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1. Introduction 

There is an extensive literature devoted to the so­
called dynamical (or accidental, or hidden) symmetries 
and to the Kepler problem, in particular (both in classical 
and in quantum theory). It is usually assumed in these 
studies that the Hamiltonian is of the form 

H = T + U 

that is, a sum of a kinetic part 

1 2 T = ---p 
2m 

m c const 

(1.1) 

(1.2) 

invariant under rotations, and a momentum independent 
potential that is also assumed to be rotation invariant, 

lf =- U(r). 
(1.3) 

The Kepler problem, 

H ~ .J._p 2 I g L 
2m r 

(1.4) 

and the isotropic harmonic oscillator are two examples 
of the form (1.1)-(1.3) known since 19 century to possess 
hidden symmetry 0( 4) and SU(3) , respectively, higher 
than the obvious rotational symmetry. It was proved by 
Bertrand I 1/ in 1874 that these are the only interactions 
of the form (1.1)-(1.3) which have closed orbits and it 
was believed for a long time that the closed orbits are a 
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consequence of the exceptional higher symmetry of these 
particular interactions. 

In the case of the hydrogen atom the 0(4) symmetry 
of the Kepler rrobl

1
em has a beautiful quantum-mechanical 

manifestation 2·- 111 . We are not concerned in our work, 
however, with the quantum-mechanical aspect of this 
symmetry. 

In the sixties the interest in the symmetry of the 
Kepler problem was revived I 12-21-tiue to the success of the 
group theoretic approach in particle physics. At that 
time it was gradually realized/22-2 7/ that 0(4) and 
SU(3) are symmetries of any interaction of the kind 
(1.1)-}1.3). And what is more, a general proof was 
given 24/ that for any dynamical system of n degrees 
of freedom, whatever function of the canonical variables 
the Hamiltonian 

H=H(q , ... ,q ,p
1

, ... ,p) 
1 n n 

(1.5) 

would be, there exist O(n+ 1) and SU(n) algebras of in­
tegrals of motion. Consequently, the symmetry of the 
Kepler problem (as well as that of the isotropic harmonic 
oscillator) is inherent to any dynamical problem. It does 
not depend on the interaction. It is neither dynamical 
nor accidental. It is rather a general characteristics of 
the canonical Poisson bracket Lie algebra. And the pro­
perty of the orbits to be closed is not a consequence of 
this symmetry. 

Here we study a class of dynamical systems which 
is much larger than the class (1.1)-(1.3). We assume that 
the Hamiltonian is a quadratic function of the momenta, 
p = (pl .p2 ,p 3). 

1 
H = 2"[ G

1 
(r)p 2 + G 

2 
(rXxp) 2 ] + G 

3 
(r)(xp) + U(r) (1.6) 

invariant under rotations in configuration space; r=vx 2 

and x = (xl'x 2 ,x 3 ) are Cartesion coordinates. Since the 
0( 4) symmetry by itself cannot distinguish a proper 
subclass of dynamical systems, we choose another pro­
perty to single out such a subclass. Namely, some of the 

4 

elements of the symmetry algebra are required to be 
second degree polynomials in the momenta. We say for 
brevity that the so-defined dynamical systems possess 
the symmetry of the Kepler problem in a strict sense. 
The subclass of interactions we obtain in this way 
includes the case (1.4) and depends on an arbitrary func­
tion of r , f(r) , and two arbitrary interaction constants, 
g 2 and g 3 . It has the virtue that any of the problems 
in this subclass can be solved exactly. The orbits are 
closed for any choice of f (r) , g 2 , and g 3 

