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Classical Dynamical Systems with the Symmetry of the
Kepler Problem

Hamiltonian dynamical systems of the form H=—;—Glp2+

+-;—02(xp)2+ Gy(xp) +U, where Gj and U are functions of r=yx2,

are investigated. The notion of a strict Kepler symmetry is introducH
ed to single out the cases where there is a "Runge-Lenz vector"
quadratic in the momentum, All dynamical systems with this proper-
ty are found, They depend on an arbitrary function of the distance
to the centrum of symmetry and two arbitrary interaction constants.
The equations of motion are solved and it is shown explicilly that
the orbits are closed. Cases when the strict Kepler symmetry is
related to an underlying E3) symmetry are noted. The breaking

of the strict Kepler svmmetry and its relation to the precession

of the perihelium are discussed.
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1. Introduction

There is an extensive literature devoted to the so-
called dynamical (or accidental, or hidden) symmetries
and to the Kepler problem, in particular (both in classical
and in quantum theory). It is usually assumed in these
studies that the Hamiltonian is of the form

H=T+20C (1.1)
that is, a sum of a kinetic part
T = —1——p2 ., m = const (1.2)

2m

invariant under rotations, and a momentum independent
potential that is also assumed to be rotation invariant,

U =0(r). (1.3)
The Kepler problem,

1 g2, oL (1.4)
© 2m P {"r

and the isotropic harmonic oscillator are two examples
of the form (1.1)-(1.3) known since 19 century to possess
hidden symmetry O0(4) and SU@), respectively, higher
than the obvious rotational symmetry. It was proved by

Bertrand/1/ in 1874 that these are the only interactions
of the form (1.1)-(1.3) which have closed orbits and it
was believed for a long time that the closed orbits are a
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consequence of the exceptional higher symmetry of these
particular interactions.

In the case of the hydrogen atom the 0O(4) symmetry
of the Kepler ?roblem has a beautiful quantum-mechanical
manifestation/2"11/. We are not concerned in our work,
however, with the quantum-mechanical aspect of this
symmetry.

In the sixties the interest 1n the symmetry of the
Kepler problem was revived / 12-21due to the success of the
group theoretic approach in partlcle physics. At that
time it was gradually realized/22-27/ that 0(4) and
SU(3) are symmetries of any interaction of the kind
(1.1)- 51 .3). And what is more, a general proof was
given that for any dynamical system of n degrees
of freedom, whatever function of the canonical variables
the Hamiltonian

Hz}](ql’.“’qﬂ, p1 v"”pn) (1’5)

would be, there exist O(n+1) and SU(n) algebras of in-
tegrals of motion. Consequently, the symmetry of the
Kepler problem (as well as that of the isotropic harmonic
oscillator) is inherent to any dynamical problem. It does
not depend on the interaction. It is neither dynamical
nor accidental. It is rather a general characteristics of
the canonical Poisson bracket Lie algebra. And the pro-
perty of the orbits to be closed is not a consequence of
this symmetry.

Here we study a class of dynamical systems which
is much larger than the class (1.1)-(1.3). We assume that
the Hamiltonian is a quadratic function of the momenta,

p= (p1 'p2!p3)v

H = 2-(G, (0p® + G, (Xam)®] + G, ()(xp) + U() (1.6)
invariant under rotations in configuration space; r= \/_x—2
and x = (x4, X5,Xg) are Cartesion coordinates. Since the
0(4) symmetry by itself cannot distinguish a proper
subclass of dynamical systems, we choose another pro-
perty to single out such a subclass. Namely, some of the
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elements of the symmetry algebra are required to be
second degree polynomials in the momenta. We say for
brevity that the so-defined dynamical systems possess
the symmetry of the Kepler problem in a strict sense.
The subclass of interactions we obtain in this way
includes the case (1.4) and depends on an arbitrary func-
tion of r, f(r) , and two arbitrary interaction constants,
g o and gg4. It has the virtue that any of the problems
in this subclass can be solved exactly. The orbits are
closed for any choice of f(r) , g, ,and g, .

