ОБЪЕАИНЕННЫЙ ИНСТИТУТ ЯАЕРНЫХ ИССАЕАОВАНИЙ

$$
Z-18
$$

$2105 \int_{\text {R.P.Zaikor }}^{2}-78$
E2-11274

SUPERCONFORMAL INVARIANT QFT
IN TWO-DIMENSIONAL SPACE-TIME
R.P.Zaikov*

## SUPERCONFORMAL INVARIANT QFT

IN TWO-DIMENSIONAL SPACE-TIME

Submitted to Bulgarian Journal of Physics

*Address since 7 October 1977: Higher Pedagogical Institute, Shumen, Bulgaria.

Суперконформно-инвариантная КТП в двухмерном пространствевремени
Даны представления суперконформной группы в двухмерном про-странстве-времени. Найдены инвариянтные двух- и трехточечные функии. Получен локальный свободный лагрянжиян, из которого следуют уравнения для струны со спином.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований, Дубна 1978
Zaikov R.P.

Superconformal Invariant QFT in Two-Dimensional Space-Time
The representations of the superconformal group in two-dimen sional space-time are given. The invariant two and three-point functions are constructed and is obtained the free local Lagrangian, from which the equations of a spinning string are implicit.

The investigation has been performed at the Laboratory of Theoretical Physics, JNR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978
(C) 1978 Объединенныд пнститут ядерных исследования Дубна

The superconformal transformations in two-dimensional space were introduced in the dual string model ${ }^{1 / 1 /}$. The corresponding transformations in 4-dimensional Minkowsky space were considered in paper ${ }^{/ 2 /}$. The representations of the last group and corresponding invariant two and three-point functions for the fields transformed by some of these representations were found in papers ${ }^{/ 3-5 /}$.

In the present paper we consider the representations of the superconformal group in two-dimensional space-time. The corresponding Lie algebra is more simple than the Lie algebra of superconformal group in 4-dimensional space-time. For example, it is closed with $\gamma_{5}$ transformations excluded. Consequently the representations of this group are labeled only by one dimension - the scale one. In view of the dual string models ${ }^{6,7 /}$ it is interesting to consider the QFT invariant with respect to $\mathrm{SO}_{\mathrm{s}}(2,2)$ transformations (superconformal group in two-dimensional space-time). As in the case of conventional conformal invariant QFT the two- and three-point functions are determined from the invariance condition up to the normalization constants. But there exist some more strong restrictions. The two-point function for scalar superfields is nonvanishing for any scale dimensions. For tensor fields it is not the case - the corresponding two-point function is nonvanishing only for coinciding points and consequently the scale dimension is fixed. Such a theory can describe the
"quarks" which do not propagate. In the case of OPE we will have only one parameter expansion.

In section 4 the invariant action is considered from which free equations are obtained of a spinning string $/ 6,7 /$. It is found that in the framework of superconformal invariant QFV there are no selfinteractions.

## 2.TWO-DIMENSIONAL SUPERCONFORMAL

## ALGEBRA

Consider the superconformal algebra in two-dimensional space-time given by:

$$
\begin{aligned}
& {\left[\mathrm{M}_{\mu \nu}, \mathrm{S}_{a}\right]=\left(\sigma_{\mu \nu}\right)_{\alpha}^{\beta} \mathrm{S}_{\beta} ; \quad\left[\mathrm{M}_{\mu \nu}, \mathrm{T}_{a}\right]=\left(\sigma_{\mu \nu}\right)_{\alpha}^{\beta} \mathrm{T}_{\beta},} \\
& {\left[P_{\mu}, S_{a}\right]=0,} \\
& {\left[\mathrm{P}_{\mu}, \mathrm{T}_{\alpha}\right]=\mathrm{i}\left(\gamma_{\mu}\right)_{\alpha}^{\beta} \mathrm{S}_{\beta},} \\
& {\left[\mathrm{D}, \mathrm{~S}_{a}\right]=-\frac{\mathrm{i}}{2} \mathrm{~S}_{a}} \\
& {\left[\mathrm{D}, \mathrm{~T}_{\alpha}\right]=\frac{\mathrm{i}}{2} \mathrm{~T}_{a} \text {, }} \\
& {\left[\mathrm{K}_{\mu}, \mathrm{S}_{a}\right]=\mathrm{i}\left(\gamma_{\mu}\right)_{a}^{\beta} \mathrm{T}_{\beta}, \quad\left[\mathrm{K}_{\mu}, \mathrm{T}_{a}\right]=0,} \\
& \left\{\mathrm{~S}_{a}, \mathrm{~S}_{\beta}\right\}=-2\left(\gamma^{\mu} \mathrm{C}\right)_{\alpha \beta} \mathrm{P}_{\mu}, \\
& \left\{\mathrm{T}_{a}, \mathrm{~T}_{\beta}\right\}=-2\left(\gamma^{\mu} \mathrm{C}\right)_{\alpha \beta} \mathrm{K}_{\mu},
\end{aligned}
$$

