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CynepKOHopopMHO-HHaapHSHTHasr KTn B nayx"epHoM npocTpaHCTae

apeMeHH 
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Superconforma.l Invariant QFT in Two-Dimensional 
Space-Time 

The representations of the superconforma.I group in two -dimen
sional space-time are given. The invariant two- and three-point 
functions are constructed and is obtained the free local Lagrangian, 
from which the equations of a spinning string are implicit. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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The superconformal transformations in two-dimen
sional space were introduced in the dual string 
model 111 . The corresponding transformations in 
4-dimensional Minkowsky space were considered 
in paper /2/. The representations of the last group 
and corresponding invariant two- and three-point 
functions for the fields transformed by some of 
these representations were found in papers 13

-
51

. 

In the present paper we consider the represen
tations of the superconformal group in two-dimen
sional space-time. The corresponding Lie algebra 
is more simple than the Lie algebra of supercon
formal group in 4-dimensional space-time. For 
example, it is closed with y 5 transformations ex
cluded. Consequently the representations of this 
group are labeled only by one dimension - the 
scale one. In view of the dual string models 

16
•
71 

it is interesting to consider the QFT invariant with 
respect to S0 8 (2 ,2) transformations (superconfor
mal group in two-dimensional space-time). As in the 
case of conventional conformal invariant QFT the 
two- and three-point functions are determined from 
the invariance condition up to the normalization 
constants. But there exist some more strong restric
tions. The two-point function for scalar superfields 
is nonvanishing for any scale dimensions. For 
tensor fields it is not the case - the correspond
ing two-point function is nonvanishing only for 
coinciding points and consequently the scale dimen
sion is fixed. Such a theory can describe the 
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"quarks" which do not propa.gate. In the case of 
OPE we will have only one pa.rameter expa.nsion. 

In section 4 the invariant action is considered 
from which free equations are obtained of a spin
ning string /6, 7 1 . It is found that in the framework 
of superconformal invariant QPT' there are no self
interactions. 

2.TWO-Dil\IIENSIONAL SUPERCONFORMAL 
ALGEBRA 

Consider the superconformal algebra in two-di
mensional spa.ce-time given by: 

4 

{3 . 
( M p.v 'Sa ] = (a p.v ) a S f3 ' 

(P ,S ]=0, 
p. a 

[D s l= - is 
' a 2 a 

f3 
[M ,T ]=(a ) TR 

p.v a p.v a ~" 

p 'T ] = i( y ) f3 s R ' 
p. a p.a ~" 

[D,T l=__!_T 
a 2 a 

[K ,S 1= i(y) f3TR, [K ,T 1= 0, 
p. a p.a f"' p. a 

1 s . s R! =- 2 < r ~'-c ) P 
a ~" af3 p. 

p. 
IT ,TR!=-2(y C) K 

a tJ af3 p. .. 

.. 

IS ,TR!=-2i((a 11vc) M +iC D) 
a ~" af3 p.v af3 

(2.1) 

where 
i 

a p.v =4[yp. •Yv ] , y5=Yo Yt 

and C=-C T=y is the charge conjugation operator. 
The CR bet.Jeen Mp.v, P

11 
,D and K 11 are given 

elsewhere /8!. 

Consider the scalar superfield 

'V (x; 8 )=A (x) + 'V a(x )8 + _!__ 8 C813(x) 
2 

(a=1,2) (2.2) 

which transforms by some (in generally, reducible) 
representations of superconformal algebra. Here 8 
is an anticommuting Majorana spinor, A(x) and 
B ( x) are scalar fields and 'V ( x) is a spinor field. 
For tensor supermultiplet A(x). B(x) and 'V(x) are 
tensors of a corresponding rank. 

The field 'V (x ;8) has the following transforma
tion properties with respect to the infinitesimal 
superconformal transformations 

( M , IJI (X ; 8 ) 1 = !i (X a - X a ) + 8 a aa() + (2 3) p.v p. v v p. p.v • 

+I !'V(x,8), 
p.v 

[P , 'V(x ;8)1= ia '11 (x ;8), 
p. p. 

[D,'V(x;8)]=1-i(xva +...L
2 

8 ...iL)+~l'V(x;8), 
v a8 

[K ,'V(x;8)1=li[2x i' a - x
2

a - 2ixv(g ~+I )] 
p. p. v f1 p.v p.v 

+i8y xa~ +k !'V(x;8), 
p. ""-' p. 
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[s . 'I'< x; 8 )1=[-a- - (8 i>c) 1 '11 < x; 8 )o 
a a8a a 

[T ,'l'(x;A)]= l2i(8a11vC) M +2i8 D-
a a f.LV a 

a 1 
f.LV C ) 8 a -- + -2 - i(8a a f.LV af<} 

X 'I'(X ; 8 ), 

8 8_a->+-t l x 
a a8 a 

where I-
11

v , ~ , k 11 and t a are generators of s ta
bility subgroup, i.e., the subgroup which leaves 
X=8=0o We restrict ourselves to the case k 11 =ta=Oo 
For scalar supermultiplet (2,2) we have I-w=O and 
~=- ia 0 

3. INVARIANT TWO AND THREE-POINT 
FUNCTIONS 

a) Two-Point Function 

The invariant (in infinitesimal form) two-point 
function for tensor multiplet is given as a solution 
of the following system of Eqs. 