The interaction (1.6) is not standard in the sense that 
it cannot be fully separated from the kinetic part. Regard­
ing this point we recall that even in the classical theory 
of the electromagnetic interaction a dependence on the 
momentum, though linear, is contained in the interaction 
part. Though a linear in p term is present in (1.6) 
actually it is only possible to include electrostatic fields 
in our treatment. The linear term in (1.6) is equivalent 
to a vector potential A(r) ~ (G 3 /(G 1 +r2 G~)x.i.e., to a va­
nishing magnetic field, rot A= 0. Or, in other words, 
the choice of G 3 is a gauge freedom that, adding a 
gradient term to the momentum, does not affect the 
action. We choose G 3 ceO. In order to include a magnetic 
field we should have at our disposal other vectors except 
x in configuration space or additional degrees of free­
dom. We note, however, that in some cases in nuclear 
physics the nuclear potential is assumed to depend 
quadratically on the momentum (see, for instance/28-32/). 
The particle physics gives us even more reasons not to 
neglect the interactions of the form (1.6) in favour of the 
standard form (1.1)-(1.3). As a matter of fact, quantum 
field theory had long ago gone out of this standard form 
of interaction and one of the applications of our results 
is related to quantum field theory . We have found 
new (Lagrangian) nonlinear realizations of current al­
gebra. Finally we recall that the Hamiltonian and the 
time are canonically conjugate and that the change of the 
form of the dynamics should be dual in a certain sense 
to a change of the form of the metric in space-time. 
In this sense some of the Hamiltonians (1.6) should be 
dual to the Schwarzschild metric. 
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In Sec. 2 we find all Hamiltonians of the form (1.6) 
which allow a strict Kepler symmetry in the above sense. 
In Sec. 3 we discuss the smooth deviations from the 1. r 

law. As far as the dynamical systems with the strict 
symmetry of the Kepler problem form a proper subclass 
it makes sense to speak of breaking of the symmetry. 
In Sec. 3 we study a minimal way of symmetry breaking 
such that the exact solvability is preserved. The effect 
of the symmetry breaking is that the orbits are no longer 
closed. We demonstrate how a smooth extremely small 
breaking of the 1/r law implies a precession of the peri­
helium in the framework of classical (nonrelativistic) 
dynamics. 

2. A Class of DyMmical Systems with the 
Symmetry of the KePler Problem 

Here we shall strongly restrict the class of the dyna­
mical systems (1.5) by requiring that the Hamiltonian 
is of the form (1.6), i.e., it is quadratic in the momentum 
p and invariant with respect to the ...0:3) group generat­
ed by 

Ji = fjkP ~Pp . (2.1) 

The OCX'3) Lie algebra of J i is 

[Jj ,J P l = < ifn J 11 ' (2.2) 

where l, l is the Poisson bracket. Let us denote by 
K . an S0::3) vector, 

J 

!J . . Kn l =f .n K . (2.3) 
J r Jm n 

We shall assume that K is orthogonal to the angular 
momentum J, 

K·J = 0 (2.4) 
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and quadratic in the momentum 

K.=Ap .+Bq J., 
J J . 

A = a ( r)( xp) + a ( r) , 
2 1 

B = b (r)p 2 + b (rXxp)2 
' b, (r)(xp) + b 1(r). 4 3 2 

(2.5) 

The problem we study is the following: which are all 
Hand K i of the form (1.6), (2.5) such that K. are in-

• 1 

tegrals of motion · 

lK .,Hl = 0 
] 

satisfying 

l K . , K p l = uH ( 
3
. r 

11 
J 11 J 

with u a constant. 

(2.6) 

(2.7) 

The class of solutions of this problem is certainly 
not empty. It contains the 1/r interaction (1.4) with 
K J the Runge-Lenz vector 

1 xi 1 1 2 1 
K. =-(p:d). +g--o- -(xp)p. +[-p +g-lxj. (2.8) 

l m l r m .Jm r 

It is straightforward to find all the interactions 
(1.6) satisfying our restriction. Taking into account 
(1.6) and (2.5) we write Eqs. (2.6) and (2.7) in the form 
of a system of 14 nonlinear differential equations 
(f' df/dr 2 and C (r) 0 ): 

3 

(2r 2 b' - b )a - 2b 2 
= 1/zuC 

4 4 2 4 1' 
(2.9) 

(2r 2 b'
3 

+ 3b
3

)a 
2

-2(a
2 

+2b
4 

+2r 2 b
3
)a;-2b3 b 4 = 

11!aC 2 , 

(2.10) 
(2r 2 b' + 2b )a - 2(2r 2 a' -a )b - 2(r

2 a' -a )b -
2 22 1 13 2 2 2 

- 2( a 
1 

a 
2
)' - 2b 

2 
b 

4 
= 0 , (2.11) 
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(2r2b' + b )a -(2r2a'- a )b- 2a a' - 2b b =aU, (2.12) 
t 1 2 1 1 2 11 14 

