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Operator Symbols in the Description of
Observable-State Systems

For the observable-state system of finite degree of freedom N
topological properties of the kernels and symbols belonging to the
considered operators are investigated, For the operators of £7*(§)
kernels and symbols are distributions and for density matrices p
they are smooth functions,
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I. INTRODUCTION

In the quantum mechanics a physical N-~particle
system is described by the wave function
YR Ky ey Xy L (R®NY, or in short y(x t), which
satisfies the Schrédinger equation, The wave func-
tion ¥ (x,t) is able to describe a quantum mechani-
cal ensemble completely at any time t /8/ s if ¢ (x,0)
is known., With the help of the wave function (x,t)
we can determine the expectation value of a physi-
cal observable A in the state y at the timet by

<A> = <y, Ay,

The normalization of the wave function is given by
Ju*pdx = 1. . If y is the eigenfunctionn of the ope-
rator A, then we get as expectation value of the
operator A in state ¢ just the eigenvalue, A physical
state, which can be described by the wave function
Y, is called pure state. Accordingly, a statistical
ensemble consisting of N particles in state ¥ is
called pure ensemble, Systems with great number

of particles N, which can be found in different
states (//1,902,... are called mixed ensembles, The
mean value of an operator A, considered in a mixed
state is given by /8/

<A> = Ewk<l,’/k,Al,/lk> R
whereby o, is the probability for the system to be
in state ¢, and Emk =1, o, 20.

The pure ensemble is a special case of the
mixed ensemble, which occurs if all possibilities



wp =0 but one # 0, which has to become one
because of Xw, =1.

It is common practice to express the mixed sta-
tes by the so-called density operators p/g's/. So
as expectation value of the operator A in state
we get

p(A)= [A(x,x)p(x,x")dxdx’ = trAp,

where we take the following representation for the
operators A and p

Av(x) = [A(x, x )Y (x")dx’
and

p(x,x’)=2wk<//: (X')l//k(x).

Here the functions A(x,x") and p(x,x’) are the kernels
of the operators A and p, respectively, These ker-
nels can be considered as a kind of symbols of
operators. In section III we will deal with kernels
and symbols of operators more explicitly,

We can see that <¢,p¢>>0 for any ¢, i.e., p>0
and we get trp=1 because trp=[p(x,x)dx= Sw Yoty >=1
the typical properties of density operators, The
treatment of physical problems with the help of den-
sity operators plays an important role in quantum
statistics and algebraic quantum field theory. This
above described approach to the description of quan—
tum processes is contained in the so-called alge-
braical approach, where the observables form an
* - algebra (I and the states p are defined as posi-
tive linear functionals on the algebra ( of observ—
ables /4.13/, So the operators A, which stay for the
physical observables form an algebra and the states
p(4) are positive linear functionals over this
algebra of observables, Also in the quantum mecha-
nical case the expectation value <x,/1,Ax//>=trP(/,A
(P¢ is the projection operator on ) is of this form
and a positive linear functional on the algebra of
operators ‘A, Our N-particle system is a special
case of an observable-state system, The algebra
of observables is generated by the position and
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tural domain of definition for polynoms in @ and P,
A= X aan"Pm(Qn=inl... Qn:;]N) is the Schwartz space
‘ 3

A na-

momentum operators Qj:xj and PJ_ =

n,m R
S =19 (R3N)C L2(R3N) of rapidly decreasing functions,
Since one is also interested in more complicated
observables than polynoms in position and momen-
tum operators, we take for the observable algebra

G=2%0), - the x-algebra of all operators A, so
that A and also its adjoint A" maps & into itself, i.e.,
A AY 0§ 5 8. Special elements of £7(§) are the
cr"eation, decreation and the number operator
Ao L -2y, a- a2, nosala,
g oxy 2 0x;

Let us introduce

+
gl(,g) - {p ¢ et s, A,B nuclear for all A, Bcf® (Sl

Now we can define the density operator more rigo-
rously.

