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For interactions of any guantized Charged field with arbitrary
external classical fields the S-matrix unitarity condition is analysed,
using the S-matrix in N-ordered form. Particle number distributions,
produced, are characterized, In these terms the problem on connec—
tion between spin and statistics is discussed,
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I. IFTRODUCTION

Theory of interactions of quantized fields with external
claegical fields is one of important models both from experimen-
tal and theoretical point of view /17237

In Sec. 2 we analyse the unitarity of S-matrix, describing
an interaction of any charged quantized field with arbitrary
external clasasical fields. The unitarity condition is expressed
in terms of its four sectors: one-particle, one-antiparticle,
vacuum-pair and pair-vacuum {like the S-matrix itself). The
latter are identitiea for the one-particle propagators. They
follow, in fact, from more simple Schwinger relations s which
in turn are direct consequences of the equation of motion (e.g.,
Dirac equation ).

In Sec. 3 a generating function is defined for probabilities
of transitions into states with given numbers of particles and
antiparticles.

In Sec. 4 the problem of commection between spin and statis-
tiecs, as 1s stated by li'eynnan‘(‘| ’2/, is discussed, uaing the above
identities. Important argumenis for this conmnection were given
by Feynman {in the framework of quantum electrodynmamics with
arbitrary external electromagnetic field) long ago. Recently
the problem of conmection betwsen spin and atatistica in the same
theory has been itreated, using the unitarity condition, by
Wikishov et al1./19-12:18/ 1t they used terms aifferent from
the Peynman ones.



2. URITARITY CONDITION

We are interested in what wey guantities C, G (or Sﬁ )
(for the definition see ref, /24/ } are combined to give the lden-
tity for 575, To thim end we decompose the product :e :: H
into N—products. A straightforward combinatorial analisys (see
Appendix I,B ‘) leads us to

+ T + L+
ool L LR ST

e(‘.*’-t-(: AL +C 4 (O + FEO+CE e
T «n)
To avoid entangling of the lines of pairing we alternate ¢ and
c*, although all ¢*ta stand, in fact, to the left of all C's ,
and this defines correct Dyson pairings.

Formula (1) is general in the sanse that it holds for the
product of any two N-ordered exponentials with independant C and
¢* bilinear in charged field (i,e., ¢ = FAY , = G;Ew .
where A and B are any c-number integral kernels). In our case
and ¢ are not independent, For C C :+ we expect to
obtain a constant multiple of the identity. Therefore ¢ and C*

are connected by the relation

— e T r=armc= e
C 0 +EC + 08 + (T + CCT + T +(CLr 420
(2)
In order to inspect all infinite series in a closed form we
coneider the came of the spinor field (for &-fiald analogously).
Then coherent state sxpectation values of :g IWI?, . etWIW.
may be represented 5 as
' i§T¢ 3914
{wlie LotV D> =
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—
We add the Roman numerzl I for references to Sections, Appen-
dices and formula of ref. /24{ ©.&.y Sec, I.3, eq. {I.7.b).



where F 1s Schwinger's notation for the product of exponen-—
tials of the preceding expression. To find LO{PI0D> we const-
ruct functional derivative equations for it (like Schwinger did}.
However, in differentiating, we take into account that ¢ (x)

and P) in |¢> satiefy free equations (see /277, p. 18 for
definition |y>), unlike Schwinger, who has implied () and
§() to be arbitrary spinors. Therefore we differentiate with
respect to spinors M() end YI(X) , which are in fact

arbitrary (see /25/ s D+ 18). Then we obtain the equations

% COIF 0> =-iST<H @O+ FI0> + 1T QP (§9aq)id=

- A A 4)
= 1 SE-D YT 10> - i STAFOTIOD +1STOIF ¢ 4>

A —
-g% QIF 10> = iEHDTIBIS —iOIFEOeDD1S=
. (5)
=-1 <OIPIDD> § (1—'i)$+i<ol¢:’rlo>i$4<ouﬂ3“”\0>1$
with sdditional "factors® S=§ §,¥% . If one takes into
account the Schwingers relationa (ref. 5 /, eq. (107)), connect-
ing T and I, then the right-hand sides of 07. (4) ena (5)
venish. This immediately leads to §&=1 5/, However, we
wigh,unlike Schwinger,to obtainm {O{P{0>without uaing the con-
nection of I and I. Tc this end we express,quantities
OIBOF >, <OIF YWD , OO TPID ama
KQIF WS having entered into egs. (4) and (5) , in terms
of <OIFlO> . S0, for (olthv""\:'l0>,comuting § ana V-,
and then ¥ and @@ , we obtain

| <OISOTI0S = 19T OIF (P4 0> =
O ARSI DY O P - S IETAROTID . (e

Hence,
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OOy =- <RI (- 1ENTEV A 18187y )