The interaction (1.6) is not standard in ‘the sense that
it cannot be fully separated from the kinetic part. Regard-
ing this point we recall that even in the classical theory
of the electromagnetic interaction a dependence on the
momentum, though linear, is contained in the interaction
part. Though a linear in p term is present in (1.6)
actually it is only possible to include electrostatic fields
in our treatment. The linear term in (1.6) is equivalent
to a vector potential A(r) - (G,;/(G,;+1*Gy)x.i.e., to a va-
nishing magnetic field, rot A=0 Or, in other words,
the choice of G, is a gauge freedom that, adding a
gradient term to the momentum, does not affect the
action. We choose Ggj -0.In order to include a magnetic
field we should have at our disposal other vectors except
x in configuration space or additional degrees of free-
dom. We note, however, that in some cases in nuclear
physics the nuclear potenhal is assumed to depend
quadratically on the momentum (see, for instance/28-32/),
The particle physics gives us even more reasons not to
neglect the interactions of the form (1.6) in favour of the
standard form (1.1)-(1.3). As a matter of fact, quantum
field theory had long ago gone out of this standard form
of interaction and one of the applications of our results
is related to quantum field theory . We have found
new (Lagrangian) nonlinear realizations of current al-
gebra. Finally we recall that the Hamiltonian and the
time are canonically conjugate and that the change of the
form of the dynamics should be dual in a certain sense
to a change of the form of the metric in space-time.
In this sense some of the Hamiltonians (1.6) should be
dual to the Schwarzschild metric.



In Sec. 2 we find all Hamiltonians of the form (1.6)
which allow a strict Kepler symmetry in the above sense.
In Sec. 3 we discuss the smooth deviations from the 11
law. As far as the dynamical systems with the strict
symmetry of the Kepler problem form a proper subclass
it makes sense to speak of breaking of the symmetry.
In Sec. 3 we study a minimal way of symmetry breaking
such that the exact solvability is preserved. The effect
of the symmetry breaking is that the orbits are no longer
closed. We demonstrate how a smooth extremely small
breaking of the 1/r law implies a precession of the peri-
helium in the framework of classical (nonrelativistic)
dynamics.

2. A Class of Dynamical Systems with the
Symmetry of the Kepler Problem

Here we shall strongly restrict the class of the dyna-
mical systems (1.5) by requiring that the Hamiltonian
is of the form (1.6), i.e., it is quadratic in the momentum
p and invariant with respect to the s((3) group generat-
ed by

i =<0 XPp - (2.1)
The SX3) Lie algebra of J; is

;g b=cin I (2.2)

where 1{,| is the Poisson bracket. Let us denote by
KJ, an S(X3) vector,

P, Kpl=cy K (2.3)

o

We shall assume that K is orthogonal to the angular
momentum J,

K-J =0 (2.4)

and quadratic in the momentum

Kj:Apj-»Bq it

A = az(r)(xp)+ a, (D,

B =b }(r)pz + bq(r)()‘:p)2 + b2(r)(Xp) + b, (). (2.5)
The problem we study is the following: which are all

Hand K; of the form (1.6), (2.5) such that K, arein-
tegrals of motion ’

K j,H} =0 (2.6)
satisfying
§K\1,K?§:aH(jgan (2.7

with « a constant.
The class of solutions of this problem is certainly
not empty. It contains the {7t interaction (1.4) with

K the Runge-Lenz vector

K -Lwn, +gde - Loop, b2 ety (2.8)

I ) r m T m r

It is straightforward to find all the interactions

(1.6) satisfying our restriction. Taking into account

(1.6) and (2.5) we write Egs. (2.6) and (2.7) in the form

of a system of 14 nonlinear differential equations
(t at/ar® and G_( 0):

2 : 2 _ 2.9
(2r b4—b4)a2—2b4ﬁ1/zaGl, (2.9)

(2r 2b’3 +3b)a,—2(a, +2b, +2r2b3)aé—2b3b4: %aG,,,

(2.10)
. 2 . oo _or2a’ _
(2r2b2 + 2b2)32 - 2(2r” a T al)b 3 2(r aj a.g)b2
- Aaa,)’ -2Wb, =0, (2.11)
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2y’ —(2r®’ - - * -2bb =aU,(2.12
(er b1+b1)az (@r a’, :a,l)b2 23,1:3.1 0= ( )

(a + r2b2)U’ =0, (2.13)

2 ’ L4 2 ’
2(az+2b4+2r b3)U =2b 1Gl+(2r b1+b1)02, (2.14)

