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Manbuee B.K. E2- 11266 

0 KB8HTOB8HH~ H HenoKanbHOCTH KBBHTOBBHHOrO rpuDHTBUHOHHOrO 

nonH 

B pa6oTe cnenana nonNTKa KBBHTOBBTb rpaawTauuonnoe none B KOH-
¢opMHO-nnocKofl MeTpHKe ds 2= <,'l(x)(c 2 dt 2-dx 2 -dy 2 -dz 2) Bcnonb3YH 
HHTerpanbHY!O ¢opMynHpOBKY caepnyThiX ypaanerwii 3iinwTelrHa i 1.2/ 

.p(x) = K/6 fS(x. y)T(y)<,&(y)y-r1d4 y + A'(x). 3Ta <f>opMynrlpOBKa ananorH'IHB 
H3BCCTHOMY ~Hr-¢enbllMBHOBCKOMY nonxony B sneKTpOllHHBMHKe. 

BbiCKB3LIBaeTc~ rHnoTe3a, 'ITO KBBHTOBhiii onepaTop MeTpH'IeCKHX 

Kos¢¢HuHeHTOB o/l(x) HMeeT BHll ; = (K/6) JS(x. y) T0 y=1) d 4 y + A· (x); 
STO COOTHOWCHI!e HBnHeTC~ onpeneneHHCM onepaTopa ,f(x).; H non 3HBKOM 
o6heMnoro HHTerpnpoeaHHH e ero npaBoii qacTn TonbKO T(~ (cnen ren-
30pa SHeprHH-HMnynbCB MBTepHH) HBriHCTCH KBBHTOBb!M OUepaTOpOM, 

noKB3BHbl CBMOCOrriBCOBBHHOCTb Ji>opM8riH3M8 ll ero UOriHBH SKBHBB

.iJeHTHOCl'b _¢opMynH3MY Tpannunonnoro KBBHToaaHRH. 
noK83BHO TBK~e, 'ITO B KBBHTOBOM cnyqae 3TO rpaBHl'BUHOHHOe none 

HeriOK8ribHO H 'ITO B03HHKB!OWBH HCnOKBribHOCTb HMeeT xapBKTep HeriOKBrib
HOCl'H, npenno~ennoll M.A.MapKOBbiM /5.6/, 

Pa6oTa Bbmonnena B Jla6opaTOpHH reopern'leCKoll ¢n3HKH 011 fll1. 

Coo6WeHHe 06bellHHeHHOrO HHCTHTyTa S!llepHbiX HCCriellOB8HHli, lly6Ha 1978 

Mal'tsev V. K. E2- 11266 

On the Quantization and Nonlocality of the Quantized 
Gravitational Field 

An attempt is made to quantize a gravitational field in con
formally flat metric ds2 ~.;,(x)(c2 dt 2-dx 2 -dy 2-ctz2 ) using the integral for
mulation of contracted Einstein equations/ 1.2/ 0=(K/6) JS(x,y)T.,&y::;; d4y+A •• 
This formulation is an analog of the well-knovvn Yang-Feldman ap
proach in the electrodynamics. 

A hypothesis is made that the quantum operator of the metric 
coefficients •/J(x) has the form ~=(K/6lfS(x.y}'i.,&y=lJd!y + /\'(x); 
this relation is just the definition of the operator •h(x); under the 
sign of the volume integration in the r.h.s. of it only T(y) (the 
trace of energy momentum tensor of the matter) is a quantum ope
rator. The se!fconsistency of the formalism and its equivalence with 
the formalism of traditional quantization are shown. It is shown also 
that in the quantum case this gravitational field is nonlocal and the 
appeared nonlocality has a character of that proposed by 
M.A.Markov /5,6/, 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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1. Besides the usual formulation of Einstein equa
tions 

Rik- %gikR KT ik (1) 

(K = Srrk/c 4 • k is the Newtonian gravitational constant) 
an integral formulation of them is known /1,2/: 

~{3 -4 . 
gik= Kf ik Taf3 y-gd y + Aik ' (2) 

here the bitensor Green function s~f (x,y) 
free term A ik (x) obey the following equations: 

and the 

Dmnsaf3=c}aof3)o 4 (x-y) DmnA =0. 
ik mn (i k) ' ik mn 

(3) 

The differential operator of. eqs. (3) D ~n is chosen 
in such a way that eqs. (2) are equi~alent with the 
Einstein eqs. (1); in particular we put 

D mn g ~c G ~ R - 'l,g R 'k ... "k .... 'k ~~ 'k ' 1 mn 1 1 1 

(4) 

so that acting on eqs. (2) by the operator D ~m, one 
obtains Einstein equations. 