A de};lsity operator p is an element of &y(d, which
is positive, p>0 and normed, trp=1. Any density
operator defines a state on the observable. algebra
£ by p(A)=trpA. It is a deep mathematical result
that these are all possible states on £1(§). This
question is investigated in/7.12.14/ A complete cha-
racterization of operator algebras on which the .
states are density operators was given by Schmud-

gen /11/,

+
Theorem 1: Every state on £ (8), i.e, a linear
functional p(A), which is positive for
A>0 and p(D=1, is of the form p(A)=
= trpA, ‘where p is a density opera-
tor.
5,09 is the complex linear space generated by

all density operators, Let us give yet another equi-
valent definition of &(8) which we need in what follows,
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Lemma 175/ . A bounded operator p in L, is in
6,(8), if and only if p and p* maps
L, into S , i.e., 6,08 =tp;ip,p*: Ly S1.
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II, PHYSICAL TOPOLOGY

It is a consequence of the closed graph theorem
that any operator A€ £7(8) is a continuous opera-
tor of the Schwartz space 38[t] into itself. We have
the canonical imbedding

SltlcL 5 C 31t 1,
where 8’ is the space of distributions, the dual
space to & and t’ the dual topology. If Fc§’ is
a distribution and ¢¢€'§ so <F,¢> is well-defined
and coincides with the usual scalar product if
F cLy,. For Acf'(§) we can define AF by <AF,¢>=
= <F, A*¢>. In this sense any operator Ac £¥(S)
is extended to an operator of &' [t’] into itself,

The topology t of the Schwartz space § is
given by the following system of seminorms /9/

tllg®lly = s 14D gl swe S
f, al<k k=0,12...

A L
ox% Ixq1 ) Ix 52
This system of seminorms is equivalent to the follow-
ing one,

8@l = T $@1ly, »

where

where as usual

s la| = maxla,].

3N a2
T=3% (- +X%) = -A +x2%>1.
i=1 axf 1 -
In what follows we shall need also functions
#(x,y) of two variables (x,y)c k3N xR3N, which are
elements of §,=885 = §S(REN). The above system of

seminorms can be written as

K '
e, 1l =H(TX+Ty) <i>(x,y)lnL2 ,

where T, and T  are the operators T acting on
x,y, respectively,

It is easy to see that this system of seminorms
is equivalent to the following one:

gy =1 TETY syl 1, -

Further we shall use 'this system of seminorms if
we consider the topology in 8.

Now we remember the definition of the physical
topology f* on the set of states, which we had
introduced in /5.6/ It is the topology of uniform con-
vergence on every bounded set of observables. We
define the topology B* not only on the states, i.e.,
on the density operators, but on the whole linear
space &,(8). £%(§) and 6,(8) form a dual pair
with respect to the expectation value p(A) = trpA.
The physical topology B* in&(d is then given by
the system of seminorms /5.6

B*: aq(p)=sup |p(A) < e,

A€
where O runs over all weakly bounded sets in
L+ . With the help of the operator T we can
describe the physical topology more explicitely /s/,
Theorem 2: The physical topology Bg* is given by
the system of seminorms lelk=||TkakH,
k=0,1,2,.... where |[|.|| is the usual ope-
rator norm,
It is possible to show that the entropy S =-trpilnp,
which is uncontinuous with respect to the trace norm
Helly = trp, is continuous with respect to the phy-
sical topology pg* /5/.

IIl. KERNELS AND SYMBOLS

Having investigated the set of linear operators,
which are defined on 3§,L, and & and regarding
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their topological properties, we will turn to the sym-
bols of these operators and like-wise investigate
the symbols with respect to certain topologies.

A symbol of an operator is a function which is
coordinated uniquely to the operator /v, We will start
with the integral representation of the operators and
for the present consider the kernels of the operators
as one of the possible kinds of symbols of opera-
tors and after this investigate general representa-~
tions of symbols of operators on § according to
their topological properties,

Let Ac£%(§) and #(x) €§ then we can express
the operator A with the help of a function of two
variables K(x, y)

Ad(x) = [K(x,y)d(y)dy.
The kernels K(x,y) can also be distributions, for
example

I6(x) = [3(x - y)$(y)dy.
Outgoing from this and remembering the fact that
for every Acft(§) AS-8° and because such a
map A can be represented as bilinear form on §
by application of the theorem of kernel /9/ we are
able to prove

Lemma 2: If the operator A maps the Schwartz space
S into the dual space &°, then the kernel
K(x,y) of the operator A is an ele-
ment of the space of distributions
8,=8 8¢ Le., A CR(88) —K(xyed;.