2 ’_ 2.15

2r azU = blG1 , ( )
2 © ~ 2b’ 2’ +b )G ,

(a (T b2)02 2b 20 t (2r 2t 2) 0 (2.16)

(b2+2al)G & (2r~a "2 1)G2 =0, 2.17)

(a,+ r2b2)0’1 =b,G,, (2.18)

122,Gy = (b,y+ 2a5)G + (272} ~a,)G, | (2.19)

2 © _ 9p” 2y, - 2.20
(a2+2b4+2r b )G,=2b7G +(2r%b; +b )G, , ( )

r2a20’1_=(b4+agGl , (2.21)
(a,+2b,+2r%,)G" = Aby + b)) + (r*bi-b,)GC,
(2.22)

It is clear from (2.13) that either

U(r) = const (2.23)
or

_ _R
al(r)_ r b2(r). 2.24)

We have accordingly two classes of solutions.
In the case of (2.23) (choosing Ur) = 0) we get the
first class of solutions of our problem

1 - g%
r88%(r)

H= Ynr? t(lp? + )21, (2.25)

K, =A,K, +a T, . (2.26)
~ — Xp 1+ rzﬁ(r) 5
K. = /i@ [———p + (p* - ————p)x;l,
: r24(r) r 48 (r) (2.27)
— 23
T, =1/ f(@©[p i~ 1+ o7pn Xp)X; I. (2.28)
J r4B()

Here, for an arbitrary function, G,(r)y, we have set
G, =7iG, (], c, ] =1,

(2.29)

po - 2— L1 -
f(r) dr? dr 2

and A1 and A2 are integration constants. It turns out
that

Inf(r),

a = ——2A2;a7] (2.30)

so that A, is a normalization constant which should
be different from zero if we want to have (2.7) with « # 0.
We obtain in this way an infinity of vectors Kj , Eq. (2.26)
with Ag-y/-%n« and A, arbitrary, satisfying the requi-
rements we have imposed. The T; form a set of three
additional integrals of motion, ¥Tj, H{=0 such that

Uj ,Tg%:fj?nTn , {ijTf’ b= 0. (2.31)
We see that J; and T; close an E(3) (Euclidean group)
Lie algebra. A general construction of an ¥(3) Lie al-
gebra of constants of motion for any spherically symmet-
ric Hamiltonian is given in /24/,

The J,, T, , K;and H generate an algebra cha-
racterized be

K 2q



(along with (2.2), (2.3), (2.7) and (2.31)). The 10 constants
of motion Ji , T, I?j and H are, of course, not in-
dependent. They are related by

I~<j = (TxJ), (2.33)

and

2_
T*<=2nH. (2.34)

Equations (2.7) and (2.32) as well as

K2 +aHI® = A’fan,
(2.35)

K2 +aHI? = 0,
follow from (2.33) and (2.34). A general discussion of
the construction of the 0O(4) and some other algebras by
means of analytic functions of E(3) generators is con-
tained in /26/,

Let us now consider the more general situation when
U is not assumed to be a constant. Let G, () bean
arbitrary real function, g,, g,, g5, three arbutrary real
numbers and define 17 , f(r)and B(r) as in Eq. (2.29).
The functions

G (0 = (),

f(1 - 2g1f) o
Gz(l‘) =—-nf + n — r4tj2 —[1- 4g1f +g 2\,/f(1_2g1f)J
U(n) = gglvi(1-2g,0)+ %e,fl, (2.36)
and
al = 0,
/ —Yena — (2.37
250 = VI -2g40),
10

b, (1) = Sngg v-tna[l-dg 0+ g,y (1 -28,D],
r

bz(l') =0 ,

— (1~ 2g )
b () = V-thne —————[-8g,((1-2g ) +

258 *(n)

+ g, (1- 4 1f)\/f(1—2g1f_)—— 2r28(1 +128)1 ,

b 4t(l‘) =/ Ynaryf(l-2g 1f),.

satisfy Egs. (2.9)-(2.19) and (2.21)- (2.22).Inserting
them in Eq. (2.20), one obtains

1

r4ﬁ

We denote by ¢ the parameter

@8, +8%)(1- 28,032 =0, (2.38)

o = 8g + gz. (2.39)