1
k 

Both Einstein equations (1) and the integral formula
tion (2) are established only for the observable quanti
ties g ik and T ik . But from the point of view of quantum 
theory the quantities T 'k are the mean values (m.v.) 

A 1 

of a quantum operator T ik 

A 

Tik=<\Tik \> (5) 

(our assumptions on q -numbers and state vectors 
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a priori repeat those of ref. /3/ ). Taking (5) into account 
one can rewrite (2) as follows 

a{3 A - 4 
g ik = K J S ik <\ T a{3 I > V -g d y + A ik 

(2') 

a{3" -4 
= <\!KJSik Ta{3 \}-gd Y + Aik ll>, 

and, denoting 

A LJ" --4 
g. '= K J~.' T {3 v- g d y + A . ' 

1k 1k a 1k 
(6) 

one has eqs. (2) in the form 

A 

gik = < \g ik I>: (7) 

.... 
hence the m.v. of the q-number g ik in the given 
state is the metric in the given physical situation. 

Acting on both sides of eq. (6) by the differential 
operator D mn , we obtain equations for g . 

ik . lk 

IDllA A " 

D g == G = K T (8) 
ik mn ik ik ' 

A A 

where G ik denotes some differential form of g ik 

whose m.v. is the Einstein tensor G ik: 

" 
<I G ik I> = G ik ' 

(9) 

so that eqs. (8) reduce to the classical Einstein equa
tions when the m.v. is taken. 

Generally speaking, some difficulty in q -numbers 
formulation of Einstein tensor lies in the fact that 
quantities g ik are considered as the potentials of the 
gravitational field and, on the other hand, they are the 
pure geometrical objects which act on the tensor in
dices of variables of the given theory (i.e., the metric 
itself). In the classical theory this difference is not 
essential - e.g., in the Hamilton principle all components 

4 

g ik are varied. On the other hand, the expressions 
Ai and A i "" g ik A k are only different representa-
tions of the same quantity (the vector A). But in quan
tization the operators can be connected only with the 
field variables, and some quantities which determine 
the metric properties of the space should remain c
numbers (due to their meaning). 

This difficulty is radically overcome in the theory 
based on the linear approximation to the Einstein equa
tions: putting g ik = 17 ik + hi~ , where 17 ik is the metric 
of the flat space and \h ik 1« 1, we use (due to linea
rity of the approximation) only TJ ik as the metric, while 
the components h ik become the dynaptical variables 
which can be replaced by the operator h ik • In general 
(not in this linear approximation) to overcome this 
difficulty the "coordinate" representation is proposed, 

A 

so that the acting of the operator l!:ik is reduced to 
the multiplication by the components g ik; nevertheless 
in this case the difficulty is preserved as well (except 
the loss of generality); e.g., A i and Ak do not appear 
as co- and contravariant components of the same quan
titf, but rather as physically different. quantities A i := 

= g .k Ak and A k (e.g., Ai and A 1 are commuted 
with

1 
rr ik _ a;ag ik in different ways). 

In the general case such a distinction between the 
potentials and geometrical quantities in the Einstein 
tensor means that we introduce the Riemannian space 
a differential operator D ~n which acts on the sym
metric tensors ¢ ik defined in this space so that this 
operator (it depends on the metric of the given space, 
of course) in acting on the metric tensor g ik gives 
the Eisntein tensor: 

(D mn • ) = G 
ik cp mn ¢ = g ik 

mn mn 
(10) 

In particular, finding of such a differential operator is 
the main problem of integral formulation of the Einstein 
equations I 1. 2/ . As soon as such an operator is 
found, i.e., Einstein equations are written in the form 
which is analogous to that of linear theories 
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rnn 
D ik g rnn = K T ik ' (11) 

we can write the quantum variant of these equations as 
well in the form of (8): 

mn A A. 