For any real n, —ao<n<+oo, we define on § the

norm ||¢|| =||T"¢|| and denote by H , the comple~-
tion of & = with respect to ||.||,. Then {H }

is a scale of Hilbert spaces with § = N H_ and
=M  H , Ho=L,. —<n

Lemma 3: Let p ‘¢ §,(8) then we can continue p to
a continual mapping from §’ into §, i,e.,
pF C§ for every distribution Fec §°,

Proof: From Lemma 1 we know that pL, » §, , i.e,,

for everyk there is a constant ¢ so that

loglly <eliglly,

Using this we have for any p’ the following estima-
tion

llp @l =1lp T"T ], <c’l| T "¢l L,” c’ll el _

and therefore p : H_, -9 for every n.
That means p : '8'— .
From Lemma 3 and the theorem of kernel’/% we get
Lemma 4: If the operator pc £(8’,8) then the kernel
px,y) of the operator p is an element
of the space §,, ie.,
p & £08)8) e— p(x, y) cd®s.
From Lemma 3 and Lemma 4 we see, that the ker-
nels p(x,y) of the operators pc §(d are functions
of ‘52. With respect to this correspondence, we have
the following theorem
Theorem 3: The physical topology g* on E(S) is
equal to the topology in '52.
Proof: The norm in the Schwartz space © with re-
spect to two variables is, as is pointed out above,
given by

Hp(x,y)ll(k) —HT T* p(x,y)H
with -T =(-—Ax+x ) and T, =(-—Ay +y2).

Now we will consider the operator

(T*pT*0) ) = T* (T *9)®) = T ¥/ p(x, T B (y)dy =

Il

T *[p(x,y)T ‘;qs(y)dy

because the operator T¥ under the integral acts
only on the variable y and the operator Tk in
front of the integral only on the variable x, After
integration by parts we have

(T*pT "9) () = J(T LT p (x,9) $(5)3y

that means that the kernel to the operator Tka k
is TETSp(x, y). Since the Hilbert-Schmidt-



norm of an operator is equal to the norm of the
kernel of this operator, we get

k k k.. k
NT pT "l = HT,T eyl

We must yet estimate the Hilbert-Schmidt-norm and
the operator norm, mutually,
On the one hand it is obvious
k k k k
1T p T H<HT pT HH.S.
and on the other hand we have

k —~1 k+1 k+ 1
T 5T il g =TT T s <
k+1 k+1, . —1
S“T HH.S. T pT T "l
by using the fact that
I A-Bll,

<IIAll, o lIBI

and that T <I is a Hilbert-Schmidt operator. There-
fore, we get

k k+1
Tl

% ]

i7" o ST liT :

H.S.

From Lemma 4 we know that the kernel p(x,y)
of an operator pe §,(8) is a function of '8,.1f we
take an operator A c £(89°) then the kernel K(x,y)
is in 8, (Lemma 2) and A, has a finite trace

trAg = [A(x,y)p(y, x)dydx.

So we can regard all operators Acf£(8,8°) as gene-
ralized observables, which give us finite expecta-
tion values for any state . But £(§,9") is not an
algebra, since the multiplication of two observables
is not always defined, Since 52 is the dual space
of 8§, we have got the result that the space £(§,9)
of all generalized observables is the dual space

of &,(3).

Now we will turn to the Weyl symbols of opera-
tors, Roughly speaking symbols of operators. are
functions A(p,q) which are related to operators
A in a linear one-to-one manner A e— A(p,Q,
so that algebraic operations in the set of opera-
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tors correspond to appropriate functional operations
in the set of symbols, R

The mapping A(p,Q e A is called quantization,
It yields a possibility to find for classical functions
of the position q (q ) an ) and momentum p =

= (D yreeer P gn) the correspondmg quantum mechanij-
cal observable A It is well-known that such a
correspondence is not uniquely determined by physi-
cal conditions,

An appropriate quantization is the so-called Weyl
quantization, which started from the following corres-
pondence

q"-q" =@", p"sp" =P?
1 1 1 1 1

1

A 1
QP> 9P .=—(Q.P. +P,Q.).
For a general monom p q
operator P qm
coefflclent/s/ o\

the corresponding
is defmed as the (operator valued)
of Au by

nm

('\pi+qu)"+m =EM38 Al x

By linearity it is now related to any polynom

Alp.q)=%a _p"q™ p"=pipy... and analog ¢
a linear operator A = Sa . p?t q® . A(p, @) is called
the Weyl symbol of the operator A and A the Wevyl
quantization of A(p,q). It is stralghtforward to prove
the followin
Lemma 5/3 .
i) The Weyl quantization A(p,q) - A defines
a one-=to-one linear mapping of the set
Pp.a) of all polynoms in p .q;
onto the set P(P,Q of all operator poly-
noms in P,;,Q,

i) A o Alp, q) then we get

1



PA - (pk—i?-a%—)A Ap, - @, ++2)a

i i 0
k"2 Tp, e Gy 8
The Weyl quantization can now extended to an ar-
bitrary distribution A(p,q) € 9,. But first we will
remark .
Theorem 4: Let A(p,q be a polynom, Acf7(S)
the corresponding operator by the Weyl

