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On Canonical Formulation of Field Theories with
Singular Lagrangians .

An attempt is made to introduce the Routh function formalism
into the field theory: only "nondegenerated" field components are
considered as canonical variables., Electrodynamics and general
relativity are considered. The formalism appears to be quite
simple and gauge-independent,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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It is well known that the direct Hamiltonian for-
mulation of the field theories with singular Lagran-
gians is not easy. The Hessian degeneracy in such
cases is usually attributed to some restrictions im-
posed on some momenta. In other words it is sup-
posed that these momenta do exist but for some
reasons, they are "degenerated", Nevertheless, dif-
refent ways of developing in this case of the
Hamiltonian formalism are known,

However, there is one more possibility, namely,
not to consider the "degenerated" coordinates as
canonical ones, so that the conjugated momenta do
not appear at all (e.g., a certain momentum is not
equal to zero identically as is usually considered,
but it does not exist). Certainly, the Hamiltonian
formulation is now impossible, However, the so-
called Routh function is known in mechanics/1/, This
function is defined to be a Hamilton function with
respect to some coordinates and a Lagrange one
with respect to the others, while the choice of cano-
nical and noncanonical coocrdinates is determined by
the properties of the problem to be solved., It is na-
tural in the case of singular Lagrangian to consider
only '"nondegenerated" coordinates to be canonical,
Thus the canonical character is not forced upon
the coordinates that have not it explicitly.

In mechanics the Routh function formalism is
known well enough. In what follows at attempt is
made to introduce this formalism in the field theory
(by analogy with the Hamilton function formalism)
applying it to some concrete fields,



ELECTRODYNAMICS

Classical case., The Lagrangian density £ of the
electr‘omagnketi'c field A; (Fy = Ay -Aix) with
a source j 1S

1 ik K 1
& - - IF F 4A] (1)
(Latin indices run from 0 to 3, Greek ones run from
1 to 3, c=1, metric tensor 7, = diag(-1,1,1,1,)).Euler-Lag-
range equations vyield the Maxwell ones
k .k
P =-1i (2)

s 8 ’
obeying the identity
ik sk _ -

" =F,sk:0’ (3)
one equation appears to be a consequence of the
others and to describe the given field one compo-
nent A, (any) appears to be superfluous,

In attempting of the canonical formulation one
discovers immediately that Ao’0 (EAO) is not contained
in the Lagrangian density at all, In spite of this
fact many ways of developing of the Hamiltonian
formalism exist’/?/ .However let us introduce instead
of the Hamilton function the Routh one considering
only A, as canonical coordinates. In so doing only
three coordinates will be determined canonically,
but just this number of components is enough to
describe the field,

Conjugated to A momenta 7% are

7 =0 /0A =—_F°a : (4)
a a

Using these one obtains the Routh function density
(by analogy with mechanics definition of Routh
function):
R-Liesna +lpe iacjo_ ;. (5)
2 a a oa 4 af aa

Considering Routh function R = f.(Rd3x, one obtains

__jo_F-:zao , (6)

a,a

(8/8A )fRdAt =-j° -7
so that the equation (6) = 0 is the zeroth component
of (2). On the other hand

_ - — i . 7
SR/Sm = m + A . 8R/BA == +F g g (7)

*

the equation Aa= SR/, coincides with (4); elimi-
nating via it the momenta = from 7o +8R/6A
one obtains

7}a + BR/BA = i F“il ) (8)
Thus the Maxwell equations (2) are represented by

the system

(8/8A )fRdt =0, (9)

A = 8R/Sw , = =-OR/SA , (9"
a a a a

and (9’) has the explicit canonical form,
For the time derivative of any quantity f one has

df/dt = 91/dt + (R, f}, (10)

where 9df/dt is taken at constant Aa and 7 and
the Poisson brackets are

dg Jdf . 2 of
{g;flzf(—E _ 5 yd3x ; (11)

o 5Aa 5Aa om

a

a

it is easy to check that

tr &),Aﬁ(i"n =5a35&‘;"’ (12)

A w1 =1A A 1=0.
o]

{" a o a

w =1{A A
a',B}{aﬁ

Let us condiser now the Fourier transformation of
the field



A" 1 Eqn o 1KX a9 1 Epa e—ikx
NS ’ vV & ®
jn= 1_ s It e ikx ( )
vV £ ®
the Routh function in this representation is
R==3G,p*% +[kxq ,1Kxq*,] -
2y M ( (k) (%) (14)
_z(ikp—r_Jo ) O—r—ZQaJ—rr
" Kk k) & § K (k

here I(X?l is the vector product (indices (k) will be
often omitted below). Varying (14) one has

8R/8q = ipk - J°, 8R/6p = p*+ikq_ , (15)

- - - > o

-6R/6q=1T + kx(kxq*),

so that the equations .

