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Inclusive Electroproduction in Quantum Field Theory

it is shown that starting from the quark-pseudoscalar
gluon interacting Lagrangian the diagrammatic approach leads
to parton picture for the process e +p -e +h + X. The scaling
behaviour of certain structure functions is investigated in
different kinematic regions.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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I. Photon induced inclusive reactions are usefull tools
for probing the hadron structure. Theoretical attempt to
explain the experimental results of deep inelastic elect-
ron-nucleon scattering led to the parton picture of hadrons.
Different versions of the parton model were used to
describe leptoproduction of hadrons on nucleon. The ope-
rator product expansion (OPE) on the other hand proved to
be a nice method to investigate the deep inelastic scat-
tering. It has, however, little use for thcse processes
which are not light cone dominated. The diagrammatic
approach which is based on the investigation of the
asymptotics of Feynman diagrams proved to be equiva-
lent with the OPE, where the latter can be used, but
gives wider applicability /1/.

In this paper we apply the diagrammatic approach
to inclusive electroproduction e+p- e i h + anything.
We show that starting from a quark-pseudoscalar gluon
interacting Lagrangian the diagrammatic approach leads
to parton picture. (We believe that our predictions remain
valid for the standard quark-vector gluon model of had-
rons, too). The scaling behaviour of certain structure
functions was investigated earlier by OPE in the target
fragmentation region/2/, and by parton model calcula-
tions/3-4, We deduce an expression which is a substi-
tute -of the OPE in the current fragmentation region and
gives the same scaling results as the parton models.

The essential kinematics is presented in Sect. II. In -
Sect. III the, asymbtotxcs of the one-particle distribution
function is investigated in “different kinematic regions.
This is a slight extension of the results of/ 'S, . Assuming
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finite charge renormalization for the quark- gluon theory,
the current fragmentation region is discussed in detail
in Sect. IV. We do not construct bound states from quarks.
We consider the physical hadrons as collinear beams of
their constituents. We hope this simplification does not
influence the asymptotic predictions.

II. The scattering process is shown in Fig. 1. The fol-
lowing notation is used:
poBL, RO BT, %0 g2 g2,
m m, q2
In the laboratory irame

k = E(1,siny, 0, cosyr),
k"= E’(1, sin{y +6),0, cos{y +6)).
q=(a,0.04q,,
p’=(p,ppCosehpsing,p, ),
m and m; are the masses of the pfotcn and the detected

hadron, respectively. The lepton mass is neglected. In
the lab. frame the differential cross section is
, d 2
P’ 20 - 4ma P
Q*addy q'E?

k k
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where ¢ = is the lepton tensor,

W = Xupll (0O)p'n>
n I

< <pl3, ©@lp>(2n  3(p+a-p"-p )

is the hadron tensor. Summation over the polarization
of the scattered electron and that of the detected hadron
and average over the polarization of the incoming elect-
ron and proton is understood. Expanding in terms of in-
variant amplitudes, we have

q.q
Hv 1 pq Pe, W
W, =g, +—W, +—(p, =29 )Np - ——q )W, +
nv ny 1 (3 v 2
q2 m2 q2 [ q2
1, pq . Pa
+——2(D“" “—iq#)(PV—"EQU)W g ¥
m, q q

1
mm 4

+

pq ._ Py ,
[(D'u - q—2-q#)(pu ~ —&E—ql,) T U e 1 ] w4.

Integrating over the azimuthal angle ¢, one can define
the integrated structure functions by

3
-— d ’ pp) p’q
w = W 5 - — 8 /o — =
714 fp; pur ( m)(ll ml)
1 pq pPq ~

q,q9, ~
= (— s
_(gl“’+ 2)Wl+

. mz(p“~ -;—q Xp q )W

L v v '
27 4 q2 2

where @ P = \;li(qz,u,ul,x),

do 4na ® v~

dCzdudeul Qe

.2 0
(cos —2-w2+2sm -E—W‘).