quantization and K(x,y) the kernel of
A, then

AG.q) = [ K(g+&/2, q-£/2)a¢= IK

X —j —
K(x,y) = FAQ, 23 Yy Py - GaA.
(2”) 3N 2

This theorem is proved in ref, /3/

The relations between kernels and symbols of Theo-

rem 4 suggest immidiately the following

Theorem 5: The integral transformations 3,6 of
theorem 4 define one-to-one continuous
mappings of ‘5’2 onto itself, For any
A(p, q) € '5’2 the operator Ac £0§,8")
with the corresponding kernel K(x,y) =

GA(p, q) is called the Weyl quanti-

zation of A(p,q) and A(p,q)=3K(x,y)
is called the Weyl symbol of A.

Proof: As usual, for a distribution A(p,q) G«S’ the

integral trandformation §A is defined by

<GA, ¢>=

[fA®, ";y)e“p““Y)¢<x,y>dpdxdy,

17)3N

= 1 AG. Q) e'P? ¢(q+—, q——)dp,
(277) 2

=<A,G*¢>.
12

Quite analog is ¥K defined by <JK,¢>=<K,F*y>.

a N
We vyet see that §*-= 1 3 and J*=(21733 G

(217)
Therefore, Theorem 5 is a consequence of the

following Lemma

Lemma 6: The integral transformations ¥, § are
continuous one-to-one transformations of
the space 8, into itself. Further, 3.6 =
=G.5=-1.

Proof: We show that A - GA =K is continuous, To

do this we prove that for every semi-norm ||-

of §, there exists a s(>m) so that

=11 GAll", <cllAll

For this let us first estimate (1+ x5! (1 +y®)¥K(x,y),
where

3N

R(x,y) = ——— [e Py p, 2iY)g,
(27)

1 e—ip(x—y)
= f (1-2Ap) A, 22 ) ap.
en® 1 ("“yn

Here Ap is the Laplace operator acting on p ., For

r we put later { + k, From the last relation we
get

sup |(1+x2) (1+y ) K(x VAl <
X,y
1 o - aedfaaydE
< f sup x
T oo™ o' Y e EENH3 11 (“y> N
2

« sup |1+t (1 +¢®) (1~ LAp)T A, a)l.
P.q R
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We choose t so large that the integral is finite and
r= f + k , The last supremum can be estimated by
cilAll, where s> max(t, 2r). To estimate the first
supremum we apply the inequality

1+(§tn)2§2(1+§2)(1+7)2) where &n <« R".

Then we get (1+x°) e < 28[1 + (}%)2]?[1 + (%y_)z] t
and an analog for (1+y2)k, So the first supremum
is less than 20+ k
In a quite analogous way we also can estimate an
a B
arbitrary  sup|(1+ x2)g (1+y2) R_CZ__
' ox ¢ dy
¢ is continuous, In the same way one proves the
continuity of ¥, ¥.§=0% =1 can be shown by
a straightforward calculation,
An immediate consequence of Lemma 1 together
with Theorem 3 is
Theorem 6: If 5 € 64(8) then its symbol p (p,q)
is a functional of & . The correspondence
p(p,q) &= ¢ defines a one-to-one
linear in both directions continuous
mapping between the operators of § ()
with the topology B* and §,. !
Summing up we can say that we have described the
connection between the operators, their kernels and
symbols of an N-particle system, We can see that
for every density operator, for which the expectati-
on values formed by all polynomial functions of mo-
mentum and position are finite, the expectation va-
lues formed by the generalized observables.
Ac £(,8) are also finite, The correspondence
between operators, kernels and symbols can be
summarized by the following scheme:
operator A e kernel K(x,y) « symbol A(p,q

K(x,y)|. Therefore

26, §) e S, e— ¥,
) )
EI(S) e——> 152 > 5 2
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with the correspondence of the topologies
B* — t — t

We have discussed here the topological relations
between operators, symbols and kernels only for
density operators, more precisely for Ql(fg). Of cour-
se, since £(§,8) is the dual space of £ (§), we
have there the dual topology B in a canolnical way,
which is related to the topology in the space 1§~

of distributions by the correspondence between ‘the
observables A and their kernels or symbols, Another
set of observables, smaller than £(§,§°) and their
natural topology were studied in/10/,

The author wishes to thank G.Lassner and
A, Uhlmann for helpful discussions,
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