) equals four, Thereby, the ratio: R=o(e'e ™ o 4. Blokhintsev D.I. Theoret. and Mathemat. Phys,
—bhadrons)/o(e+e— _,#+#—) is quadrupled, which under (in Russian), 1970, v. 4, p. 145; Particles and
the threshold of production of charmed quarks is Nucleus, 1974, v. 5, No. 3, p. 606,

equal to 8/3, Blokhintsev D.,I, Theoret. and Mathemat, Phys,,

Other structures with a larger amount of quarks (in Russian), 1977, v. 30, p. 299,
cannot be ordered with respect to all pair interac- Rund H. The differential geometry of Finsler Space,
tions, Springer, 1959,

The simplest motion in the quark triad is defined
by the constancy of eigenvectors ® @A), @,(B), &, ().
Under this condition the triangle stays similar to
itself, Note that the smallest triangle have sides
equal to a.

The one-dimensional character of interaction
admits the linear growth of the binding energy with
increasing distance between quarks L=fa . This grows
takes place, probably, to a certain limit, Indeed, if
the binding energy of quarks reaches the value 2me?
( m is the quark mass), the states with *m cannot be
separated at all (the Klein paradox), The simplest
interpretation of this difficulty is to suppose the bond
breaking at a distance L = 2_@;_ where g is the
interaction constant and B is gthe strength of the
gluon field., And just in that breaking the pair (q,q )
is created.

In conclusion note that an analogous theory may
be developed on the basis of the curved space
S 4(p) with discrete space-like intervals,

The author thanks Drs, B,Barbashov, A.Efremov
and R.Mir-Kasimov for useful discussions.
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