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B pa!SoTe caenaaa nonhiTKa eeeCTH q,opMar.H:J" ¢YHKllHli Payca 

B TeOpHIO nonSI; TOnbKO "HeJSbipOlK.QeHHbie" KOMfiOHeHTbl paCCMaTp11B8JOTCSI 

KSK ICSHOBH'IeCJCHe nepeMeHHbie. PaccMOTpeHbi 3neKTPOilHHSMHKa H o6waSI 

TeOpHSI OTHOCHTenbHOCTH, <!lopManK3Mbl OK83biB8eTCSI .QOCTSTO'IHO npOCTbiM 

Jl He 38BilCSIIIIRM OT Kana6pOBJCK, 

Pa6oTa BbmonHella B natiopaTOpHH TeopeTH'IeCICOlt lj!H3HKH OI:HU1. 
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On Canonical Fonnulation of Field Theories with 
Singular Lagrangians 

.An attempt is made to introduce the Routh function formalism 
into the field theory: only "nondegenerated" field components are 
considered as canonical variables. Electrodynamics and general 
relativity are considered, The formalism appears to be quite 
simple and gauge-independent. 
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It is well known that the direct Hamiltonian for­
mulation of the field theories with singular Lagran­
gians is not easy. The Hessian deQ,eneracy in such 
cases is usually attributed to some restrictions im­
posed on some momenta. In other words it is sup­
posed that these momenta do exist but for some 
reasons, they are "degenerated". Nevertheless, dif­
refent ways of developing in this case of the 
Hamiltonian formalism are known. 

However, there is one more possibility, namely, 
not to consider the "des;enerated" coordinates as 
canonical ones, so that the conjugated momenta do 
not appear at all (e.g., a certain momentum is not 
equal to zero identically as is usually considered, 
but it does not exist). Certainly, the Hamiltonian 
formulation is now impossible. However, the so­
called Routh function is known in mechanicsl11. This 
function is defined to be a Hamilton function with 
respect to some coordinates and a Lagrange one 
with respect to the others, while the choice of cano­
nical and noncanonical coordinates is determined by 
the properties of the problem to be solved. It is na­
tural in the case of singular Lagrangian to consider 
only "nondegenerated" coordinates to be canonical. 
Thus the canonical character is not forced upon 
the coordinates that have not it explicitly. 

In mechanics the Routh function formalism is 
known well enough. In what follows at attempt is 
made to introduce this formalism in the field theory 
(by analogy with the Hamilton function formalism) 
applying it to some concrete fields. 
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ELECTRODYNAlVIICS 

Classical case. The Lagrangian density f of the 
electromagnetic field Ai (Fik = Ak,i -A i,k) with 
a source j k is 

Q 1 ik . k 
.t_ = - 4 Fik F + Ak J (1) 

(Latin indices run from 0 to 3, Greek ones run from 
1 to 3, C=l, metric tensor 7Jik = diag(-l,l,l,l,)).Euler-Lag­
range equations yield the Maxwell ones 

F sk- . k 
's -- J • (2) 

obeying the identity 

-jk =Fsk=O; (3) 
,k , sk 

one equation appears to be a consequence of the 
others and to describe the given field one comp~ 
nent A i (any) appears to be superfluous. 

In attempting of the canonical formulation one 
discovers immediately that A o,o (= A

0
) is not contained 

in the Lagrangian density at all. In spite of this 
fact many ways of developing of the Hamiltonian 
formalism existi21.However let us introduce instead 
of the Hamilton function the Routh one considering 
only Aa as canonical coordinates. In so doing only 
three coordinates will be determined canonically, 
but just this number of components is enough to 
describe the field. 