D g = KT 
ik rnn ik 

(8') 

In so doing the components g ik which are contained 
in D ... ~~ remain c-numbers, of course, and the opera
tor g ik enters into (8' ) in a linear manner (but the 
superposition principle has no place since the compo-
nents g ik are the m.v.• s of g ik ). The solution of 

(8) · " " ( · rn n rnn ( ) ) eq. lS g ik = g ik (g rnn) smce Dik = D ik gab • 
where g ik is to be considered as a parameter (not 
as a given field, of course); to know the value of this 
parameter for the given system, one has to solve Ein
stein equations (1) or (2); in this formalism it means 
that, after eq. (8) is solved, one has to solve eq. (7), 
where the m.v. is taken on the state vector of the given 
system (or one can take a m.v. of (8) in the given state). 
This formal situation is just analogous to that in the 
case of any field in general relativity: one has to solve 
both field equations and Einstein equations for the given 
physical system (however one can consider a simplified 
problem with given g ik ). .. 

Thus we have a q -number g ik , whose m.v. is 
gik and whose motion eqs. are (8). Certainly, for conse
quent quantization we have to be sure of the fact that 
eqs. (8) for g1k can be formulated in a caponical 
way; in this case we may consider operator g ik .. as 
the quantum operator associated with the metric · g ik . 

To check up the possibility of canonical quantization 
in such a way let us consider the formally simplified 
case of conformally flat spaces. Such a consideration is 
useful not only in the aspect of principle, but also due 
to the fact that such models as the Einstein, de Sitter 
and Friedman ones belong to the class of conformally 
flat spaces. 

2. First of all we should note that the formalism de
veloped in ref./2/ is to be transformed to a more sui-

6 

table (for our purpose) form. Namely, in ref. /2/ the 
spaces with metric g ik c <,)2 (x) 'I ik were considered; 
here 11 ik is the metric of the flat space, and ¢(x) 
obeys the equation 

o<P = ~ T <P 3 (12) 
6 

( o is the covariant with respect to 17 ik d' Alemberti
an, and T - T i is the trace of the matter energy

' momentum tensor); this equation is the contraction of 
Einstein equations 

-R = KT. (13) 

The integral equation in this case has the form 

¢(x) = ..!S.. JGT¢} Y-Ti d 4 y + t\(x), 7J = det11 'k , (14) 
6 I 

where the Green function C(x, y) and the free term 
A (x) obey the equations 

oG(x,y) = 84 (x- y), o A (x) = 0. (15) 

In this case the operator n7; is reduced to d' Alem
bertian o. Acting by it on eq. (14) we obtain eq. (12) 
due to eq. (15). 

Let us put now ¢2 (x) = t/1 (x), so that the metric 
has the form g ik = tjJ ( x) 77 ik ; tjJ ( x) coincides (with an 
accuracy to a sign) with metric tensor components in 
Cartesian coordinate frame. The transformation of the 
formalism to this new potential is easy. Indeed, from 
(14) we have 

t/J(x) = !5..- fSTl/"/-11-d4y +A '(x), 
6 

where the new Green function has the form 

1/z 'h =t/1 (x)G(x, y)!/; (y) and obeys the equation 

(16) 

S(x,y) = 
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1 1 ik DS=- oS- -71 1/J S 
1/J 1/J 2 ,i ,k 

..,.._1_(otfr-L7Jik 1/J. 1/J )S=o4(x-y) 
21/;2 21/J '1 'k (17) 

(comma denotes a partial derivative). The free term 
A '(x) has the form 

A'= I _!_(S .f -Sf .)J=.ryd~i f ,I ,I 
(18) 

(here the integration is made over the surface I cover
ing the region of volume integration in (16)) and obeys 
the equation 

DA' = 0. (19) 

In acting on (16) by the operator D, we obtain the analog 
of eqs. (11) 

1 1 ik 
Dtjf = [-o- -71 1/1 . ak-

1/J 1/J 2 ,1 

1 3 ik K 
--(of- -7] f. f )]f =-Tf, 

2f 2 2f . ' 1 ,k 6 
(20) 

i.e., we obtain the Einstein equation contraction (13) 

1 1 "k K 
---Co 1/J - - TJ 1 ljJ . 1/1 ) = 1r T1jJ 
21/; 21/1 ,1 ,k 0 

(21) 