<OIF§DIO>=-L QIFI0> A~ iTENT L (4 1LOTLOY

(10)

and eqs. (4) and (5) take the form
é‘% QP> = 16 K¢ <0iFio> ()
T OIPI0D> =1 KS<OF > - (12)

B
There are many poseible equivalent representations for integral
kernel K (all without usisg the connection beiween I and T ):

K=1-I-if 4+$‘-’; S TR + iIm@ﬁ 97 (141 £97)=

(13.a)
=T pi(-FENYw___ = L e | S
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1 T ST (+i991) IwUn% I)" (13.¢)
R e e e
== 1+ 1D 1O 1+ T (13.4)
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I-T 1801 +(t-4 ) 4+i$‘"’1$‘*’1( )(13..,)

_ s AN 1) =
=7 - (-1 b} m-éw(ﬁ‘“g I)—' (13.1)

=T+ (4-1I 4 14197 . '
T+ (-1 )W}( ) (13.8)

Integrating eqa. (1t} and (12) , we obtain

OIFI0S = ¢ ot YRY (14

where the integration conetant is defined by e =<OIBI> .

and hence is the vacuum expectation value =0
Aw A A .
-1 WwWIvw .
¢ —_~(ol:a“”w'._:e.* :l(y):QD_ {(15)



According to the theo T coherent gtate expectation values
of an operator <yi > = ONT -,‘ID determine uniquely the-
N—ordered form of the operator ( itself, we obtain finally

AWIW Y IW iy Ky 6
¥ T -
1 D, . {16)
which 1s in fact the same as (1).

Agatn eq. (16) 1is gemeral, i.e.,it is velid for arbitrery
T ana T. If we take into account the Schwinger Telation between
Iand I _
1-1 = 1T (- =11 (@GN -EN] (17)
then we can obtain
E=0 (18)
whet guarantees uniterity of the S-matrix.

Matrix elements of : ec‘ C 1 between states with defi- -
nite number of guanta reduce +to
C
(b 3y 31"2 ‘1_. g o=
s e T w K\VHJ - _
=< <s1u-‘kst ‘a\ N’ 11. A 1-“1““ 1..|>

N A e e T Taas N
=& %k_e,__m+nm‘<j1--~ Ko S-L\'-(UY K‘i’+ﬁ)'.\l4...tm1.,‘...1.”>_—_
—oP .- =
=e"8, sum )l<3‘ Aol (w\(ww) l - tade iy €19)

and further to determinant (for the Fermi-Dirac statistics)
or permsnent (for the Bose—Einsiein atatistice) of "one-particle™
matrixz elements of upKw +N

2 After taking into accomnt the commection between I and
T, K vaniches, and, €.g., in eq. {20.b) the factors cancel
due to the relationW&IE '“(1+1$0ﬂ@—1§"1)(1n other ceses
analogously). The N' gives no contribution to eqs. (22) and (23).



0102 7Y HOQI0 = 01 §90: 1K+ N FOPIOS= (20,0)

=4O K E L (4- i$e’1i’) mgil_gmf(m@ D= 20.5)
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= W _"l TEY_
3 )1+,2S(_)3 )}s (21-0)
=00 ): GG + B B + CE G G et e 1 PRI =4%-g) (21.a)
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160 O, Jod OO
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a3 AT dC 1 = a®)_ |
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= OIPOOTl): 6+ CTE6T + CEE G+ - 10D =0 (23.4)
Hence

<-11 .'lk_'j—i-i—f_1s+$ li‘t'" L {1 .{h>:

=%, % g&s e d% B dt e 3 e dP% B B T =
ki %gn S %5 e X K‘nd %, d xlszx i, Axlaujj‘\'" qu,;
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what means the S-matrix unitarity {here notations are the same
as in eqs. (I,15), (I.21) end {I.22)}). Any non-diagonal in the
particle (antiparticle) number matrix slement of S'S  vanienes
due to the factors (22)° or (23) .