It follows from Eq. (2.38) that (2.34), (2.35) represent
the solution of our problem only if

o = 0 that is g - —gz/S, (2.40)

The seven integrals of motion Ji , K. and B are
not independent. Equations (2.2), (2.3), (2.6), (2.7) and
the rotational invariance of H imply the invariance of
the function K2+qHJ? , , i.e., its Poisson brackets
with J. and Kj are zero. Calculating this function one

obtains

o

at (2.41)
1

K2 +aBI® = —Ynal-8g H®+ 286 H + g%+ 0



which in the case of strict Kepler symmetry takes the
form

K ° + aHJ L Yo T}a(goH 4 g‘S )2 . (2.42)

We note that the first class of solutions of our problem,
Egs. (2.25)-(2.28) is formally contained in the second.
For -0 and g, and g3 approaching zero we obtain the
first class of solutions except for the E(3) symmetric
part, T; ,of K;

We have assumed Gy (r)-0.The solution for arbitrary
G, , however, is readily obtained if one has already
found the solution for G,(n=0. This follows from the fact

that the Poisson bracket algebra is invariant under the
replacements

pop. + -2 F (2.43)
) 1 (7Xj

for any F(x). Taking into account that (2.43) with

F(x) - _fGdr (2.44)
G 1(r) +r2G2(r)

transforms (1.6) into a Hamiltonian of the same form
(with the same G, and G, )and G -0, itonly remains
to find out in what goes Kj upon the inverse transfor-
mation.

It is not difficult to write the solution of any dynamical
problem with strict Kepler symmetry. Specifying the
values of the energy, E, the angular momentum, J,
and its third projection J,-0, we have (¢ is the angle
in the plane of motion).

r=v(G,+*GY2E-J2G /2 - 2U],
(2.45)
6=3G,/r*

12

Denoting by W the function

1-2g,1()
W) = b (2.46)
f(r)

we can write for the trajectory

3
0-0, =-J [[(W*+g W2 )n(2EW2-2g W +
To

Y

+4g.E - g8~ 7 2N aw (2.47)

Taking into account (2.40) we obtain

R — 3+.___g2E [14+v1+ cos(9-9,)] (2.48)
A ORE - 32 (g3+g2E)
and it is obvious from this expression that the orbits
are closed. For G, (r)=1/m= const , gg=0, gg= gy/m oONe
obtains the Hamiltonian (2.4) and the orbit equation
(2.48) takes the known form

- g;zE[1+\/1+ M—ccs(@-@ ). (2.49)
32 mg? 1

"l,._.

We note that Eq. (2.48) can be obtain algerbaically
without referring to the differential equations (2.45)
if we use the value

K

\/_—‘/zna

= 7y 2 2
_\/(g3+g2E) +2 uEJ (2.50)

of the constant of motion K - |K| which comes out from
(2.42). Taking into account that on the one hand

Kjxj =Krcos(6-6,) (2.51)

13



and on the other hand, according (2.5),
_ .2 2 (. 2 2. (. 2 2y, )
Kjxj =T b4p + (a2+ r b3)(xp) +(d1+r b2)(xp) T Ll (2.52)
and elliminating p ® from

_ .2 2\ 2 o 2y 372, 2
Krcos(0—01)~r (ag+b, +1°bJp"—(a,+r b)J “+1%b,

2E = (G, +r2(}2)p2~(}2J2+2U (2.53)
we obtain
21 _cos(0-0)) - 28 ,E = nl-g,f + 2y 1(1-2g,01 %2
\/—1/27](1

(2.54)

in the case of strict Kepler symmetry which coincides
with (2.48).

To obtain the time dependence on the trajectory we
should solve the integral

"o 2 2 :
t=ty=— J(W™+2¢g 1)[7)(\" +g2\)\—2g 1) ~

T'o

2 .,
« (2EW® - 2g W +dg F ~ g8, - N aw (2.55)

Taking, for example, nE =-|E| <0 the result is (¢-0)

g.~g,E IF+29g .8
t—ty= 3 e r+\ 1-2|E|- ~-32—3—smr]
°E+/ 2|El (8,8,
1-2g f(r) 858,
Vi =Yg 3 ——-[1+V1 2|E1— 2ng 2g3cosr]
f(r) 2 (g3—82E)

