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CynepkospopmMHo-uHpapuaiTHas KTI] B ABYXMEpPHOM MpPOCTpaHCTBe-
BpOMEHH

[aunl npeacraBieHus CynepkoHPOpMHON CPYNNel B ABYXMEPHOM Npo-
crpaHCTBe-BpeMeHu. HallneHn! uHBapHaHTHbLIe ABYX— M TpexXToueudble byHKUIuH,
Monyuex noxanbHell CBOGOAHBIN NarpaHx{aH, U3 KOTOPOro C/eAYIOT ypaBHe-
HAR A8 CTPYHBI CO CIIHHOM.
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Superconformal Invariant QFT in Two-Dimensional
Space-Time

The representations of the superconformal group in two -dimend
sional space-time are given., The invariant two- and three-point
functions are constructed and is obtained the free local Lagrangian,
from which the equations of a spinning string are implicit,
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The investigation has been performed at the Laboratory of
Theoretical Physics, JINR,
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The superconformal transformations in two-dimen-
sional space were introduced in the dual string
model” /. The corresponding transformations in
4-dimensional Minkowsky space were considered
in paper /2. The representations of the last group
and corresponding invariant two- and three-point
functions for the fields transformed by some of
these representations were found in papers/3‘5/.

In the present paper we consider the represen-
tations of the superconformal group in two-dimen-
sional space-time, The corresponding Lie algebra
is more simple than the Lie algebra of supercon-
formal group in 4-dimensional space-time, For
example, it is closed with yg transformations ex-
cluded. Consequently the representations of this
group are labeled only by one dimension - the
scale one, In view of the dual string models /6.7/
it is interesting to consider the QFT invariant with
respect to S04@2.,2) transformations (superconfor-
mal group in two-dimensional space-time). As in the
case of conventional conformal invariant QFT the
two- and three-point functions are determined from
the invariance condition up to the normalization
constants. But there exist some more strong restric-
tions. The two-point function for scalar superfields
is nonvanishing for any scale dimensions, For
tensor fields it is not the case - the correspond-
ing two-point function is nonvanishing only for
coinciding points and consequently the scale dimen-
sion is fixed. Such a theory can describe the



"quarks" which do not propagate, In the case of
OPE wewill have only one parameter expansion,

In section 4 the invariant action is considered
from which free equations are obtained of a spin-
ning string 87/, It is found that in the framework
of superconformal invariant QFT there are no self—-
interactions.

2, TWO-DIMENSIONAL SUPERC ONFORMAL
ALGEBRA

Consider the superconformal algebra in two-di-
mensional space-time given by:

[M#V'Sa]=(aﬂv )a SB; [M;w 'Ta]z(o;w )a TB ’
[P 8 1-0 [P .T =iy )P s

@ a ’ u’'a u’a B’
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where
Ll 1 yg-
U[,I.VZT y# ,yV * y5 yoyl
and C=-C Txy is the charge conjugation operator,

The CR between M#V , P# ,D and K# are given
elsewhere /8.
Consider the scalar superfield

¥(x;0)-Ax)+ ¥ x)0 +_;_® COB(x) (@=12) (5 o

which transforms by some (in generally, reducible)
representations of superconformal algebra. Here 0
is an anticommuting Majorana spinor, A(x) and
B(x) are scalar fields and Y(X) is a spinor field,
For tensor supermultiplet A(x). B(x) and Y(x) are
tensors of a corresponding rank.

The field ¥ (x;0) has the following transforma-
tion properties with respect to the infinitesimal
superconformal transformations

. ' 0
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(S, . ¥ x;@)]=[a—‘96; - (@BC)_1¥(x;0).
(T, ¥ (x:@)= {21(@)0‘“’0)a M, +2i6,D -

(@™ 9 .1 9_
i(Bo C)GGUHVa@) +2 ®a®a®+ta 1 x

x ¥(x;0),
where X v oA ky and t, are generators of sta-
bility subgroup, i.e., the subgroup which leaves
x=0=0. We restrict ourselves to the case k, =t =0.
For scalar supermultiplet (2,2) we have EW*—-O and
= - la .

3. INVARIANT TWO AND THREE-POINT
EUNCTIONS

a) Two-Point Function

The invariant (in infinitesimal form) two-point
function for tensor multiplet is given as a solution
of the following system of Eqs.