Because the amplitudes, and hence, probabilities are expres-
sed in terme of G and G', but not of C and C* {or Tand 1 I,
eqs. (20)-(23)} are represented in these terms, too. To this

end the quantities ' and 3 were introduced like I amd I
(C=ig1¢ , Cr=-i91d ),
AxA
G=C+N=1§ 18 , G =CtiN=-1¥IV¥ - (25)

The 3 and 3 have properties _
SN = SIS | 89380 a1 4)
EOIEN 4y A& s 3 _¢o1do
g5 2D | 8IS (D
& jgm =474 , smjéf*) =43 (26)

The results of iransition to '3- and J are given by eas. {20.¢)
{(21.¢) , (22,¢) end (23.c) . Hence expressions in terms of &
and ¢ are clear. Another way of this transformation is the use
of the WK@ in tems of C and C' (gee og. (1), i.e.iy KQ-—
-c*+c+c+c,+ccf+ ss. ) and the fact that all C and ¢*, not
being exireme,can be directly substitutad by ¢ and ¢**) (W gives
no contribution, since thens C and c* create and annihilate
pairs, respectively). The iransformation of the extreme C and ct
into G and G' is illustrated in Appendix . '

]'.l‘his can be done everywhere in the closed loops, considered
in See, I.3.



3. DISTRIBUTION GENERATED BY EXTERNAL FPIELDS

Let us decompose ‘,gc :, e(‘. t . into N-producte once again,

directly in terms of G snd G
+ c e ed 11
- ol gl

e e =L STl Iy Xt QTR RLCH &p 5 ¥
. \’ﬁ:OP §, ?e; " @ne) )
-3 ‘
+ ot "+_ { . . .G :
parp RSty f,}-- %gt\oxm[u;q i,
? ; ‘,: . _ . . €27.b}
o -_-(!, S
_'Z Z: |0>(0| Z Z ;H i@ -.'.jP_ 1=(27,0)
- L _
PR G -,-wo 4 pain & .‘
3 n@Hen, e
pag=0 o - R

In eqe. (27.c) and (27.d) the sm ovar'} {-Pf' ---}q is repre-'
eented by a sum of all possible terms with p pairings. &) - and
q ©pairings ) simulteanecusly. Enum.eration of ‘the mmber of
pairings of a given type for G and Gt is the same as for C and
c*, i.e., ig given by the coefficient (I,B,8) of Appendix. I,B.The
* in (27.4) means that only creation cperators have ‘survived
as the free ends of ¢* , and only a.xmihilation ones have survi-
ved ma the free ends of G (due to contact with the vacuum)
Expresalon (27.,0) is N-ordersd, and therefore is agquivalent
to (1) or (16) , the necessary factor e N ‘being arised.
Note that in operator terms eqs. (20.d), (21,d2), (22.4)
and (23,d) are Tepresented as follows '

e, "“1‘-"‘ ' . : :
A(Fo + CEEGr ), =N = NN © - (2B)
(GG++GG+GG*+ I=Na=NN . @9 |
((,+GGG + )* 0 : o {30) -~
(c;*+¢_’cfc:'+~)*=o, ' e
where N. and Nﬂ_ are parti¢le and antiparticle punber opera-~ )
tors, respectively (i N:= N-&-N- ). Note that eqs. (28) and . -

This ¢ be .aleo- roprenonted by pairings of the axtreme G
and G* with .N’n(cr. eqe, (A.2) of Appendix).

0



(29) give the decomposition of the particle number operator
in terms of G and G*. :
A disgrammatical repreaentation of age, (20)-(23) (or (28)—‘
. (31)3 in terms of C, ¢t and G, g% 1s given in Pigs. 1 and- 2,
’ Congider dla.gonal terms of eq. (27.d4) :

one-yarticle & & (G*&--% G*(-:(:}r“' )‘.9—"’{ = 2. N M (32)
twc—-particle Lo
. T, =11\
(m'* 1 S0 Ol 6 +(:m% (;*(:e" |o><01 GGG @g:p)(o\:h(@g};---
Dy o or N, | (33e
=el (g;*(,+(:*(:@*(r+ ) N =€ & 'N;;Q St (33.0)

n-partmleé)a—-("'e-k&*@&«} ) ._Qbi 4N' EM k34)

n—ant;.partlclee. Di . (@@’-H. (:-*6(7*4- Y;ex IH N“ —N’