We define the cross section for the initial proton to
absorb a virtual photon (transverse or longitudinal) and
produce the detected hadron plus missing mass by

, Q& T.L

P 3 . 2

d°p mr+q°/2

4na®m e ToL C’I‘,L*
i v pe’

Tt 1 . L 1 :
where « =-—==(0.1. +1,0), ¢"“ = —=(q_.0,0,q ) in the lab,
it \/2 it \/Q2 3 o
frame. Then we have for the cross sections averaged
over the azimuthal angle:

., WT  4na®m w2+ @° \;}.

o B 2 1’
ppdp dp,  mr +q /2 my

, @ L 4me®m Vi@~ o

1 ~
= 5 bW _(—+ —)-W 1.
°p dp.dp,  m+q /2 m, 2om v 1

The deep inelastic region is defined by Q2 5 «, v 5 «
with « finite. The definitions of the target and current
fragmentation region are the following: pp° finite ,
gp -+ with qp’/aqp finite: target fragmentation. pp’- ~,
@’ -~~~ with gp’/7qp and pp”/up finite: current
fragmentation.

III. We investigate now the asymptotic behaviour of
the one-particle distribution function f},* Lpx Wwith
the help of the diagrammatic approach. According to the

generalized optical theorem fy*p-»hx P dise 2 T,
where ¢, is the total photoabsorption cross section,
T is the y*ph - y*ph forward scattering ampli-

tude , s=(p+q% , M? =(p+q-p)% We consider a quark-
pseudoscalar gluon theory with L= giyg ¢ + hp?.
The method is based on the investigation of the asympto-
tic behaviour of Feynman diagrams. The results can be
formulated by three “rules of game”: 1) The behaviour
of diagrams of high energy processes in the region where
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some of the variables are large is connected with the
scale regime of such subgraphs which being contracted
into a point make the initial diagram weakly connected
and independent of the large variables. 2) The scale
regime for such subgraphs generates simple pole in
the sum of the Mellin parameters corresponding to those
variables the dependence on which disappears as a re-
sult of the contraction at the point equal to the scale
dimensicn of the subgraph. 3) The coefficient of the pole
is a product of the contribution from the contracted part,
which depends on the bare coupling constants By h o and
those from the weakly connected part of the diagram re-
sulting from the contraction and depending on the renor-
malized coupling constants. This factorization property
can be influenced by the choice of the large variables.
We assume a finite charge renormalization: g2(s) ~g2 +
£ (B2 -gH(s/m?y* with g2« 1. o

1) Let us consider first the target fragmentation re-
gion ( Fig. 2). Asymptotic variables we choose, 2nq ,
-2°q, q2. u=(p-p? is small. For the forward scatter-
ing amplitude we can write the Mellin transform with
respect to the large variables:

i Hg+i

T= 1

fd: i d;(z"%‘ 2 gy (@ N
ap

(2771) —~ico
x F(j.ig .0).

q des vﬂ.

; """"'""I | |

OO=

Fig. 2



The contraction Vv, kills the pg- and p’q- dePen_dence
and generates the factor [w™!(j;+j,) - B, (0] ! in the
function F(j,-ig-qu“)~ The functions w ‘and B can be

calculated by perturbation theory. If the leading singu-
larity is the pole at j, +j, =a(0) (Pomeranchuk-pole),
then one gets o ) Regge behaviour for « >>1. The
contraction V ,, kills the dependence of all large va-
riables and in the weak bear coupling constant (WBCC)
approximation generates the factor (j -w(j +] ))-
in F, where the dimension of the con'riractec:i1 subgraph

Ny ~ O(g%),w..O(g%)_ SO0 we get (qﬁa)o(g 0) asympto-
tics. In this way we get that in the ordinary Regge limit

with a(0) =1 fy*p o hX ™ FK(xF,u), where x

F I8
the Feynman variable. The triple Regge region can be
examined exactly in the same way as in ”ordinary” inclu-
sive processes.