Conjugated to A momenta rra are 
a 

rr =af!aA =-Foa; (4) 
a a 

Using these one obtains the Routh function density 
(by analogy with mEChanics definition of Routh 
function): 

!R = _!_ TT 2 + TT A + _!_ F 2 + A 0 j 0 
- A j • ( 5) 

2 a a o,a 4 af3 a a 

Considering Routh function R = f!R ct3x,, one obtains 
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(o/oA )JRdt = -j 0
- rr = -j 0 

- F ao o a,a ,a 
(6) 

so that the equation (6) = 0 is the zeroth component 
of (2). On the other hand 

oR/o" = " + A • oR/oA = - j + F ~ ~; 
a a o,a a a afJ•fJ 

(7) 

the equation A = oR/orr a a 
nating via it the momenta 
one obtains 

coincides with (4); elimi-
rr from iT + oR/oA 

a a a 

• a ia ( ) " + oR/oA = - j - F . s 
a a ,1 

Thus the Maxwell equations (2) are represented by 
the system 

(o/oA )JR dt = 0, 
0 

(9) 

A = oR/orr , 
a a 

" = -oR/oA a a' 
(9') 

and ( 9') has the explicit canonical form. 
For the time derivative of any quantity f one has 

df/dt = ac;at + !R. fl, (1o) 

where ac;at is taken at constant A 
the Poisson brackets are a 

and 
TT ' a 

and 

ag ac . ag ac 3 
lg,fl =f(-- - -- -)d X (11) 

OTTa oAa oAa orr a 

it is easy to check that 

-+ 4 -+-+ 

lrr (x),A (x')l=o ~o(x-x'), 
a f3 afJ 

(12) 

lrr , rr ~ l = ! A ,A~~ = lA , rr l = I A , A l = 0 . 
a fJ afJ oa oa 

Let us condiser now the Fourier transformation of 
the field 
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A
n 1 ~ n ik~ , =-=...c.. q ... e 

...... 
a 1 ~ a -ikx 

rr=-=-..c..p-.e 

.n 
J 

yV k (k) 

1 ...... 
-=- 2 J~ e-ikx 

yV k (k) 

yV k (k) 

the Routh function in this representation is 

1 __, __, -+-+ _,_, 

R = - 2 (p ... p *... + [ k X q ... ] [k X q * ... ] 
2 k (k) (k) (k) (k) 

-+-+ __, -+ -+ -+ 

- 2 (ik p ... - J o ... ) q 0 
... - 2 q ... J ... . k (k) (k) (k) k (k) (k) 

(13) 

(14) 

here k x ~ is the vector product (indices ( k) will be 
often omitted below). Varying (14) one has 

...... 
oR/3q = ipk - J 0

, 
0 

-+-+ ..... -+-+ 

... ... ... 
3R/3 p = p * + i k q o • 

-8R/3q= J + kx(kxq*), 

so that the eq~ations 
-+ -+ -+ -+ 

3R/oq = o. q = oR/3p . p = -3R/3q 
0 

are the Fourier components of (9), (9'). 

(15) 

(16) 

Considering the (canonical) energy-momentum ten-
sor 

k sk k 
T =A F -3 f 

i S, i i 
(17) 

one obtains that the energy density T 0 coincides 
0 

with the Routh function density (as one should ex-
pect from the obvious analogy with mechanics). If 
now all variables are considered as solutions of ... ... 
the field equations, then decomposing p and q into 
longitudinal (i J) and transverse ( 1 ) components one 
has the energy 
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E = R(s) = _!_2 (p-!..p_t 
2 k 
1 +-2 

... 2... ... 
+ k q..l. ql) 

2 k 
_1_j J*- 2 qJ. 
k2 0 0 k 

+ (18) 

·) 

,\ 
J 

Thus the free field energy is defined by transverse 
components only, as one should expect. 

Quantum case. The quantization is obvious. Con­
sidering the canonical variables as operators one ob­
tains from (12) that the only nonvanishing commutator 
is 

-+ -+ __. -+ 

[A a (x) , rr J3 (x ')] = i h 8 aJ33 (x - x 1) (19) 

(there is no reason to quantize A
0

, hence). Interpre­
ting now R as an operator one obtaines that the 
definition (in accordance with (10)) 

. i 
tr "'--[R,rr }, 

a h a 

. i 
A "' -[R,A 

a h a 
(20) 

leads to equations which coincide formally with ( 9'); 
at the same time eq. ( 9) formally remains unchanged. 
For Fourier components one has 