- 35)
LG 10> o & o, ( G+ > (36.8)

+r5'g§7'é\<o\~ cf' ey G*E*-lo)(o\-t?'& c“'-ce' L 10><0): t,(,);
=, _‘P "i:r v i -%é-é_-k_‘_ )((‘5""(3‘(3*(74‘ )_&_@i‘&.\_@'&(}_&?@,& 3
((,(.}WGG*GGH- )e = & N‘,N}Le " (36.1)

L

P "{(@+G+) (@‘c’f ) (G++ D (G-*+ )
m-partlcle and e

part 1cm-
‘antiparticls

((T+(,+‘..)._.((,+G+ ) (G++ ’ ( - ) __N'
! n-antlparticle Q"“-'“l)g{ ((7.1. ) (Q,+ ) ((‘,.(,"’1- ) ((1&4' )a

G+ ) (@+ )((,(; ) (c_,c,)f_)+1|k

min{m ) —_
((,(,+ Yo (GC* k(G,+ )*(@+ )* N'" .\{, (37.8)
kZ*O. - (M—k\‘..(n-k)‘.(k‘.)" = Nag™: orw

Bq. (33.m) gives as an example several tcms as they follow
from decomposition (27.c) . The numbers ¢ ,c' c%..of identical
pairinge can be calculated sither directly or using genersl for-
- muls (I.B,8) for the coefficient c{(c = 2‘5! =2 , ¢'=5I3l
el= S, .. )*). Another example ig expression {(36.am} , whers
the same waxs give ¢ = ¢/ = o = " =4,

course, they can be obtained from the descomposition
(27.a) , too. For illugtration mee Appendix,

1"
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(a) b) c) 4)

Pig. 1, A disgrammatical representation of the S-matrix unita-
rity condition in terms of C and ¢*. a) One-particle gector of

:E.c‘+::&c':. Sum of dimgrams of the first columm corresponds to
eg. (20.b) , only the firpt diagram (—«) giving a contribution,
Sums of diagrame b), ¢) and 4) correspond to eqs. (21.b), (22.b)
and {23.b}, respectively. Being accompsnied by closed loops (aa
in the case a}), b), ¢) and d) represent antiparticle, vacuum-
pair, pair-vacuum gectors of :e.c €7 i, In all the capes
diagrems are in fact the game, except for directione of ends
and presence of additional diagrams —&— and —— in a) amnd b),
which only give non-zero contribution.

12
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In final
state

{pection b

dotted line):

. 1
one particle ‘%

ona particle
and pair

one particle
and two pairs

Fig. 2. A diasgrammstical representation of the ‘S-matrix unita~
rity g:_ondition in terms of G and G+. a) One-particle sector of

re” i@ . Sum of the diagrames of the first colummn corresponde
to eq. (20.d) . Sums of diagrams b), ¢) and 4) correspond to
eqs. (21.4), (22.d) and (23,d) , respectively. Being accompanied
by closed loops (as in the case a)), b) ¢) and 4) repx;_esent
antiparticle vacuum-pair, pair-vacuum sectors of ;e ie i .
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Equation (37) is written, using permenent which in non-
operator ferms leads either to the determinant or to the perma-
nent according to statistice and to eq. (24).

Non-diegonal matrix elements of (27) vanish due to expres- T
sions (30) or (31), entering as commen factors (however, prior
to the summation over final states <j [sbl-j-) (ﬂSh) #0
even if i, j end f differ from each other in any number of pairs;
if there is such a distinction of i1 snd }, then after gummation
each additional pair leade to one of two mentioned common factors,
and the sum vanishes},

Hence, there again follows the unitarity of S-matrix:
eq. (27.4) reduces to

< Z —r‘INPN neN, LoD ce NN, LGP, o

Expraaaion (37.a) is the relevant diagonal in particle and
(independently) antiparticle numbers part of the operator

(FKG )" @ N =
(e+---)+(@++---) +(G"G+~-) +(c6 +m))w " {

()‘

('M+ It

3)

which in turn is the (mt\n)-th term of the expansion of

+ D
.’ec ;:e,c'.:e e ﬂ)Kw,=e_ -e.xp(‘t.\vK\?-t-N) e’ :

_ axp ((c,+-.-)+(c-.*+---) +(c;*‘(,+---)+(c,c,++---))* N, (40)
Lat us conatruct a generating function for probabilities of

traveitions between states with given numbers of particles and
sntiparticies. To this end we make the substitutions