$$
\begin{equation*}
\left\{\mathrm{S}_{a}, \mathrm{~T}_{\beta}\right\}=-2 \mathrm{i}\left(\left(\sigma^{\mu \nu} \mathrm{C}\right)_{a \beta} \mathrm{M}_{\mu \nu}+\mathrm{iC}_{a \beta} \mathrm{D}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\sigma_{\mu \nu}=\frac{i}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right], \gamma_{5}=\gamma_{0} \gamma_{1}
$$

and $\mathrm{C}=-\mathrm{C}^{\mathrm{T}_{x} \gamma_{1}}$ is the charge conjugation operator. The $C R$ between $M_{\mu \nu}, P_{\mu}, D$ and $K_{\mu}$ are given elsewhere ${ }^{\prime \prime}$.

Consider the scalar superfield

$$
\begin{equation*}
\Psi(\mathrm{x} ; \Theta)=\mathrm{A}(\mathrm{x})+\Psi^{a}(\mathrm{x}) \Theta+\frac{1}{2} \Theta \mathrm{C} \Theta \mathrm{~B}(\mathrm{x}) \quad(a=1,2) \tag{2.2}
\end{equation*}
$$

which transforms by some (in generally, reducible) representations of superconformal algebra. Here $\Theta$ is an anticommuting Majorana spinor, $A(x)$ and $B(x)$ are scalar fields and $\Psi(x)$ is a spinor field. For tensor supermultiplet $A(x) . B(x)$ and $\Psi(x)$ are tensors of a corresponding rank.

The field $\Psi(x ; \Theta)$ has the following transformation properties with respect to the infinitesimal superconformal transformations

$$
\begin{equation*}
\left[M_{\mu \nu}, \Psi(x ; \Theta)\right]=\left\{i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)+\Theta \sigma_{\mu \nu} \frac{\partial}{\partial \theta}+\right. \tag{2.3}
\end{equation*}
$$

$$
\left.+\Sigma_{\mu \nu}\right\} \Psi(\mathbf{x}, \Theta)
$$

$$
\left[\mathrm{P}_{\mu}, \Psi(\mathrm{x} ; \Theta)\right]=\mathrm{i} \partial_{\mu}^{\Psi(x ; \Theta)}
$$

$[\mathrm{D}, \Psi(\mathrm{x} ; \Theta)]=\left\{-\mathrm{i}\left(\mathrm{x}^{\nu} \partial_{\nu}+\frac{1}{2} \Theta \frac{\partial}{\partial \Theta}\right)+\Delta\right\} \Psi(\mathrm{x} ; \Theta)$,

$$
\left[\mathrm{K}_{\mu}, \Psi(\mathrm{x} ; \Theta)\right]=\left\{\mathrm{i}\left[2 \mathrm{x}_{\mu} \mathrm{x}^{\nu} \partial_{\nu}-\mathrm{x}^{2} \partial_{\mu}-2 \mathrm{i} \mathrm{x}^{\nu}\left(\mathrm{g}_{\mu \nu} \Delta+\Sigma_{\mu \nu}\right)\right]\right.
$$

$$
\left.+\mathrm{i} \Theta \gamma_{\mu} \hat{\mathbf{x}} \frac{\partial}{\partial \Theta}+\mathrm{k}_{\mu}\right\} \Psi(\mathbf{x} ; \Theta)
$$