(2.56)
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At the end of this section we find the functions f(r) for
which G,(r) given by Eq. (2.36) vanishes. These f(r)
are glven by the solution of the differential equation

re  df — - %
— —— =[1-2g D1 -4g,f+g,(1-28 DI (2.57)
f  dr®
which is
1 r C .2
—— =2+ —[-g, ro— + =17,
£(r) 1 24 (2.58)

with C an integration constant. In the case of the strict
Kepler symmetry this becomes

1 _¢c* 1, C 2.59
£(r) 4r 2 2 Bor (2.59)

provided C remains fixed when ¢ approaches zero
and

1

— -mr2-g ymr (2.60)
f(r) g

if C also approaches zero in such a way that

lim <- - 2ym.

ag-0

3. Symmetry Breaking and Precession of the
Orbits

The notion of a strict Kepler symmetry was defined
in Sec. 2.It is clear that there are infinitely many ways to
break the requirements of a Kepler symmetry in the
strict sense. There is, however, a natural possibility
to break this symmetry in a minimal way by means
of the parameter o, Eq. (2.39). This way of symmetry
breaking has the virtue that preserves the exact solva-
bility of the dynamical system.
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Let us assume for definitness that the following

quantity is non-negative
LRET) = —L ——lo(8g 11«:2 ~2E1% - 28,8 B-g %)+ 120
Wg,re, B (3.1)

as it is in the case of strict Kepler symmetry and denote

1 2
—[8¢ 1E -nJ" - €58 3‘]

ME.J) -
2(g3+g2E) (3-2)

and

Ay = A+ 1, /\2:/\——1/.

1 (3.3)

Then for the equation of the orbit itfollows from Eq.(2.47)
F () = snlQ(E, N0 -6,); k] (3.4)

with sn the Jacobi function and

WO -A, AL
F(r) - (0 -Ae J ' (3.5)
A=W ALy

- 3.6
QEI) -~ —— (25 g, - 28 A )], 3-6)
A —A) T
1 2
W% rgr. -2 HA )
K2 _ 21 z 1 ! & (3.7)
(S v A -2 DAG )
where
A = 2EAZ - 2g \ + 4g E ~ 8,8 5- 79 3-8)
16

It is clear that the orbits are no longer closed. Let us
denote by r, and r_ two consecutive points on the tra-
jectory, for which dr/d0=0. Then we can write for the
period of the motion

210 ) -0 )] = _® (3.9)
+ - Q(E, J)

and calculate the precession 4K/{! - 2. Here
/2 dys

K= [ —. (3.10)
0 1 -k2sin?y

It is easily verified that when the symmetry breaking
parameter ¢ approaches zero then

lim 2|0 ) - 0(r)| = 2. (3.11)

g0

Let us consider, for instance, small deviations of the
1/t law such that Gz(r),——-. 0. Using Eq. (2.58) with
4C =o/2ym,

2
— og g -1
f(l‘)=[mr2_g2\/mr+%o - 2__L+ = _1_] ,
Bym ©BERE 5 g)
we obtain
g,V m 08, 2 -1
Gl(r)= (m - —2 ;30 _ __2 g ] .
r 8r2  &y/mr3  256mr¢ (3.13)

We see that for large enough r the correction to the
mass, m, is small for small values g, and o . For
I - = the mass correction becomes zero,

1
cw - & (3.14)

r » o©

17



the potential part of the interaction takes its usual form

T N (3.15)
r—00 \/ m \
and the precession vanishes. At extremely small distance
we have

16g, vm
6 - P v —r (3.16)

1 r—)O a I‘*O a

One may also consider the case when o - 0 with
C-2b fixed in Eq. (2.58). Then f(1) is given by Eq.
(2.59) and

) ré 9 gl
H=Y% - —p? ¢
b%—g br b%—g br (3.17)
2 2
The equation of the orbits is
+Ey E

LI A SN __EJ___cos(u_oO)l. (3.18)
b J% (g, 8,0

We see that for no value of E and J the particle can go
to infinity,

d<r < ~

b
= = 52

s > P 2 S
g g+ 8Bl (g, 8, E)"+2RET% (3.19)

It is confined to a sphera of a radius that can be done
arbitrarily small (for E, J in any finite interval)
by a proper choice of b.
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