(X, +X,)F(x,0,£ :%,6,,£)=0, (3.2)

where X (a= 1,2) are the generators of the super-
conformal group acting on the field ¥, according
to (2.3). The two-component vector variables ¢
replace the tensor indices’9’.

To solve eq. (3.9) we use the method given
in paper /9 It is convenient to consider first the
following Eqs.

(D, +D,)F =0,

(3.2)
1 2 =
(K“ +K“)F‘ =0.

The relativistic invariant solution of (3.2) has the
following form

_ (€ XpXép Xy o) 0,Cx,,0
P-(x2, (26, ¢, - lx’i?z ) f— x? 2)(3.3)
2 12

where X ,=%-X, ,d=d;{=d, , n =n; =n, is the rank
of tensor superfield and f{ is an arbitrary function,
This function can be determined from the following
eq.
slis®yr-o. - (3.2)
a a .

The nonvanishing solution of this equation with
an arbitrary scale dimension exists only if n =0- In
this case it is given by

f = Ngexp(2id —

®,Cx,, O
__21_2__.2__), (3.5)

X2

where Nyg is a normalization constant. Substituting
(3.5) into (3.3) we have

8,Cx,,0
2  -d . 1- 12-2 3.6
F = Nd(x1 2) exp(2id 5 ——). ( )

X
12

It can be checked that the equation
(Tl + TZ)F=0

is also satisfied, This follows from the C.,R. (2.1).
Taking into account the following identity

0.Cx 0 _
2 T2y x2)% (k1 2)

x? (3.7)

eq. (3.6) can be written down in the following, more
convenient from

F:Ndexp(—i®105®2)(x122 3~ (3.8)
Equations (3.1), (3.2) and (3.4) have also the
second solution given by
n
F= N8(x1—x2)5 (@1—81 )(é-l 52) (3.9)
d, +d,=1-n.
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b) Three-Point Function

Taking into account the results for the two-point
function, we analyse only the scalar superfield, The
invariant three-point function satisfies the following
system of

(X1+X2+X3)G(xj,®j)=0, (i=1.2.,3). (3.10)
The relativistic invariant solutions of eqgs.
D, + D, +D,)G =10,
(3.11)
(k! k2% 4+ x3)G-0,
[T
have the following form
dg—dy-dp dy~dp-dg dg-dq~dg
2 5 0 2 2 2
G=(X12 ) (X23 ) (x13)
(3.12)
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Here g is an arbitrary function of

(j.k=1,2,3).

The function g can be determined from the follow-
ing eq.

(s} +8%482 ya-=o. (3.13)

The solution of (3,13) is given by

g=xexpli(dy +dy —dg ) A, +i(dy+dg -y )A g +

(3.14)
+1 (dy+dg~dy)Agg

where k is an arbitrary constant, The invariance
with respect to generators T, follows from the CR
(2.2).

In the case when

dl + d2 + d3= 2
there exists the second solution of (3.10) in the
following form

G’ = ;<15(x12)5(x23 )5(@)1—@)2)8(@2—63). (3.15)

The four-point function and any other higher
functions cannot be determined without dynamical
assumptions, as in the case of conformal invariant
field theory /8.

4, SUPERCONFORMAL INVARIANT FIELD
EQUATIONS

Consider the following (in general, nonlocal) acti-
on

A= [d®x,d%x,d%0,d%0, ¥(x .0) x
-1 (4.1)
x 8 (X,.0,:%,,0,)¥(x,,0,),

where S$~! is the inverse operator which can be
determined from equation,

-1 .
[d%y a0 (x,.01:y.0)8 (v 0:Xp .05 )=5(X—%,)3(80;-0y) .

(4.2)
From (3.8) and (4.2) it follows that

s—1. exp{—i®105®2}(xfz—16)—d , (4.3)

where d=1-d. [t can be proved that the fields with
scale dimensions d and d=1-d are transformed
according to the equivalent representations of
superconformal group,



In the case when d=0, from (4.3) it follows that
(4,1) is local. Then we have
. . -i0,C00,
A= [d%xd®0,d°0,Y (x,0,)e ¥(x:0,) (4.4)

From this action, we derive the following free
equation of motion

oA(x)=0, (a,5)
® X)=

y 8#‘1'(1()_ 0,

B(x)=0 . (4.6)

Equations (4.5) coincide with equations for spin-
ning considered elsewhere /8, 1/ Because the
scale dimension of Y(x, @) in (4.4) is zero,there
exists no local self-interaction term with dimension-
less coupling constant,
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