$$
\begin{aligned}
& {\left[\mathrm{S}_{a}, \Psi(\mathrm{x} ; \Theta)\right]=\left[\frac{\partial}{\partial \Theta a}-(\Theta \hat{\mathrm{P}} \mathrm{C})_{a}\right] \Psi(\mathrm{x} ; \Theta)} \\
& {\left[\mathrm{T}_{a}, \Psi(\mathrm{x} ; \Theta)\right]_{=}\left\{2 \mathrm{i}\left(\Theta \sigma^{\mu \nu} \mathrm{C}\right)_{a} \mathrm{M}_{\mu \nu}+2 \mathrm{i} \Theta_{a} \mathrm{D}-\right.} \\
& \left.-\mathrm{i}\left(\Theta \sigma^{\mu \nu} \mathrm{C}\right)_{a} \Theta \sigma_{\mu \nu} \frac{\partial}{\partial \Theta}+\frac{1}{2} \Theta_{a} \Theta \frac{\partial}{\partial \Theta}+\mathrm{t}_{a}\right\} \times
\end{aligned}
$$

$$
\times \Psi(\mathrm{x} ; \Theta)
$$

where $\Sigma_{\mu \nu}, \Delta, k_{\mu}$ and $t_{a}$ are generators of stability subgroup, i.e., the subgroup which leaves $\mathrm{x}=\Theta=0$. We restrict ourselves to the case $\mathrm{k}_{\mu}=\mathrm{t} \boldsymbol{a}^{x} 0$. For scalar supermultiplet $(2,2)$ we have $\Sigma_{\mu \nu}=0$ and $\Delta=-\mathrm{i} \alpha$.

## 3. INVARIANT TWO AND THREE-POINT

 FUNCTIONS
## a) Two-Point Function

The invariant (in infinitesimal form) two-point function for tensor multiplet is given as a solution of the following system of Eqs.

$$
\begin{equation*}
\left(X_{1}+X_{2}\right) F\left(x_{1}, \Theta_{1}, \xi_{1} ; x_{2}, \Theta_{2}, \xi_{2}\right)=0 \tag{3.1}
\end{equation*}
$$

where $X_{a}(a=1,2)$ are the generators of the superconformal group acting on the field $\Psi_{a}$ according to (2.3). The two-component vector variables $\xi$ replace the tensor indices $/ 9 /$.

To solve eq. (3.9) we use the method given in paper ${ }^{/ 9 /}$. It is convenient to consider first the following Eqs.

$$
\begin{align*}
& \left(\mathrm{D}_{1}+\mathrm{D}_{2}\right) \mathrm{F}=0  \tag{3.2}\\
& \left(\mathrm{~K}_{\mu}^{1}+\mathrm{K}_{\mu}^{2}\right) \mathrm{F}=0
\end{align*}
$$

The relativistic invariant solution of (3.2) has the following form

$$
\mathbf{F}=\left(\mathbf{x}_{12}^{2}\right)^{-\mathrm{d}}\left(2 \xi_{1} \xi_{2}-\frac{\left(\xi_{1} \mathrm{x}_{12}\right)\left(\xi_{2} \mathrm{x}_{12}\right)^{\mathrm{n}}}{\mathbf{x}_{12}^{2}}\right) \mathrm{f}\left(\frac{\Theta_{1} \mathbf{C} \hat{\mathbf{x}}_{12} \Theta_{2}}{\mathbf{x}_{12}^{2}}\right),(3.3)
$$

where $\mathrm{x}_{12}=\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{~d}=\mathrm{d}_{1}=\mathrm{d}_{2}, \mathrm{n}=\mathrm{n}_{1}=\mathrm{n}_{2}$ is the rank of tensor superfield and $f$ is an arbitrary function. This function can be determined from the following eq.

$$
\begin{equation*}
\left(S_{a}^{1}+S_{a}^{2}\right) F=0 \tag{3.4}
\end{equation*}
$$

The nonvanishing solution of this equation with an arbitrary scale dimension exists only if $n=0$. In this case it is given by

$$
\begin{equation*}
\mathbf{f}=\mathrm{N}_{\mathbf{d}} \exp \left(2 \mathrm{id} \frac{\Theta_{1} \mathrm{C} \hat{\mathrm{x}}_{12} \Theta_{2}}{\mathrm{x}_{12}^{2}}\right) \tag{3.5}
\end{equation*}
$$

where $N_{d}$ is a normalization constant. Substituting (3.5) into (3.3) we have

$$
\begin{equation*}
\mathrm{F}=\mathrm{N}_{\mathrm{d}}\left(\mathrm{x}_{12}^{2}\right)^{-\mathrm{d}} \exp \left(2 \mathrm{id} \frac{\Theta_{1} \mathrm{C} \hat{x}_{12} \Theta_{2}}{\mathrm{x}_{12}^{2}}\right) \tag{3.6}
\end{equation*}
$$