(a + r2 b )U' = 0 (2.13) 
1 2 ' 

2{a
2

+2b
4 

+2r 2b
3

)U' =2b'
1
G

1 
+(2r 2 b'

1 
+b

1
)G 2 , (2.14) 

2r2a
2
U' = b

1
G

1 
, (2.15) 

(a + r 2b )G' =.2b'G +(2r2 b' +b )G , 
1 2 2 21 2 2 2 

(b +2a')G +(2r 2a' -a )G =0, 
2 1 1 1 1 2 

(at+ r2b2)G'l = b2G 1' 

r2 a 2 G 2 = (b 3 + 2a 2)G 1 + (2r
2 

a ~ - a 2 )G 2 , 

(a
2

+2b
4 
+2r2b 3)G'2 =2b;G 1+(2r 2 b~ tb 3 )G 2 , 

r 2 a 2 G~=(b 4 +aiG 1 , 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(a 
2 

+ 2b 
4 

+ 2r 2 b
3
)G'1 = 2(b 3 + b4')G 1 + (2r 2b4- b 4)G 2 , 

(2.22) 

It is clear from (2.13) that either 

U(r) "' const (2.23) 

or 
a (r)=-r2 b (r). 

1 2 (2.24) 

We have accordingly two classes of solutions. 
In the case of (2.23) (choosing U(r) "' 0) we get the 

first class of solutions of our problem 

1 - r 4 j3 2 ( r) 2 
H = '1217r 2 f(r)[p 2 + (xp) ] , 

r6 j32(r) 
(2.25) 
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K. = A
2 

K. +A 
1
T . , 

.] .] J 
(2.26) 

- -- xp 2 1 + r 2 f:i (r) 2 K. = r\/ f(r) [ ----p j + (p - -----(xp) )x j J, 
1 

r 2(3 (r) r 4{i (r) (2.27) 

. 1 + r 2 {3(r) (2 28) 
T . = rv f(r) [ p . - (xp )x. ] . · 

J 1 r 4 p(r) 
1 

Here, for an arbitrary function, G 1(r), we have set 

G 
1 

= ry\G
1 

(r)\, \G
1

(r)\ =r2 f(r). 

1 d d {i(r) ~ -- - f(r) = -ln f(r), 
f(r) dr 2 dr 2 

(2.29) 

and A 1 and A 2 are integration constants. It turns out 
that 

a " - 2A 2 r1 
2 

(2.30) 

so that A 2 is a normalization constant which should 
be different from zero if we want to have (2.7) with a l 0. 
We obtain in this way an infinity of vectors K. , Eq. (2.26) 
with A 2 c-v~·J/zrya and A 1 arbitrary, satisfyiAg the requi­
rements we have imposed. The T i form a set of three 
additional integrals of motion, !T., H I·~ 0 such that 

.) 

l.T j . T p I = , jfn 'I' 
11 

, ! T j , T f I " 0 . (2.31) 

We see that J j and T j close an E(3) (Euclidean group) 
Lie algebra. A general construction of an E(3) Lie al­
gebra of constants of motion for any spherically symmet­
ric Hamiltonian is given in /24/. 

Th~ J i , 'I' j , K j and H generate an algebra cha­
ractenzed t>y 

- 2 lK. T 0 I = T o .o - T. Tp (2.32) 
J ' r Jr J 
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(along with (2.2), (2.3), (2. 7) and (2.31)). The 10 constants 
of motion J i , 'T j , K j and H are, of course, not in­
dependent. They are related by 

K. = (TxJ). 
J J 

(2.33) 

and 

T 2 =2ryll. (2.34) 

Equations (2.7) and (2.32) as well as 

K 2 +a HJ 2 = A~ 2ry H, 

j{2 +al-IJ2 = 0, 

(2.35) 

follow from (2.33) and (2.34). A general discussion of 
the construction of the 0( 4) and some other algebras by 
means of analytic functions of E(3) generators is con­
tained in I 261 . 