GG *GytG, v 64— G =2 FPVGE+RNG, TV 6, (41)
r Dot
G =G +(,1- +Qr3+(,,.:> aﬂiﬁcﬁ'}«vﬁl‘\-’&\@}k}\v(’ (42)

0,Q DO
in eq. (40) ( and, therefors, in eq. (37.a)d, Gy18p,Gy, and G,
being four terms of eq, (I.7.%), and 2 R Y being complex

c-number parametora. Then the operators ée' )* . (a - -)* , .
G+ 3* ((r + - )* and (40)%transform into

™) Multiplied by QBB G__D-

14
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mgr

(e + CTEEY, = I IGE, + Wt C EEEE ) wa
(G +ET o= MG, +H VPG GrG,+ IV GGL Calog ) (45)
(G GG*+ 3 +|;d*lv\1(s GgG +l,~\‘lvt“c GiG* G 4 )(46)

Yoe pov)= ey""% > sexp((G Y+ (- )+ (Gt )+(GG*+--§) €
47

respectively, Equation (47) 1s a genarating function of interest,
and coefficiente of its power series expansion in 91,)\ 5 <o give
the probabilitles of transitionsbetween states with given numbers
of particles and antiperticles, Thus, the power of 3 (X ) equals
the number of particles (antiparticles) in the "right" initial
state, and the power of = ( N ) equals the number of particlea
(antiparticles) in the "left" initial state, The parametera ju,’q
v end V enter only in combirations |mi? and (vi* . The
power of l}al!' W1* ) 1s equal to the number of particles
(antiparticles) in the final state, Diagonal in number of par-
ticles and (independently) antiparticles terme of eq. (47) con-
tain2 ,% , N\ and N only in combinations foel® ana IN* .
powers of which are equel to numbers of initial particles and
antiparticles, Thus, eq. (37.a) containe \m\iml}\‘g‘".‘l‘he power
Beries axpansion of eq. (37.a) inm lj-\l,‘ and Ivi: (eqs. (43)-(46)
are implied to be substituted into eq. (37.m)) gives'’transition
probabilities (dietribution over numbera of final particles) of
intereatf*; One ¢an obitain probabilities for finding finel
particlea with given c}uantum nunbera, decomposing each pairing
funetion S(_, ) and S( over suitable complete sets of one-parti-
cle states and taking into account statistics.

We have considered the product s*s. The product ss* wmay be
treated analogously, Only G and at intorchnnga their places
in egs. {27)-(47).

*jUp to the factor ¥ & _ Q_D

**} We have encountered with such a aeries (in d= I_ﬂ\zlvl"

in Sec., I.3.

15



4. CONNECTION BETWEEN SPIN AND STATISTICS

Many people {Pauli, Feynman, Schwinger et al./1’2’5’26—28/)

investigated the problem of connection between spin and statis-
ties, Several arguments were given by Feyrman who siressed an
intimate connection between the relativistic Dirac equation and
Pauli principlefz/. According to Feynmaen one may put the question
ag followa, Let us accept the Dirac eguation and consider for
many-particle wave functions the possibilities:

a) simple (non-symmetrized) products of one-particle wave
functions, :

b) symmetrized products (Bose-Einstein statistics),

¢) aptisymmetrized products (Permi-Dirac statietics).

Why is the posaibility ¢) preferable?

Let us teke an initial state with one electron, In final
states one can observe either eleotron, or electron + pair, or
electron + 2 pairs, etc., When summing probabilities over all
final states, in the case a) only grapha of Pig. 3 are poassible,

Fig, 3 Pig, 4
Heither the "snaky" graphs, nor more complicated closed loops
(including "snakea™) are possible.

Symmetrization or antisymmetrization lead to infinitely

many additional "snaky" graphs (see Plg. 2, the firat column} and
to complicated closed loops. For example, the graph b) of Pig. 3
ia now accompanied by the "snaky" graph, which is drawn in Pig. 4.
We have shown above +that the "snsky" graphs are summed in such
a manner, that

- forwn |
A EEACECEH 2 1d=1 D=1 e
This guarantees that the sum of transitionprobabilities for the

electron inmto all possidle final states is equal to unity”’,

* If an initial electron is characterized by a2 normalized
function usy (fd=xUWoey,Uix)=4 ), and, therefore by the state
vector NS.*QW(.”Y wiplo> » then from eq., (20.d) we get

<A1 @+ FEEG +er D =] 3 d y B8 S 0-y)g Uty =1

16



However, all the terms of eq. (48), but the first one, are
neither absolute, nor relative probabilities.