[q .... p ... J = ih3 , o ...... , 
a (k) {:3 (n) af3 k n 

(21) 

and the definition 

... i ... 
P"'h[R,p], 

~ i -+ 

q"' h[R, qJ (22) 

yields the Fourier components of ( 9'). Introducing 
the creation and annihilation operators one can 
easily be convinced that the free field energy and 
!llomentum ... are provided only by ~..I. and i:t while 
a II and a jJ appear only due to the interaction with 
the source (and scalar photons are absent from the 
very beginning). Thus the canonical quantization of 
the electrodynamics appears formally to be rather 
easy (almost like that of the scalar field) and it 
should be emphasized that the traditional results 
are obtained without any gauge condition: no rest­
rictions were imposeq on A k and" rr a (but the only 
convention that A

0 
is not a canonical variable). Now 

one can introduce a gauge that is suitable for a cone-
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rete problem to be solved, since the general for­
malism of quantization appears to be gauge-inva-

riant. 

GENERAL RELATIVITY 

The linear approximation. This case has no pe­
culiarities of principle as compared with the electro­
dynamics, though the "gauge-unnecessity" of the 
proposed formalism makes the advantages of it to be 
more vivid when applying it to the set of ten compo­
nents hik . Letting g ik = TJ ik + h ik , one has the Lagrangian 
density 

f V ~ ik (1 m1 n _ 1 m1, n ) 
g g in km ik mn 

(23) 

(here 16rrK = C= 1 , K is the Newtonian constant) in this 

approximation 

km,n mn,k 1 -h h f = -(2h h mn,k 
(24) 4 kn,m 

n,k h m ) 2h kn h m + h k . 
- ,n m,k n m, 

Now af ;a h =I 0, but these quantities do not contain 
. on . 

any veloctty, trus we would constder only ha() as 
canonical variables; in so doing one has 

. 1 . . 
" P. = af;ah r..1. = -(h ,~ -TJ f-l. h -h P.- h f-l. + at-> at-> 2 ap at-> vv oa,t-> OJJ,a (25) 

+TJ P.h ), 
at-> ov,v 

and the Routh function density is 
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~ 
I 
I 

1 
~ = 11 P. h P. - f = rr 2 - - 11 2 + 2rr h -at-> ap a{3 2 aa a{3 oa,{3 

1 1 . 1 . 
- 2"aah of3,{Y 2h oa,a h oo - 2(h oo,/3 + haa, {3) h o/3 + 

1 ( 3 2 2 +- --h +2h (-l.+2h P.h P. -4 2 oa,a oa,p oa,p op,a 
(26) 

- 2h h k + hnk h + 2h P. h n ka, {3 f3,a ,a nk,a t->a,d"n, {3 
n m 

- hn,a hm,a ) · 

Varying the Routh function R one can see that the 
equation ha{3 = 8R/8rr a() coincides with (25); hence, 
one has 

77 a{3 + 8R/8h a{3 = Ga/3 (27) 

(8/8h )JRdt =a oo • 
00 

oa 
(8/8h )JRdt=2G , 

oa 

where Gab are components of the Einstein tensor 

in this approximation 

=- -h - h + h 
nb,a 

+h + G
ab 1 ( ab,n n,ab na,b 

2 ,n n ,n ,n (28) 

n,m 
ab h mn 

- TJ , mn 
+ TJ ab hn,m ) . 

Thus the system 

(8/8 h )jR dt = 0' 
• on 

(29) 

ha/3 = oR/orr af3, rr a{3=-8R/oh af3 (30) 

represents the equations Gab=O. It is worth recalling 
that the eqs. (29) (noncanonical ones) are not equa­
tions at all but only some '·initial conditions since 
aon are integrals for the (canonical) motion equa-

tions (30). 
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Let us transform the density (24) into the fol­
lowing 

(<) (<) 1 (h h - h h {3 ) .,L=ot_+2 oa,a oo aa,f3 ° •0 + (31) 

1 . 
+ - (h h {3- h {3 h ) {3 2 aa o a · oo , 

Now 

af; ah = o. (32) 
on 

. 1 . . 
; 

13
= af;ah 

13
= -(h 

13
-TJ f3 h -h 13-h f3 +2TJ rh ), a a 2 a a vv oa, o ,a ap ov,v 

(33) 

and the Routh function density is 

- 1- - 1 
g{ = rr 2{3 - -77 

2 + 2rr {3 h {3 + -(2h 
2 

{3 + a 2 aa a oa, 4 oa, 

+ 2h h - 4h 2 - 2h h k + oa,f3 of3,a oa,a ka,f3 f3,a 
P4) 