(the scalar curvature in this case is R = - 31/J - 2 [ o 1/J -
.... (21/J)-1 7) ik 1/J i 1/J k )). "' 

Substitute now into (16) a quantum operator T 
instead of the c -number T; in so doing we obtain 

" some operator tfr which is equal to 

" " 4 1/J (x) = ~ fS 'f 1/Jv=r/ d y +A '(x). 
6 

(22) 
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Multiplying (17) by ~rl and integrating over d 4 x , 
we obtain after simple transformations that in this 
case 

-1 A A - j 
A'= Jt/1 (S. 1/J -Sf. )y-TJ d~ • 

' , 1 '1 

(23) 

The operator J (x) obeys an equation which is de
rived from (22) like (20) is derived from (16) 

A 1 A 1 . A 

Df = -of - -7] 1k f f -
f f 2 ,i ,k 

1 3 ik A K " 
--(ot/J- -TJ f. f )f =--Ttjf. 

21/12 2f ,I ,k 6 
(24) 

The m.v. of the r.h.s. of eq. (22) coincides with r.h.s. 
of eq. (16). Hence, 

.. 
(25) <\f\> = tjf; 

m. v. of (24) gives (20). Therefore eq. (24) is the q

number variant of eq. (21). 

As for the nonuniqueness of the choice of the opera
tor D (mentioned in ref. I 2/ ) we would like to note 
that the given choice (i.e., o for ¢ and the related 
one of eq. (~4)) results in a conformally invariant equa-
tion for ·'· (x); indeed, if one introduces a tensor 
A A 'f' 
fik = f 7J ik (like g ik = 1/JTJ ik ) • eq. (24) 
can be rewritten identically as 

m "i 2K"i 
(V V -R/6)~'· = -T. 

m 1 3 I 

(26) 

where V m V m is a d' Alembertian covariant with res
pect to metric g ik . and J i = g ik J ik • The property 
of conformal invariance is natural in this case since all 
conformally flat spaces. are conformal to each other; 
at the same time other possible choices of D (noted 
in 12/ ) do not imply conformally invariant equations. 
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" 3. Let us make sure now of the fact that the quantity 
t/1 (x) obeying eq. (24) is a canonical variable. A Lag
rangian density related to (24) is * 

f = - _L 1... TJ ik (f t - 1_ t$ J . t/1 + 
2J< t/J ,i ,k 1/J ,1 ,k 

+ _1_; 2 t/1 t/1 ) + £ 
41/12 , i , k m ' (27) 

where £ m is a Lagrangian density of matter; below 
the material sources will be omitted, but no transfor
mations (possible via R=O when T = 0 ) of the r.h.s. 
of (24) will be done, i.e., we shall consider a homogeneous 
equation 

" Dljl = 0 . (28) 

" The canonically conjugated with ljJ field rr is 

a£ 3 1 
err = --- = - --( ~' - --t/1 0 ~1 ) • 

fN;,O Kljl ,0 2t/J ' 
(29) 

The Hamiltonian is 

" 2 1 . " 
}{ = crrt/1 - £ =- ~1/Jrr 2+ ~rrt/1 

,0 6 2ljl 
(30) 

31 ...... 2 1 ............. 1 .. 2 .... 2 
---[(VI/I) --t/l'VI/I'Vt/1+--t/1 (Vt/J)] 

2K t/1 1/1 4ljl 2 

.... .... 
(here v = a;ar) ) and it is (with an accuracy up to 

*In ~hat follows 171k is chosen (due to its triviality) 
to be dlag(l,-1,-1,-1). 

10 

a factor [~ ) a component t ~ 
energy-momentum tensor of the field 

"of the canonical 
ljl: 

t 
k .- 3 1 kn ( 2 "1 ~ ," "1 ) "' k o . "-g =-- --TJ ~J l.fl. -v. lJJ -u. J.., 
I 2J< ljJ , n , I ,I ,n I 

(31) 

so that the .. Hamilton function H ~ J}{ct3 x is the energy 
of the field ~' ** 

H I 0 -. -d3 
= t y'-g X. (32) 

0 

In varying the Hamilton function with respect to rr and 
$, one obtains that the system of canonical equations 

" " err = -8H/oljl, cljl = oH/orr (33) 
,0 ,0 

is equivalent to eq. (28). Now we can pass to quantiza
tion of the field J putting 0 and rr to be operators 
with commutation relations 

A_., -+ __,. -+ 

[ t/J (X) , rr (X') 1 = i h 0 (X - X') , 

(34) 
--+ --+ A --+ A -+ 

[rr(x), rr(x ')1 = [t/J (x), t/1 (x ')] = 0, 

as usual. Considering Hamiltonian .. (30) as an operator 
(and symmetrizing the product rr~' ) ) we obtain that 
equations 

A 

J1 ' _i_ [H , 01. 
h 

rr _l_[H, rr] 
h 

coincide formally with eqs. (33) and (28). 