If simple products are asaumed. the "snaky" graphe cannct
arise, and the matrix element 019w G W(“"( Y{0>  should
be & constant multiple of S (x—y) separately. However, it 1s
clear from (20.&) that*’

QWO R GG w“’(umcb £ 49 (x- ~y) - (49)
In fact N
OIROREE Y o> = (20D REM 7= 1+ 8°TS1) S (50)
where il latter expression is obtained using the Schwinger
fﬂblatian;(17). If we subtract the superfiuous term from both
dldes we obtain

O (0 (TG +8): $D D = K7 (xy) - (51)
where

K = 1-T-1I(E-¢91  (=0) (52)

However the term I &I has no ressonable meaning since 1t
describes s creation of something with negative frequencies.Using
the Schwinger relation (17), we can represent it in the form

i ${+\ I - Q —'i-i S}-\)I g*’ mi(‘l +"i—g"-)1) {53)

wheTe the above difficulty is abment (only positive frequencies
are created in each term of thim infinite peries) at the expense
of the infinite gum of ths “snaky" graphs, which are interpretable
only in terms of antisymmeirized or symmetrized wave functions,
With eq. (53) the guantity (52) takea the form (13.e).

We refer to Feynman argumsnts /1s2/ to dlstinguish between
Fermi-Dirac and Bose-~Einstein statlstics.

Let us discuss another possibiiity. Ope may try to interpret,
as the unitarity oondition, the relailon

A
(24 S DY) = LIED) (o

A
rot

for the retarded and advanced Green funotions S
of Dirac equatlon, However the final state

D) wra
%) 4nd :GHGID> >1E1) for Fo-De (B.-E.) statisties’?,

A
and sadv
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Yoy =1 § 8 SL 0,0y, w0 (55
Wy

together with S:'at containe both positive and negative frequen-
cies, even in the case, when the initiel stete § (x) is the
positive-frequency one (the Klein paradox).

One remark concerning the S-matrix, We may try to take
: eC: ae S-matrix, It describes only observable processes.
However, -.e,c'+:-. et = e.b » but not the unlty, as one expects
for sume of probabilities. We restore normmalization if turn to
S =e:¢": and this additional factor means that each obser-
vable process 1s accompanied by unobservable vacuum loops, and
as a consequence of the unobservability we must use superposition
of infinitely many such amplitudesil/

APFERDIX

Let us demonptraie how the extreme C and C' may be reduced
to G and G (see p. 10). Using the relation

:Ne‘ﬂ,: =‘N}': ?——E‘.k-{-}\f:e_-"‘:“ﬂ (4.1)
we obtain

(AP K+ e = 1§ ORGD > o+ 1T 0> KO8 —

— 591 KKOIWY + 10> <o %O K §9+ K 10>< 0N+ NI0S<aIN,

W 910> K<t + s o> <ol i =

= (1> N+ N 10><01 C + CHBDLC + X 10>V N+

+NIDT <o N+ C IOl N+ N 1056 Lol + CTIOC T tas
= 6 1DE + G DG & <O+ -

WO KOO 2+ C + 07 + (Tt -e{6> o=

- 3 I f T n—.—.m.‘
= CH 0> <02 K NE10S <0 €43 CHAOD> COLC 5N CHIod <0IC +
eee————y e
+:C R OIE + .o =GNl +:60 GHD QG + - (a.2)

and g0 on.
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Kow illustrate treanaformstion of sumas over final states
into pairings

A ot N 4 o - -
S '9_—1‘(’ Ce "?_‘5‘251?1.} (9-5, 2, |—‘l—:(:(-re._“"r:=

479

—(1.9_ Gt )2, e’“f'(;!e(:) (——)4 YT s

S-— Nl e D<o it eee”

s
‘ T

—(9-' QE i‘_‘:eﬁ(%zja(’:)"'[%\%z“@@'::e' 116G

S e N, g > <e hQ{ Ve 6N =

51%1

T —
=;—‘a=c¢<,'*—+c;*c?:=e-” 4900 +06ea (2 )4((1@ N6t
£ GG NG+ (7+G-+"QN"G-(7 G0N @G~)

(2.3)
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