It can be checked that the equation

$$
\left(\mathrm{T}_{a}^{1}+\mathrm{T}_{a}^{2}\right) \mathrm{F}=0
$$

is also satisfied. This follows from the C.R. (2.1).
Taking into account the following identity

$$
\begin{equation*}
\left(-\Theta_{1} \mathrm{C} \hat{\partial} \Theta_{2}\right)^{\mathrm{k}}\left(\mathrm{x}^{2}\right)^{-\mathrm{d}}=\left(2 \mathrm{~d}\left(\frac{\Theta_{1} \mathrm{C} \hat{\mathrm{x}} \Theta_{2}}{\mathrm{x}^{2}}\right)^{\mathrm{k}}\left(\mathrm{x}^{2}\right)^{-\mathrm{d}},(\mathrm{k}=1,2)\right. \tag{3.7}
\end{equation*}
$$

eq. (3.6) can be written down in the following, more convenient from

$$
\begin{equation*}
F=N_{d} \exp \left(-i \Theta_{1} C \hat{\partial} \Theta_{2}\right)\left(x_{12}^{2}\right)^{-d} \tag{3.8}
\end{equation*}
$$

Equations (3.1), (3.2) and (3.4) have also the second solution given by

$$
\begin{align*}
& \mathrm{F}=\mathrm{N} \delta\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \delta\left(\Theta_{1}-\Theta_{1}\right)\left(\xi_{1} \xi_{2}\right)^{\mathrm{n}}  \tag{3.9}\\
& \mathrm{~d}_{1}+\mathrm{d}_{2}=1-\mathrm{n}
\end{align*}
$$

b) Three-Point Function

Taking into account the results for the two-point function, we analyse only the scalar superfield. The invariant three-point function satisfies the following system of

$$
\begin{equation*}
\left(X_{1}+X_{2}+X_{3}\right) G\left(x_{j}, \Theta_{j}\right)=0, \quad(j=1,2,3) \tag{3.10}
\end{equation*}
$$

The relativistic invariant solutions of eqs.

$$
\begin{align*}
& \left(\mathrm{D}_{1}+\mathrm{D}_{2}+\mathrm{D}_{3}\right) \mathrm{G}=0 \\
& \left(\mathrm{~K}_{\mu}^{1}+\mathrm{K}_{\mu}^{2}+\mathrm{K}_{\mu}^{3}\right) \mathrm{G}=0 \tag{3.11}
\end{align*}
$$

have the following form

$$
\begin{aligned}
& \mathrm{G}=\left(\mathrm{x}_{12}^{2}\right)^{\frac{\mathrm{d}_{3}-\mathrm{d}_{1}-\mathrm{d}_{2}}{2}}\left(\mathrm{x}_{23}^{2}\right)^{\frac{\mathrm{d}_{1}-\mathrm{d}_{2}-\mathrm{d}_{3}}{2}}\left(\mathrm{x}_{13}^{2}\right)^{\frac{\mathrm{d}_{2}-\mathrm{d}_{1}-\mathrm{d}_{3}}{2}}
\end{aligned}
$$

Here $g$ is an arbitrary function of

$$
\lambda_{j k}=-\lambda_{k j}=\frac{\Theta_{j}}{C \hat{x}_{j k} \Theta_{k}} \frac{(j, k=1,2,3) .}{\lambda_{j k}^{2}} \quad .
$$

The function $g$ can be determined from the following eq.

$$
\begin{equation*}
\left(\mathrm{S}_{a}^{1}+\mathrm{S}_{a}^{2}+\mathrm{S}_{a}^{3}\right) \mathrm{G}=0 \tag{3.13}
\end{equation*}
$$

The solution of (3.13) is given by

$$
\begin{align*}
\mathrm{g} & =\kappa \exp \left\{\mathrm{i}\left(\mathrm{~d}_{1}+\mathrm{d}_{2}-\mathrm{d}_{3}\right) \lambda_{12}+\mathrm{i}\left(\mathrm{~d}_{1}+\mathrm{d}_{3}-\mathrm{d}_{2}\right) \lambda_{13}+\right. \\
& \left.+\mathrm{i}\left(\mathrm{~d}_{1}+\mathrm{d}_{3}-\mathrm{d}_{2}\right) \lambda_{23}\right\}, \tag{3.14}
\end{align*}
$$

where $\kappa$ is an arbitrary constant. The invariance with respect to generators $\mathrm{T}_{a}$ follows from the CR (2.1).