(35) 

**This energy is indefinite just like the (canonical) 
energy of gravitational field itself I 4/; The (canonical) 
energy of classical gravitational field in conformally 
flat spaces is nonpositive. 
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Therefore, equation (28) is the canonically quanti
zed equation (21) and the operator ,]; is the quantum 
operator of metric coefficients 1/J. 

4. The next step in traditional schemes of quanti
zation is a transition. to the Fourier representation. It 
is clear, however, that in the case of any Riemannian 
space the expansion of a metric into plane waves- exp(ikx) 
is useless (generally speaking). 

But in the case of conformally flat spaces one can 
use somethjng like such an expansion. Let us consider 
the field 1/J as usual in a cube (with colome V ) and 
put 

J(~) = [i/J(x)/3V] 1;2 I q ... e ik1 
k k 

... 1/: ....... 
rr(x) = [3jVtj1 (x)] 2 I p .... e -ikx 

k k 

From (36) and (34) one has 

(36) 

1L A 1/ .-> -> _JI lL ;-' -> 

q .... =(3/V)nfdxi/Ji/J-ne-Ikx, P .... =(3V) 72 fdxrri/J/2 elkx 
k k (37) 

and 

[ q .... ' p -t ) = i h 8 ... .... • [p .... ' p ... ) = [ q ... ' q ... ] = 0 . 
n K kn k n k n 

(38) 

Substituting (36) into (30) we obtain 

H = -(1/2K) I (K2 c2 p ... P! + k2 q ... q!.) + 
.... k k k k 
k 

.......... 
... i(n-k) x . 

+ (1/4V) I (p ... q ... + q... p .... ) fdxe 1/J/lj!. 
-> -> k n n k 
k,n 

(39) 

The momentum of the field in volume v is 

12 

' 
I 

it 

J 

.... .... 
p = (i/2) I k(q .... p .... +p .... q .... ) -

.... k k k k 
k (40) 

........... 
-+ i(n-k)x -+ 

-(1/4V)I(p .... q .... +q .... p .... )fdxe (V i/J)/1/J. 
k,; k n n k 

The second sums in (39) and (40) disappear in flat space 
(when 1/J "'1) and are, therefore, specific properties of 
a curved space. 

We note that operators p.... and q.... depend on the 
k k 

time explicitly in accordance with (37): 

_,. 4 4 

-1 ... i(k-n )X 
ap .... ;at = (2V) I p .... I dxe 1/JN, 

k ; n 

aq .... !at 
k 

............ 
-1 .... i(n-k)x . 

-(2V) I q .... fdxe 1/JN. 
n n 

If one puts H = H 0 +~H, where 
-1 2 2 .... 2 

H =-(2K) I(K c P .... p~ +k q .... q!) 
0 .... k k k k 

k 

(41) 

(42) 

corresponds to a set of oscillators with nonpositive 
energies and 

.......... 
-1 , .... i(n-k)x . 

~H,=o(4V) ~ (p .... q .... +q .... p .... )fdxe tj,/1/J, 
.... .... k n n k k,n 

(43) 

then a direct computation via (41) and (43) gives 

ap_. ;at = (i/h)lp ..... ~Hl, aq _. Nt = (i/h)[q ..... ~Hl. 
k k k k 

(44) 

and we obtain 

p =o ap /at + (i/h)[H, p ~) ="(i/h)[H ,p ~ ) =(k 2 /K)q! , 
t t k o k k 

(45) 

q = aq ;at + (i/h)[H ,q ) =(i/h)[H ,q ] =-Kc2p * . 
k k k 0 k k 
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Eqs. (35) are reduced now to equations of a formally 
simple type, but it should be noted that here p-• and 
q k differ essentially from clp k / dt and clq k k, clt , 
since both H and H0 explicitly depend on time and the 
transition to Heisenberg or Dirac (with H . t ~ /\11 ) 1n • 
picture in a trivial way is impossible. However H 0 ~· 0 
and this confirms its interpretation as the Hamilton 
function of the set of oscillators with definite (nonposi
tive) energies; thus operator H 0 adds a negative energy 
to that of material system in the given gravitational 
field * (or it decreases the positive energy of this 
system). 