Let us now consider the more general situation when 
u is not assumed to be a constant. Let G 1 (r) be an 
arbitrary real function, g 1 , g 2 , g 3 , three arbutrary real 
numbers and define 17 , f( r) and {3(r) as in Eq. (2.29). 
The functions 

G /r) = 17 r 2 f(r) , 

f(l - 2g 1f) ---
G2(r) = -ryf + 17 [1- 4g/ + g 2y'f(l-2g/)1 

r 4/:5 2 

U ( r) = g 
3 

[ v f(l- 2g 
1 

f) + 'h. g
2 

f] , 
(2.36) 

and 

a 1 == 0 . 

V -'h.rya 
a2(r) = op(:) vf(l-2glf). 

(2.37) 
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I 
I 

1 --
bl(r)= -ryg

3
y'-'hrya[1-4g 1f+g 2 y'f(1-2g 1f)], 

r 

b
2

(r) == 0 , 

---v f(1- 2g tO 
b (r) = \1-'hrya [-Rg 1f(1-2g/) + 

3 2r 5{3 2(r) 

+ g (1-4g f)yif(1-2g f) -2r 2{3(1+r 2f3)], 
2 1 1 

b 4(r) = v-'h.rya ryf(1- 2g lf)" 

satisfy Eqs. (2.9)-(2.19) and (2.21)- (2.22). Inserting 
them in Eq. (2.20), one obtains 

1 ~ 312 - (8g 1 + g 2 )( 1 - 2g 1 f) = 0 . (2.38) 
r4{3 

We denote by a the parameter 

(J = 8g 1 + g ~. (2.39) 

It follows from Eq. (2.38) that (2.34), (2.35) represent 
the solution of our problem only if 

a --~ 0 that is g -- - g 2 /R . 
1 2 

(2.40) 

The seven integrals of motion J .i , K j and H are 
not independent. Equations (2.2), (2.3), (2.6), (2.7) and 
the rotational invariance of H imply the invariance of 
the function K 2 + a H J 2 • , i.e., its Poisson brackets 
with J. and K. are zero. Calculating this function one 
bta

. J J o ms 

a4 (xp) 4 

K 2 +aHJ 2 =-'hrya[-8g 1H 2 +2g2gji+g~+a 
2 

·] 

4r 4 (2.41) 

11 



which in the case of strict Kepler symmetry takes the 
form 

2 2 . 2 K + aHJ ~· - 'h rw(g H ~ g ) 
2 3 

(2.42) 

We note that the first class of solutions of our problem, 
Eqs. (2.25)-(2.28) is formally contained in the second. 
For a = 0 and g 2 and g 3 approaching zero we obtain the 
first class of solutions except for the E(3) symmetric 
part, Ti , of K i' 

We have assumed G3(r)-O. The solution for arbitrary 
G 3 , however, is readily obtained if one has already 
found the solution for G3 (r).O. This follows from the fact 
that the Poisson bracket algebra is invariant under the 
replacements 

a 
p. -> p . + -- F(x) 

.) .) ax j (2.43) 

for any F(x). Taking into account that (2.43) with 

rG 3(r)dr 
F(x) = J ------

0 (r) t-r 2C (r) 
1 2 

(2.44) 

transforms (1.6) into a Hamiltonian of the same form 
(with the same G 1 and C 2 ) and C 3 - 0 , it only remains 
to find out in what goes K i upon the inverse transfor­
mation. 

It is not difficult to write the solution of any dynamical 
problem with strict Kepler symmetry. Specifying the 
values of the energy, E , the angular momentum, J, 
and its third projection J 3 = 0, we have ( e is the angle 
in the plane of motion). 

r = y'(G 1+r20 ~[2E- J2G/r 2- 2U], 

(2.45) 
() = J G lr 2 1' . 
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Denoting by W the function 

W(r)=v' 1-2g1 f(r) 

f(r) 

we can write for the trajectory 

r 2 2 
0-() ,_J J[(W +g W- 2g )77 (2EW -2g W + 

0 r 2 1 3 
0 

2 -V:! + 4g
1
E- g

2
g

3
-77J )] dW. 