$$
\begin{aligned}
& \text { In the case when } \\
& d_{1}+d_{2}+d_{3}=2
\end{aligned}
$$

there exists the second solution of (3.10) in the following form

$$
\begin{equation*}
\mathrm{G}^{\prime}=\kappa_{1} \delta\left(\mathrm{x}_{12}\right) \delta\left(\mathrm{x}_{23}\right) \delta\left(\Theta_{1}-\Theta_{2}\right) \delta\left(\Theta_{2}-\Theta_{3}\right) \tag{3.15}
\end{equation*}
$$

The four-point function and any other higher functions cannot be determined without dynamical assumptions, as in the case of conformal invariant field theory ${ }^{1}$.
4. SUPERCONFORMAL INVARIANT FIELD EQUATIONS

Consider the following (in general, nonlocal) action

$$
\begin{align*}
A & =\int d^{2} x_{1} d^{2} x_{2} d^{2} \Theta_{1} d^{2} \Theta_{2} \Psi\left(x_{1}, \Theta_{1}\right) \times \\
& \times S^{-1}\left(x_{1}, \Theta_{1} ; x_{2}, \Theta_{2}\right) \Psi\left(x_{2}, \Theta_{2}\right) \tag{4.1}
\end{align*}
$$

where $S^{-1}$ is the inverse operator which can be determined from equation.

$$
\int \mathrm{d}^{2} \mathrm{y} \mathrm{~d}^{2} \theta \mathrm{~S}\left(\mathrm{x}_{1}, \Theta_{1} ; \mathrm{y}, \theta\right) \mathrm{S}^{-1}\left(\mathrm{y}, \theta ; \mathrm{x}_{2}, \Theta_{2}\right)=\delta\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \delta\left(\Theta_{1}-\Theta_{2}\right)
$$

From (3.8) and (4.2) it follows that

$$
\begin{equation*}
S^{-1} \approx \exp \left\{-i \Theta_{1} C \hat{\partial} \Theta_{2}\right\}\left(x_{12}^{2}-i \epsilon\right)^{-\tilde{d}} \tag{4.3}
\end{equation*}
$$

where $\bar{d}=1-d$. It can be proved that the fields with scale dimensions $d$ and $d=1-d$ are transformed according to the equivalent representations of superconformal group.

In the case when $d=0$, from (4.3) it follows that (4.1) is local. Then we have

$$
\begin{equation*}
{ }^{-\mathrm{i} \Theta_{1} \mathrm{c} \hat{\partial} \Theta_{2}} \Psi\left(\mathrm{x} ; \Theta_{2}\right) \tag{4.4}
\end{equation*}
$$

From this action, we derive the following free equation of motion

$$
\begin{align*}
& \square \mathrm{A}(\mathrm{x})=0,  \tag{4.5}\\
& \gamma^{\mu} \partial_{\mu} \Psi(\mathrm{x})=0, \\
& \mathrm{~B}(\mathrm{x})=0 . \tag{4.6}
\end{align*}
$$

Equations (4.5) coincide with equations for spinning considered elsewhere $/ 6,7 /$. Because the scale dimension of $\Psi(\mathbf{x}, \Theta)$ in (4.4) is zero, there exists no local self-interaction term with dimensionless coupling constant.

REFERENCES

1. Neveu A., Schwarz J.H. Nucl.Phys., B31 (1971) 86.
2. Ferrara S. Nucl. Phys., B77 (1974) 75.
3. Molotkov V., Petrova S., Stoyanov D. TMF, 26, (1976) 188.
4. Aneva B., Mikhov S., Stoyanov D. TMF, 27 (1976) 307 ; JINR, E2-10619, Dubna (1977).
5. Molotkov V., Petrova S. JINR Prep. E2-10126 and P2-10127, Dubna (1976).
6. Deser S., Zumino B. Phys.Lett., 62B (1976) 335.
7. Brink L., Schwarz J.H. Nucl.Phys., B121 (1977) 285.
8. Mack G., Todorov I.T. Phys.Rev., D8 (1973) 1764. 9. Sotkov G.M., Zaikov R.P. JINR Prep. E2-10250, Dubna (1976).

Received by Publishing Department of January, 19, 1978.