Furthermore one can use another expansion instead 
of (36); letting 

" --+ 1 .......,_,. 

t/1 (x) =[K c2t/J (x)I3V ] Y2 2 q .... e ikx 
k k 

->-> 
-> 2 Y2 -ikx 

7T(X)=[31Kc Vtjl(x)] [2p_.e + 
k k 

+(~/2tj1)2q eik; l 
.... -> ' 
k k 

so that 

(36') 

*It can be seen from the structure of Weyl tensor that 
conformally flat models always are the solutions of in
homogeneous Einstein equations (but the trivial case 
of flat space), i.e., they are the solutions of Einstein 
eqs. with a source T ik or, at least, with a source 
,\g ik (e.g., de Sitter model; A-term is to be con
sidered here as a material source as well). Thereby 
in the framework of Einstein theory, we always have 
to assume the existence of material source with definite 
positive energy. 
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Y2 -> " -Y2 -i~X' 
Q_.=(31Kc 2V) fdxtjltjl e 

n 

2 !/ -> !I ->-> 
p-> = (K c I3V) n fdx7Tljl 12 e inx -

n 

Y2 ... .. • I ....... 
-(314Kc2V) Jdxljlljlljf-3 2 8 inx 

one has 

-1 2-> 2 
H = - 2 I (p p * + c k q .... q ': ) + 

k k k k k 

-1 . -> -> -> 
+ (8V) ... I_,q_.q_. fdx(l/Jil/1)2 8 i(k+n)x; 

k, n k n 

The commutators (38) are preserved, and, though 

-> -> -> 
-1 -> i(k-n)x aq I at = -(2V) 2 q_. f ctxe l/JN, 

n ; k 

-> -> -> 
-1 -> i(n-k)x • 

ap_. 1ar= (2V) 2 p _.Jdxe l/JN + 
n -> k 

k 

(37') 

(39) 

(41') 

-> -> -> 
-1 -> -2·2 -t·· i(k+n)x 

+(2V) 2 q .... f dx(2o/ ljJ -l/1 ljJ )e , 
k k 

they do not depend on time: 

a a a -a [p .... ,q .... l = -[q ..... q .... 1 = --[p .... ,p .... 1 = o. 
t k n at k n at k n 

(the same for (38), of course). For 
has 

-+ -+ -> 

. 
P-+ and 

n 

• -1 _, i(k-n)x 
q-+=-p*-+-(2V) Iq ... Jdxe ljf/ljl, 

n n k k 

(46) 

q -+ one 
n 
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-> -> -> 
p_. = c2~2 q'! + (2V)-12. P-> JdX'ei(n-k)x t/JN + 

n n k k (45') 

-1 -> 3 -2 . 2 -1 .. i(~ + k)i' 
+ (2V) 2. q _,fdx(-t/1 tjJ -t/1 tjJ) e 

-> k 2 
k 

" The field t/1 is represented as a set of oscillators with 
variable frequencies when iN' = x = x(t) (e.g., in the 
flat Fridman model and, in some approximation, in its 
other types), namely 

-1 ~' ( * I 2 *) n 2 • 2 k--> 2 , 2/4. H =- 2 ~ p_, p .... + !, q ___,q_, , u = c -x , (47) 
k k k k k 

n 2 is indefinite, and it is of interest that the condition 
n 2 ?:: o results in A = 2rr I \k I -s__ 4rr c/ I x I - radius of our 
Universe (since \xi _ t -1 _ 10 -1 7sec). 