Taking into account (2.40) we obtain 

(2.46) 

(2.47) 

_2 __ =- 7J gs+ g~E [1+v'1+ 27JEJ 22 cos({}-(\)J (2.48) 
2W (r) +g 

2 
J (g

3 
+g

2
E) 

and it is obvious from this expression that the orbits 
are closed. For G 1 (r) = 1/ m = const , g2 = 0, g s= gym one 
obtains the Hamiltonian (2.4) and the orbit equation 
(2.48) takes the known form 

- J2 1. = _ ~ [1 + y'1 + ~-cos((}-() 1 )J. 
r J2 mg2 

(2.49) 

We note that Eq. (2.48) can be obtain algerbaically 
without referring to the differential equations (2.45) 
if we use the value 

K 
--- =-J(g3 +g2E)2+2fLEJ2 (2.50) 

V -1f:! 7]U 

of the constant of motion K = IKI which comes out from 
(2.42). Taking into account that on the one hand 

K j x j = K r cos ( ()- () 
1 

) (2.51) 
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and on the other hand, according (2.5), 

K / j ~ r2 b 
4
p2 + (a 

2 
+ r2 b 

3
) (xp) 2 +(a 

1 
+r2b

2
)(xp) +r2b 

1 
(2 .52) 

and elliminating p 2 from 

Kr cosUJ-0 
1
) ~ r2(a 2+ b 

4 
+r 2 b~p 2 - (a 2 tr

2b ~J 2 
tr

2 b 1 , 

2E ~ (G
1 

+r2G
2

)p2 -G2J 2 +2U (2.53) 

we obtain 
K -----

2TJ cosW-0
1
)- 2g 2E ~ r1l-g 2f +2v f(l-2g 1t)IJ 

2
+2g 3 

y- '/2T)U 
(2.54) 

in the case of strict Kepler symmetry which coincides 
with (2.48). 

To obtain the time dependence on the trajectory we 
should solve the integral 

t-t 0 ~-} (W 2+2g ~ h<W 2+ g 
2
W -2g 1) c 

ro 

2 2 -~ 
X (2EW - 2g w + 4g E - g g - T}J )] - dW. 

3 1 2 3 
(2.55) 

Taking, for example, 11E =-lEI < 0 the result is (a~ 0) 

2 
g3-g2E .T +2ryg2g3 

t- t ~ -----[r + ,/ 1-2jEj-------' sinr l, 
0 -- v 2 

2Ev'2IEI (g 
3
-g 2E) 

2 l-2g 1f(r) g 3 -g 2E . .T +2TJg# 3 -j ---- ~ 1;2 g + -----[1+v 1-2IEI----cosr]. 
f(r) 

2 
2E (g - g E)2 

3 2 

(2.56) 
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At the end of this section we find the functions f(r) for 
which G

2
(r) given by Eq. (2.36) vanishes. These f(r) 

are given by the solution of the differential equation 

r2 M . ~ 
·- ~ [ ( 1 - 2 g 1 f)( 1 - 4 g / + g 2 'v f ( 1 - 2g 1 f) ] 
dr 2 

(2.57) 

f 

which is 

1 1 r C 2 
-~2g +-[-g +a-+-J, 
f(r) 1 4 2 4C (2.58) 

with C an integration constant. In the case of the strict 
Kepler symmetry this becomes 

_1_ = _Q!:_- lg _g_. (2.59) 
f(r) 4r2 2 2r 

provided C remains fixed when u approaches zero 
and 

Q -

= mr "'- g ym r 
2 

(2.60) 

if 

1 

f(r) 

c also approaches zero in such a way that 

lim a -
a--.0 4c ~ 2\/m. 