5R/6q_ =0, q=B6R/5p, p=-8R/5q (16)

are the Fourier components of (9), (9.

Considering the (canonical) energy-momentum ten-

sor
k
T =A _F -aiﬁ, (172)

one obtains that the energy density Tg coincides
with the Routh function density (as one should ex-
pect from the obvious analogy with mechanics), If
now all variables are considered as solutions  of
the field equations, then decomposing p and ¢ into
longitudinal (|]) and transverse (]| ) components one
has the energy

(. pf +k"qpqf) + (18)

Thus the free field energy is defined by transverse
components only, as one should expect,

Quantum case. The quantization is obvious., Con-

sidering the canonical variables as operators one ob-

tains from (12) that the only nonvanishing commutator
is

[Aa&),n[3 (x 1] =ih5a68(;—;') (19)

(there is no reason to quantize Ao,hence). Interpre-

'ting now R as an operator one obtaines that the

definition (in accordance with (10))
7‘; s-l—[R,n 1, A = i[R,A ] (20)
a h a a h a

leads to equations which coincide formally with (9’);

at the same time eq. (9) formally remains unchanged,
For Fourier components one has

[q - 1 - J =1h8 5—»—» ’ (21)
a (k) pﬁ(n) af3 kn
and the definition
F=imp, §-Lr.qg (22)
- h ’ b h ’

vields the Fourier components of (9’). Introducing
the creation and annihilation operators one can
easily be convinced that the free field energy and
momentum_are provided only by ;'.L and af while
a and ap) appear only due to the interaction with
the source (and scalar photons are absent from the
very beginning). Thus the canonical quantization of
the electrodynamics appears formally to be rather
easy (almost like that of the scalar field) and it
should be emphasized that the traditional results
are obtained without any gauge condition: no rest-
rictions were imposed on Ay and’ T 4 (but the only
convention that A, is not a canonical variable). Now

one can introduce a gauge that is suitable for a conc-~



rete problem to be solved, since the general for-
malism of quantization appears to be gauge—inva-
riant,

GENERAL RELATIVITY

The linear approximation, This case has no pe-
culiarities of principle as compared with the electro-
dynamics, though the "gauge-unnecessity" of the
proposed formalism makes the advantages of it to be
more vivid when applying it to the set of ten compo-
nents h;, . Letting g, =7, +h k. one has the Lagrangian
density

® - y_geg*@rt-rirt) (23)

in = km ik~ mn

(here 167k =c=1, x is the Newtonian constant) in this
approximation

1 km,n mn,k
g =—4—(2hkn'm h -h e B -
(24)
kn , m n,k m
—2h,n hm,k +hn hm,k ).

Now aS?/ahon;/o, put these quantities do not contain
any velocity, thus we would consider only haﬁ as
canonical variables; in so doing one has

- 0®/0h o= L(h ,-n gh b, g
mag = 0%/, g = 5oy =Ny, “Bog g Nepa T (25)
).

* naB hov,v

and the Routh function density is

. 1 _
R = ﬂthaB —£=W§B——2—n§a+2naﬁ hoa,B

1 1 : 1 3
_?ﬂaahoﬁ,ﬁ" _2_h oa,a Noo _‘g(hoo,B+haa,B)hoB +

1 3,2 2 _ 26
+—Z(_?hoa,a+2hoa,[3+2hoa,ﬁ hOB,a ( )

k nk n n m
—2hka,ﬁ hB,a + h,a Noka * 2h[3a,ahn,ﬁ L hpa ) -

Varying the Routh function R one can see that the
equation ha,8=8R/8n af coincides with (25); hence,
one has

ap

naB+ BR/Bhaﬂ =G,

oo oa
(3/5h00)det=G , (B/Bhoa)det=2G ,

(27)

where G?*? are components of the Einstein tensor
in this approximation

Gab =";—(—h ab,rr:_hr:],ab +hna,: +hnb,2 N
’ r b (28)
+T’ab pmm abhmn
n, m ,mn

Thus the system

(8/8h Rt = 0, (29)
‘.‘a/s: OR/b7 5 ;raﬁ=-8R/8h B (30)

represents the equations G, ,=0. It is worth recalling
that the eqgs. (29) (noncanonical ones) are not equa-
tions at all but only some “initial conditions since
Gen are integrals for the (canonical) motion equa-
tions (30).