5. In Sec. 3 quantization has been performed for a gi
ven time moment. Let now all operators be time depen
dent in such a way that on every surface" t = const "they 
coincide with the previous operators and 1/J 0 (x) = c.P (x) , 
and let us fOmpute the commutator l rJ, (x), ~; (x ·) J 
between tjl's taken at different space-time points x 
and x '. This commutator obeys the equation of type (28) 

" " D[tjJ(x), ~,(x')l = 0; (48) 

furthermore one has 

" " [tjJ(x), tjl(x')] , = 0, 
t= t 

" A A • --+ A --+ 

(a/at)[tjJ(x) ,t/J(x')] • = [t/J(x) ,t/J(x ')] 
t= t 

2 -> -> =(ihKc /3)t/Jo(x -x'), 
(49) 

(these are obtained from (29) and (34)). If one denotes 
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" " Yl Yl [t/J (x). tjJ (x ')] = (i h K c/3) tjJ 2 (x)A (x, x ')t/J 2 (x '), (50) 

then for ~(x,x ~ one has via (48) and (49) 

o~(x, x') = 0 , 

-> -> 
~(x,x')l • =0, aMx,x')/atl • =co(x-x '); 

t=t t=t 

(51) 

this implies the function !\ (x, x ') 
function Mx-x '): 

to be the usual 

~(a) = (a0 /2rr \ a0 J)o (71 ik ai a k). (52) 

The other commutarors can be derived from (50) e.g., 

(rr (x) '.,&(X'))= - !..!!._ t/J -'h (x) a~(X- X ')t/J 'h (X')' 
c at 

(50') 

[rr(x). rr(x ')] =- ~i h3t/J -'h (x) a2 ~ (x-x ') t/1 -% (x '). 
Kc atat· 

In transition t ... t • commutators (50), (50' ) reduce to 
corresponding ones (34). Thus, the performed quantiza
tion is invariant with respect to the usual Lorentz trans
formations of the flat space. (It is reasonable to develop .. 
the general covariant quantization for fields g ik of the 
general type, of course). 

6. Let us now discuss some consequences of the de
veloped quantization. 

The relations (29) and (34) lead to the commutator ,. 
between ~ and ~ 

" 
[~(x).Jci')J =(ihKc2/3)t/JB(i-i·L (53) 

" " 
The fact that t/1 and t/J do not commute means that 
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the simultaneous measurement of the related quantities 
is impossible, and here it leads to additional (as com
pared with traditional field theories) results due to 
factor t/1 in the r .h.s. of (53). 

Since the measuring of any quantity f takes place 
always in some space-time region V·T and the measu
red quantity f M is 

f = ( VTf 
1 f f d V d T 

(54) 

M VT 

(so that one means the 
the limit of f M when 
(53) in some volume VT: 

value f at a given point to be 
V, T .... 0 ), we should average 

A .. 

[J, M, t/J M) c= (8i rrhk/3c 2 V)t/IM (55) 
.. A 

Strictly speaking one has to consider ~ = ~' (;, t) and 
.j =- ~; (x, t) and use the commutator of the type (50' ), 
but in the first order the latter has the form of (53). 
The commutator (55) yields 

11~ !ltjJ > ( 4;; h k/3c
2 V)tjl 

M M - M 

It is clear that 

i'1t/J M - ;\.t/JM /T, 

hence (56) yields 

(l\t/JM) 2 ::0:(4rrhkT/3c
2

VW)M 

(56) 

(57) 

(58) 

that appears to be rather natural - the larger is volume 
V and the quicker is the measuring, the less is inaccura
cy produced by the process of measuring itself. But 
in virtue of the causality principle the measuring cor
responding to a finite volume cannot be performed during 
an arbitrary short period T. If the considered volume 
is a sphere whose radius is r, then at least T > r/ c . 
Substituting this T and V = 4rr r 3./3 into (58) we-obtain 

(f'l..t/J ) 2 >(hk/c
3 

r 
2

)V; 
M - M 

(59) 
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or, introducing the Planck length P 
0 

= (h k/ c 3
) liz , 

!lt/1 :, (P /r),i'J; . 
M- 0 ' M 

(59') 

Therefore, the notion of a metric as that measured at 
a point (i.e., the limit of 1/;M at r __, 0 ) losses its 
meaning; the latter can be preserved only for large 
enough domains. To define more precisely this conclu
sion we should note that the measurable length corres
ponding to the coordinate difference r is 

r __ r __ __ 

e = f dr~g = f dryt/1 = ry'~, ' r 
0 

- 11 0 r 

where ~' r is the mean value of t/1 
With sufficiently high accuracy we 
then (59' ) yields 

;\.tjl > (~ /~ )t/J ', 
M - 0 r M 

(60) 

in the interval (0, r). 

can put tjJ = 0 , 
M r 

(61) 

i.e., the metric has its meaning only in the re~ions whose 
linear dimensions are larger than e 0 ' while already 
at e r = e 

0 
the inaccuracy in measuring of tjJ M cannot 

be less than t/1 M itself, and this result does not de
pend on the manner of measuring in virtue of the fun
damental principles of the quantum theory. 