3. Symmetry Breaking and Precession of the 
Orbits 

The notion of a strict Kepler symmetry was defined 
in Sec. 2.It is clear that there are infinitely many ways to 
break the requirements of a Kepler symmetry in the 
strict sense. There is, however, a natural possibility 
to break this symmetry in a minimal way by means 
of the parameter a, Eq. (2.39). This way of symmetry 
breaking has the virtue that preserves the exact solva­
bility of the dynamical system. 
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Let us assume for definitness that the following 
quantity is non-negative 

2 1 [ 2 2 2) 4], z (E.J) ~· ----- a(Rg E -2r1EJ - 2g g E- g +J ..->0 
2 1 2 3 3 = 

4(g3+g2E) (3.1) 

as it is in the case of strict Kepler symmetry and denote 

1 2 
,\(E.J)- [Sg 1E-r7J -g2g 3 J 

2(g +g E) 
3 2 

(3.2) 

and 

,\ 
1 

= ,\ + l' , ,\ 
2 

= A - v . (3.3) 

Then for the equation of the orbit it follows from Eq.(2.47) 

F(r) sn!U(E,.T)(Ii-t10 ); k] 

with sn the Jacobi function and 

F(r) , W(r)- ,\ 2 
-/\(,\ 1) 

,j-­
i\ (A 2) A 1 -W(r) 

, -~ . 2 n (E,J) - ----\;I (A 
2 

+ g
2
A 

2
- 2g 

1
)"'(A 

1
)1 , 

(A 1-A2) .J 

2 
(A 1 + g2A 1 - 2g 1) ,\(A 2) 

k 2 = 

2 (A + g A - 2g ) l\ (,\ ) 
2 2 2 r 1 

where 

16 

2 
/\(,\) c 2EA 2 - 2g 

3
.\ + 4g 1E.- g 2 g 3 - ~J 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

It is clear that the orbits are no longer closed. Let us 
denote by r + and r _ two consecutive points on the tra­
jectory, for which dr/d8=0. Then we can write for the 
period of the motion 

4K 
218 (r ) - e(r_) I= Q(E, J) + 

(3.9) 

and calculate the precession 4K/fL - 2r.. Here 

rr/2 dt/1 
K = J (3.10) 

o v 1 - k 2 sin 2 t/1 

It is easily verified that when the symmetry breaking 
parameter a approaches zero then 

lim 2IO(r+)- 8(r_)l = 2rr. 
a->0 

(3.11) 

Let us consider, for instance, small deviations of the 
1/r law _such that G 

2 
(r) ~ 0. Using Eq. (2.58) with 

4C = a/2ym, 

2 -1 - 3 
f(r) = [mr 2 - g ymr +-a 

2 8 
ag 2 1 a 1 ] 
---+ - ' 

- Ry~- r 256m r2 (
3

.
12

) 

we obtain 

g vm 3a 
2 -+ --G (r) = [ m - -r- 8r 2 1 

ag2 

~vm r 3 

a 2 -1 
+---] . 

256mr 4 
(3.13) 

We see that for large enough r the correction to the 
mass, m, is small for small values g 2 and a . For 
r ... oo the mass correction becomes zero, 

G (r) 
1 r -> oo 

1 
m 

(3.14) 
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the potential part of the interaction takes its usual form 

p (<) -· 
g 3 1 (3.15) 

r-->oo v· m 

and the precession vanishes. At extremely small distance 
we have 

256m r 4 , P(r) 
G(r) -2 r-->0 

1 r-->0 17 

16g ~3 \ m- r 

a 
(3.16) 

One may also consider the case when a • 0 with 
C- 2b fixed in Eq. (2.58). Then f(r) is given by Eq. 
(2.59) and 

r 4 2 H = Y2 -----p 
g3r -­+ ---

b 2 _ g 
2

br b 2 -g br 
2 

The equation of the orbits is 

r 
b 

g3+g2E 9EJ2 ---r 1 ~ v 1 ~ _ __::_.:_ __ cos(l! -00) ]. 
.T2 (g +g E)2 

3 2 

(3.17) 

(3.18) 

We see that for no value of E and .T the particle can go 
to infinity, 

0< r < -~ l[g 
3

-t g
2
E[" dg

3
+ g

2
E)2+2E.J2] 

.T 
(3.19) 

It is confined to a sphera of a radius that can be done 
arbitrarily small (for E , .T in any finite interval) 
by a proper choice of b. 
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