(X
1 

+X
2

)F(x1'8
1
,(

1
;x

2
.8

2
.(

2
)=0, (3.1) 

where xa (a= 1,2) are the generators of the super
conformal group acting on the field 'I' a according 
to (2,3). The two-component vector variables t 
replace the tensor indices /9/0 

To solve eq. (3.9) we use the method given 
in paper 191

0 It is convenient to consider first the 
following Eqs. 

6 

(D 1 + D2)F = 0, 

( K 1 + K 2) F = 0 o 

1L IL 

(3.2) 

1 
I 

I 

1 

The relativistic invariant solution of (3,2) has the 
following form 

n A 

2 -d ( t1 ~Xt2 x12) 81 C x12 82 
F=(X12) ( 2(1 t2- ) f{ ~ ){3,3) 

x12 x12 

where x12 = x1-x2 ,d=d 1 = d 2 , n =n 1 =n 2 is the rank 
of tensor superfield and f is an arbitrary function. 
This function can be determined from the following 
eq. 

1 2 
(Sa+Sa)F=Oo (3.4) 

The nonvanishing solution of this equation with 
an arbitrary scale dimension exists only if n =0° In 
this case it is given by 

8 ex 8 
f = N d exp ( 2 i d 

1 J 2 2 
) , (3,5) 

x12 

where Nd is a normalization constant. Substituting 
(3,5) into (3.3) we have 

F = Nd (x; 2) -dexp(2 id 81~ i' 1282 2 --)o (3.6) 
X 

12 

It can be checked that the equation 

(T 1 + T 2)F=0 a a 
is also satisfied, This follows from the C,R. (2,1). 

Taking into account the following identity 
A 

d 8 ex 8 k 
(-8

1
Ca8

2
)k(x 2f =(2d( 1 

n 
2 ) (x 2 )-d,(k=1.2) 

(3.7) 
eq, (3,6) can be written down in the following, 
convenient from 

more 

·A 2 -d 
F=Ndexp(-i81 Caf<l 2 )(x 12 ) . (3,8) 
Equations (3,1), (3,2) and (3.4) have also the 

second solution given by 

if 

n 
F = N8(x1 -x 2 )8 (8

1
-8

1 
)((1 ( 2) 

ct
1 

+ d 2 = 1-n 0 

(3.9) 

7 



b) Three-Point Function 

Taking into account the results for the two-point 
function, we analyse only the scalar superfield. The 
invariant three-point function satisfies the following 
system of 

(X1 +X 2 +X 3 )G(xj,0j)~O. (i=l,2,3). (3.10) 

The relativistic invariant solutions of eqs. 

(D 1 + D2 +D3 )G=O, 

(K 1 +K 2 +K 3 )G=0, 
fl. fl. fl. 

(3.11) 

have the following form 

d3-d1-d2 
2 __ 2___ 2 

d1-d2-d3 
2--

(x ;3 ) 
dz-d1-d3 

2 
0 =(x12 ) (x23) 

0 1 c x1282 
X g ( --::2 

x12 

01 ci1303 ----2--
x13 

Here g 'is an arbitrary function of 

02c i23 83 
x2 

23 

A =-A _ 0J c~J k 0k 
j k kj - ---:-v---

Ajk 
(j,k=l,2,3). 

(3.12) 
). 

The function g can be determined from the follow
ing eq. 

1 2 3 ( ) (Sa +Sa+Sa )G=O. 3.13 

The solution of (3.13) is given by 

g= K exp! i ( d1 +d2 -d3 ) A12 +i (d 1 +d3 -d2 )A 13 + 

(3.14) 
+ i ( d 1 + d3 -d2 ) A23 I . 

8 

i 
~ 

~ 
: 

where K is an arbitrary constant. The invariance 
with respect to generators Ta follows from the CR 
(2.1). 

In the case when 

dl + d2 + d3 = 2 

there exists the second solution of (3.10) in the 
following form 

G'= K
1
8(x

12
)8(x

23 
)8(01 -02 )8(02 -0 3 ). (3.15) 

The four-point function and any other higher 
functions cannot be determined without dynamical 
assumptions, as in the case of conformal invariant 
field theory 1 8/. 

4. SUPERCONFORM/\L INVA..I<IANT FIELD 
EQUATIONS 

Consider the following (in general, nonlocal) acti-
on 

2 2 2 2 
A = J d X 1 d X 2 d 0 l d 0 2 'II ( x1 , 0 1 ) X 

-1 
x S (x 1 ,01 ;x 2 ,02)'P(x 2 .0 2 ). 

(4.1) 

where S - 1 is the inverse operator which can be 
determined from equation. 

2 2 -1 . 
Jd yd escx1 ,01 ;y,O)S (y .e;x 2 .02 )=8(x1-x2)8(01-02). 

From (3.8) and (4.2) it follows that 
(4.2) 

-
-1 ·~ 2 . -d 

s "' exp I - i 01 c a 0 2 I (X 1 2 - 1 f) • (4.3) 

-
where d = 1- d . It can be yroved that the fields with 
scale dimensions d and d=l-d are transformed 
according to the equivalent representations of 
superconformal group. 
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In the case when d = 0. from ( 4.3) it follows that 
( 4.1) is local. Then we have 

A 

-iE> 1cae2 
A=Jd 2xd2 E> 1 d2 ®2'P (x.E>1 )e 'P(x ;8 2 ). (4.4) 

From this action, we derive the following free 
equation of motion 

oA(x)=O, 

y 11 a 'P (x) = 0 . 
11 

B(x)= 0 . 

(4.5) 

(4.6) 

Equations (4.5) coincide with equations for spin-
ning considered elsewhere /6 • 7 I. Because the 

scale dimension of 'P ( x • E>) in ( 4.4) is zero, there 
exists no local self-interaction term with dimension
less coupling constant. 
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