Due to the fundamental character of the metric its 
immeasurability with an accuracy higher than (C 0 If r ) t/1 M 

leads to immeasurability of every quantity (distributed 
in the space) in small enough regions. Indeed, the measu
rable length related to coordinate difference 2r is 
equal to e = 2rv-;;;;~ therefore according to (59' ) the 
error of this length measurement M always is 

M ~eo (62) 

without any dependence on the length and manner of its 
measuring. Thus the Planck length appears to be 
shortest measurable length. As can be easily seen, 
this result implies the principal nonlocality of 
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the quantum field theory involving gravitation, and this 
nonlocality has the character of that proposed by M.A.Mar
kov /5, 6/ • Indeed, the appearance of a minimal mea
surable length e 0 means that at lengthes shorter than 
f 

0 
no experimental distinction of any characteristic 

of some object is possible: if such distinction was pos
sible, the measuring of a length shorter than e 0 would 
be possible too (namely as the distance between the 
points of the object with different values of this charac
teristics). Hence the notion of a field characteristic 
(e.g., the potential) as a coordinate function losses its 
direct meaning of the value of some field quantity at the 
given point (since the field has no determined charac
teristics not only at a point but also in a region smaller 
than e ~). 

It is worth noting that this nonlocality concerns just 
the observable quantities - the field functions and the 
distances between objects of the system with different 
values of this functions. These distances are determined 
via the metric. On the other hand, the coordinates of 
these objects are not observable but are set by the 
arbitrariness of the observer. Thus the relation (62) 
does not imply impossibility of1representation of physical 
quantities as coordinate· functions. It means only 
that the exact location of an object with definite charac
teristics and coordinates is impossible. To know the 
localization we are to know the metric, but knowledge of 
the latter is restricted by (61), hence the accuracy 
of location is restricted by (62). Thus the representa
tion of fields as coordinate functions losses its tradi
tional meaning as the value of the field at the given 
point /5, a/ and becomes an auxiliary notion just like the 
coordinates themselves do in general relativity. 

The author is deeply indebted to Professor M.A.Mar
kov for the stimulating of this work and for his constant 
guidance. 
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APPENDIX 

One can introduce operators 
of p... and q ... of (36): 

k k 

... liz 
q_, = (hcK/2\k\) 

k 

+ (a ... +a ... ) , 
-k k 

. ... liz + 
p_,=l(h\kl/2cK) (a ... - a ... ). 

k -k k 

a_, 
k 

and + 
ak 

(and analogous ones for (36")). Then (38) yields 

+ + + 
[a ... , a ... ] = 8

7 
... , [a ... , a ... ] =[a ... , a ... 1 = 0 , 

n k Kn k n k n 

instead 

(A1) 

(A2) 

and (39), (40), (41), (45) can be rewritten as follows: 

and 

P = (h/2) I k (a+ a +a a+)+ 
m -+mltlt kk 

k 

... ... liz + + 
+(ih/4V) I (\k\/\n\) (a ... a ... -a ... a ... + 

k, ~ -k n k -n 

+ +a ... a ... -
-k -n 

~ -+-+-+ 

a~ a ... ) f dx e i(k -n)x t/1 /!/'' 
n k ,m 

... ... ... 
P =(H/c, P), k =(-\k\,k), 

m m 

(A3) 

aa ... Nt=(4V)-1 I[<~l/\kl) liz -(\k\/lt~D liz Ja ... fdxe i(~-k>;t/,!t/1-
k n n 

-(4Vf1 I [(\;1/\k\) liz +(\k\/lii'\) liz 1 a: fdlt e-i&+-;)-; ~/t/J, (A4) 

~ n 

and 
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. ~ . + --t '-

a .... = i I k I ea .... , a .... =- i I k I c a ~ . 
k k k k 

(A5) 
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