2) In the central region (Fig. 3) the convenient choice
of asymptotic variables is 2pq, -2p°q, -2pp°, q2. For the

forward scattering amplitude we have the following repre-
sentation:

i 4 j
T 1 f"d(pqmo1(2pQ1
(2mi)* = i=1 ' pppg q2
S Jtighi
17Jg 2 1171
x(- ZRYLS (g FG ),
mO

m,is a scale parameter. The contraction V,, kills the
pa~- and p’qg- dependence and generates the factor [w—j(jq-j 2)
3

-Bw (M~! in F, With the Yomeranchuk-pole one gets
(-2pg/q?)#(®) Regge behaviour. The contraction Vg kills

the pg- and pp’ -dependence and generates the factor
(w1 1+ g-Bp @1 ! in F. With the Pomeranchuk pole one



gets (—2pp ‘/m2)a(©) Regge behaviour. The contraction
V24 kills the pq-,p’s and q2 -dependence and in the
WBCC approximation generates the factor [j1+j2+ j4

0(g?)
=, ~w(i, +j2)]'1in F, so we get (q%) asymptotics.
In 4this way we get that in the conventional Regge limit
1 ut 85, 0y S
f . - — dj (— ; . , .
Yo ok T3 s-sof'll( " Y x(,.i,.i,). We have

2 4
SN . §% -~
assumed that t/q¥ is large. In thiscase _‘_’St_ S5 o8 e

<2 Pr
R(g—

- —q—(j—_-q—z—)pT -.pET. and the large p?r—behaviour can
sv/8

be examined in the same way as in pure hadronic proces-
ses.

Vagu
===

3) We consider now the current fragmentation region
(Fig. 4). The set of asymptotic variables is 2pq , -2pp°,
-2p’q, g%, We write the forward scattering amplitude in
the following form (a detailed analysis will be given in
the next section):

i 4 AP J
1 1 72 c '8
aj (228 (- 2By

T=—— P9,
(2ri)* -1 =1 q?

x

rq i g tig+d
><(———“7’t’12q)3<q2)1 G,



The contraction V, kills the pg- and pp *-dependence and
produces the factor (W—l(_]l+] )~ p ~ (] !in F. If w>>1 one
gets w49 Regge behavmur with the Pomeranchuk pole
iy +ig =a(0). The contraction Vs34 Kills the dependence
of all large variables, and in the WBCC approxlmatlon
generates the factor \J +ig+ig+i,mm k(i i+ )_1])

in F, where the dimension of the contracted sungraph

g —-1+0(s?) , kla)=wla}+1, 50 We get (;2y"1+0(83) asymp-
totics.

P Vg 3 Ve P
\ %
A4l A4 P

' 4

Fig. 4

In this way we get that in the ordinary Regge limit

1 2= t
i =1 f - (—) K —).
with «(0) W+ hK (q2) G " )

In the triple Regge region, where sMZ2? and HSE
are al]l large, one can get a more detailed representa-
tion’%. The q2-behaviour will be much more compli-
cated because the dimension of the contracted subgraph

strongly depends on the quark content of the detected
hadron.

IV. In this section we discuss the current fragmenta-
tion region in detail. The forward scattering amplitude
in a-representation has the following form:
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Ilde,, 4 l‘iAi(a)
T= X H(g)f—‘?————G(a r)expl[E
diagr. o D*{a) i=1  D(a)

where the functions Dl , Ga.r;),, A« are deter-
mined by the topology of the diagram, H(g) is the product
of the coupling constants, r, =2 , v, =—2'p, rg=-~2p’q,
ry=09% ., the masses bemg neglected. We take the Mel-
lin transform with respect to the large variables:

1,

iec j‘ ’” J
T2 f.”d_] (apq) 2y
(2m1) 4—joo 1=1 o pa

2p’q )’3 g djtig*ig+ iy

x (= (@) FG,),
q2
where
no”d(l
FGj,) = 2 H(g) [Z Zgn,,a) x
diagr. o D®(a) 14
4 A ()TN JTlg
x 11 (1= ) Pln, - ) 225,
=1 Da) 2

We have seen before that asymptotics in q® is deter-
mined by the leading singularity in the sum ._1 . and in
the WBCC approximation it is the pole at

7)6 +
+ k(G + P k(i +ig)- 1\-:—1+0(p,f’) Then we get
v ( 1 Eji+1 ~ 2
lead = ‘#?) 3- Fpl +ig k) x
T . 2. "h,. . 2
*Top (i B B (ip+ iy, 0*)
1 Eji+l -~ .