+ 2h h m + h nk h - h n h m ) 
f3a,a m,{3 , a nk,a n,a m, a ' 

(eqs. (29), (30) remain unchanged, of course) and 
(34) coincides with the canonical energy density 
due to (32). Considering now the Fourier transforma­
tion in a cube V 

...... 

h
mn 1 ~ mn i k x 

= ---==:.~ q ... e 
...;v k <k> 

- a{3 1 ~ a{3 -i k ~ 
rr =-===~p_,e ' ...;v k (k) 

(35) 

one has 

R =_!_I, [2p {3p*f3- p pf3*{3+ k k (q q~, -q, q~ ) + 2 -> a a aa fJ. v fJ.V IV\ 1\f:l 1\V 
k (36) 

+ !:... k 2 ( q q * - q q* )1 + 
2 A fJ.V fJ.V f:lf:l vv 

+ .!.. I, (q * k - q ~ k \ k )q + 2i I, k p {3Q {3. 
2 -> vv A 1\V 1\ v oo k a a o 

k ; 

10 

If all the variables are solutions of (29), (30) then 
the energy is 

..l.l .l.l .L.L 
-(s) 1 1 2 ( ) 

E=R =-I-(2Pf3P*r~-p p/3*{3+-k,q q* ), 37 2 -> a at-' aa 2 1\ fJ.V fJ.V 
..l k.J._ 

where p af3 , qaf? are the transverse components of 
p a{3 and qaf3 -all other components disappear just 
like in the case of electrodynamics (the same holds 
for the field momentum P as well). Now one can pro­
ceed to quantization without any care of a gauge. 

The general case. The Lagrange density (23) 
does not contain squares of gon' hence only g af3 
(the intrinsic components) are to be considered as 
canonical variables in correspondence with the 
above programme; however the density (23) is knovvn 
to result in cumbersome expressions in canonical 
formalism. For this reason we would consider the 
density proposed by Dirac /3/ 

; 1 ,- a{:3 fJ.V UfJ. {:3v 
.t.=-v-gl(e e -e e )x 

4 (38) 

X (g 00 g - 4g 00 g - 4g oAr ) g + 
fJ.V · Of:l, v A,llV a{3 

[( ik mn jm kn) vA 2( im nv iv mn) kA] l + g g -t; g g + g g - g g g g 'k v g \ 
1 , mn,l\ 

a{:3 a{3 oa o{3 oo 
(here e = g - g g I g ) ; this one coincides 
with (2:)) with accuracy to some divergence-type 
terms. No\v 

7Taf3 = (lfj{J~ {3 =y'cg(eUfJ. ef3v- eaf:3efJ.V )ro 
a fJ.V (39) 

The Routh function density is 

g{ =-
1 1 ( g g {3 - - g g ) af3 fJ.V 

a11 v 2 a{3 f:ll' 
77 77 

+ 00 
g \-g 

af3 '· OV ! 00 + 277 (g 
1
.) + 2g r , {3 1 g ) -

oa, ' . v,a 
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1 - 1 ap. {3ll af3 IJ.ll oo oA 
--y'-g!-(e e -e e )[g {3+g {3 )g +2g r, rJx 4 goo oa, o , a 1\,a!J 

(40) 

[(g + g ) g 00 + 2g oar ] + 
X ~ll ~/l ~~ 

[( ik mn im kn) All 2( im nll ill mn) kA] I 
+ g g - g g g + g g - g g g g ik,v g mn,A ' 

Then the equation ga.fJ""oR/877 a{3 coincides with (39) 
and eliminating 77 af3 vta it from the Routh equations 
one obtains that the system 

(o/og ) JR dt = o. 
on 

• afJ • a{3 
g afJ = 8R/ 8 7T , 7T = -8R/8 g a{3 , 

(41) 

(41') 

represents the (homogeneous) Einstein equations. 

The author is deeply indebted to Professor 
M.A.Markov for his constant guidance and illumi­
nating discussions on the essential problems of 
the field theory. 
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