Let us transform the density (24) into the fol-
lowing

§=£+i(h h -hm,ﬁhoﬁ)’0 + (31)

) oa,a = 00

1 - .
+ -2—(haaho _hoﬁh oo),ﬁ )
Now

a§/3h0n= 0, (32)

- . 1 .
naB= 08/0n aB” ?(haﬁ"naﬁ hw —hoa,ﬁ—hoﬁ,a +27’aﬁhov,v)’

(33)
and the Routh function density is
i:rjz ——;2 +2n~ h +—1-—(2h2 +
af o aa aB " oa,B 4 oa,f3
2 k (34)
+ 20 gh g =i, = 2hy ghlg o
m nk n m
+ 2hBa,ahm,ﬁ + h,a hnk,a"hn,ahm,a ),

(egs. (29), (30) remain unchanged, of course) and
(34) coincides with the canonical energy density
due to (32). Considering now the Fourier transforma-

tion in a cube V
e e

pon =__1__2 mneikx ;aﬁ=_1::§pc:ﬁe—1kx’ (35)
k

—— q—> ’
VvV ¥ K A (k)

(36)
1
+ —k?2 * ot )] o+
5 A(qlwq#v qwqw)
1 « * .
- - k. k 2i X k .
+ 2 §(qm/k)\ q)\v A 1/)qoo+ ll-{' apanoﬁ
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If all the variables are solutions of (29), (30) then
the energy is

44 4+ 4 4L 04
NO N 2
E=R7 ==3 (2 * - * o+ —k ), 37
. 53 (BPupPas = PuaPhpt KA G G (37)
where PaBr Qg8 Ore the transverse components of
P, and q,g -all other components disappear just

like in the case of electrodynamics (the same holds
for the field momentum P as well). Now one can pro-
ceed to quantization without any care of a gauge.

The general case. The Lagrange density (23)
does not contain squares of ;gon,hence only g af3
(the intrinsic components) are to be considered as
canonical variables in correspondence with the
above programme; however the density (23) is known
to result in cumbersome expressions in canonical
formalism., For this reason we would consider the
density proposed by Dirac /3/

L= —i—v’jgf(eaﬁew - ea“eBV) x

(38)
(500 00 oA :
x (8778, —48°78,, , —487 ) L )8g ¢
4 ik mn_g'mgkn) w\+2( im_nv__iv mn) k)\] !
g g g g B g 8 g gik,l/ gmn,/\
(here ea'B = gaB —goagOB /g %y, this one coincides

with (23) with accuracy to some divergence-type
terms. Now

a P S, a v a v
7 B_ 83/8gaﬁ =\tg(e “eﬁ Sy Be“ )F:V . (39)
The Routh function density is
R e (8,8, 38T
g% #

00)__

af3 - ov /
+ 27 “P (g oa,,H+ 25 Fv,aﬁ /g

11



ap Bv a8 w 00 _ OA
e e —eﬁe )[goa’B+g0'8’a)g +2g F)\,aﬁlx

B e
4 gOO
(40)

x[(gou.v+gov’# )g©° +2¢% - ]+

ik mn _im kn im nv i mn, kA

Av
+g"s " -g & g +28 8 -8 & g lg, g b
Then the equation g,g=8R/8n B oincides with (39)
and eliminating 2% da it from the Routh equations
one obtains that the system

(S/Sgon)det =0, (41)

éaﬁ=8R/8ﬂaﬁ, ;aﬁ=—aR/agaﬁ ’ (41’)

represents the (homogeneous) Einstein equations,

The author is deeply indebted to Professor
M.AMarkov for his constant guidance and illumi-
nating discussions on the essential problems of
the field theory.
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