where (_é.) Tab is the result of integration over

o

small  a-parameters ($a,<1/p2, o & Vyu,,). that means

1



the scale regime. The indices a.b stand for different
intermediate states. To get this t‘ormula we have made
the following procedure. Taking « - A« | Xar -1 for
the parameters of lines belonging to the subgraph V;,4,,
we have integrated for Ay from 0 to 1/.%.The func-
tions A; («) ,Dl«) can be written in the smallest ‘order
of A, in the following form:

(u) = A (L)A (V\A (R), Do) = DIL)D(V)D(R),
where L- left R= rlght to the contracted subgraph V.
This factorization property (rule 3) makes possible to
get equation (1), which is the substitute of the operator
product expansion in the current fragmentation region.
We can now define the parton distribution and fragmenta-
tion functions/1.6/:

1 - i)
fa(x, 2) = — f *ig) o
p(¥.p ot _wfﬂ (J .p %yx d(j, +5,).
h 2 1 2. (L+i)
g (y,n°) = a™dg)
AT 2771_1£g (o +ig e)y d(jy+ig) -

The inverse Mellin tran=formation gives the formulas:

P+

~ 1 1

a .. 2 dx 1 ‘2
fp(-]1+.]2'l“" )— f -........x t;(xvllg)7
~h, o2 1ody “Ugtig g

By Up* iy b ) = Y g(y#)

Putting these expressions into (1), we get the following
result for the forward scattering amplitude:

11
axd a 2 h 2
fJ 29 s fpx gy ) x
%y a.b

j ’ J 4 .l

2 2 31
f dj, di, dig (x— 2y 2 By A —T
~ioo q2 y-Pq y-a® q

X

ab
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L3 dxdy
= 3 { (x e ()T
ufof ab XY * g Y e e ay*e

.p’

(p->%p,p v ),

This result is just the parton picture of the process
in the current fragmentation region. The proton emits
a parton of the type a with momentum xp. Absorbing
the virtual photon it converts into parton of the type b,
among the fragments of which is the hadron h, Taking
the imaginary part, we get the following hard-scattering
like formula:

T,L 11 d
D’ dao _ 1 [ % dxdy r:(x

2, h 2
BB (Yo x
4] dsp' flux oo a,b

7 Im T (xp,-l-)—- .
ay*TLpaay*TLy ¥

The amplitude T,,x, , 5, describes the small
distance subprocess. It can be calculated by renormali-
zation group improved perturbation theory using the
fact, that the cross section is independent both of the
splitting parameter x and of the renormalization point
of an R -operation 77/, In smallest order it is deter-

mined by the diagrams in Fig. 5. In the elementary sub-
process the parton can get large transverse momentum.
Using the parametrization p’=a(fp +q) + Py where p;
is spacelike and orthogonal to p and ¢, and taking
12=Q2 we get the following expression for the integra-
ted structure functions:

11
VW . ff dxdy

[28Ga+y* B a+ gluomip(x ) (8, (7.6% +g (.M

- 8l 2 h 2 h 2
++ Z8(guon Y% be D), (1.0 XE, (1.8 )+ £ (9,0).
and similarly for »®W, with »* Ty« Tl where

2 P
ECly 5B _ @ —te ~ (Ran? 2T,
q? y y q®y?

S~
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_,,j_'_,_ -;i---»- - -j—r-
P+ + + crossed

*—;—54 T-«s- -<--L§-<~
q'uark gluon _———— 9hoton ——

Fig. 5

Now it is easy to see that in the current fragmenta-

tion region +*W, and 3%, scale and are functions of

2
a, B and p?/q2 If p2/q? is small,then « x ,-—1——— El

T ) T o-Dxp G

i_1 Pr
o o)xi q
the argument of the 5 -function gives an additional power
of » and with the proper scaling variables «xg, S
vW, and v2W, scales/3®. 8o, we can predict that
there is a definite change in scaling somewhere between
p%~0 and p% ~ Q%

In the target fragmentation region we cannot get
such a simple parton picture. Here L’Wl and *%, scale
and are functions of «, p‘q/pq and pp° only. One
can see that the reason of the difference of the scaling
behaviours is the fact that the dimension of the contrac-
ted subgraph is -1 in the current and 0 in the target
fragmentation region.

b
B=

+...In the case of y - «, p%-0. however,

I am indebted to A.V.Efremov for many helpful dis-
cussions and continuous help.
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