ОБ ЬЕАИНЕННЫЙ ИНСТИТУТ
 ЯАЕРНЫХ ИССАЕАОВАНИЙ АУБНА

$$
13 / 111-78
$$

$$
V-86
$$

$$
\left.1176\right|_{\text {M.K.Volkov }} ^{2-78}
$$

WEAK RADIATIVE DECAYS OF K_{L}-MESONS
in Chiral theory

E2-11187

M.K.Volkov

WEAK RADIATIVE DECAYS OF K_{L}-MESONS

IN CHIRAL THEORY

Submitted to $\boldsymbol{\Omega \Phi}$

Слабые радпационные распады K_{L} мезовов в киральвой теория
С помощъю полюсных диаграмм с внртуальными π° - и η - мезонама радиапиоввые распады $\mathrm{K}_{\mathrm{L}^{-}}$мезонов выражактся через аналогичные распады η - мезовов, вычисленные в однопетлевом приближении кирельной теории поля. Резуљтаты согласуются с экспериментальыми данными.

Работв выполненв в Лаборятории теоретической фпзики ОИЯИ.

Volkov M.K.
E2-11187
Weak Radiative Decays of K_{L}-Mesons in Chiral Theory
Radiative decays of K_{L}-mesons are expressed in terms of analogous decays of η-mesons calculated in the one-loop approximation of chiral field theory. These decays are connected through the pole diagrams with virtual η and π° mesons. The results are consistent with experiment.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

In paper $/ 1 /$ the suppression of the probability of decay $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ by one order of magnitude as compared to that of $\eta \rightarrow \gamma \gamma$ is explained within the one-loop approximation of chiral quantum field theory. In this paper a similar consideration is applied to decays $\mathrm{K}_{\mathrm{L}} \pi^{+} \pi^{-} \gamma$ and $\mathrm{K}_{\mathrm{L} \rightarrow \gamma \gamma}$.

An attempt of the theoretical interpretation of decays $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} y$, and $\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma$ has been undertaken in recent paper $/ 2 /$. The author used the WeinbergSalam model and derived some relations for probabilities of these decays. One of the results $/ 2 /$ says that for these decays of much importance are contributions of large distances where processes prom ceed through certain hadron states. The WeinbergSalam model fails to explain such processes while the chiral theory is much more appropriate for this purpose / 3 /.

In this paper we show that the chiral theory allows one to calculate the absolute values of widths of decays $\mathrm{K}_{\mathrm{L}^{+} \pi^{+} \pi^{-} \gamma}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma$ by relating them to analogous decays of η mesons calculated in ref. $/ 1 /$

The probabilities of K_{L} decays are expressed in terms of probabilities of similar decays of η me-

Sons if one uses the pole diagrams of virtual transitions of K_{L} into η and π°-mesons (see ref. $/ 4 /$ and Figs.1,2). A special note should be made here that the formula obtained in $/ 1 /$ for the probability of decay $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ is very sensitive to a negligible change in the mass of the decaying particle. For instance, $\Gamma_{\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)}$ decreases by a factor of three if the

Fig. 2
mass of η-meson is changed by the mass close to that of K_{L}-meson.

To calculate the widths of decay $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \gamma$, it is necessary to consider the following Lagrangians. The Lagrangian of transitions of K_{L}-meson into $\pi^{\circ}, \eta_{8}, \eta_{0}$ and η_{c} mesons $\left(\right.$ see $\left.^{/ 4 /}\right)$

$$
\begin{equation*}
\mathscr{L}^{\left(\mathrm{K}_{\mathrm{L}}\right)}=\mathrm{a}: \mathrm{K}_{\mathrm{L}}\left(\pi^{\circ}+\frac{1}{\sqrt{3}} \eta_{8}+\sqrt{\frac{2}{3}} \eta_{0}-\sqrt{2} \eta_{\mathrm{c}}\right): \tag{1}
\end{equation*}
$$

From our calculations it follows that the consideration of the pole diagrams with π° and η_{8} mesons gives the satisfactory results for the probability of decays $\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma$ and $\mathrm{K}_{\mathrm{L} \rightarrow \pi^{+} \pi^{-} \gamma}$. The consideration of the pole diagrams with singlet and charmed mesons is less essential. We shall discuss these contributions at the end of this article.

The constant a can be evaluated either on the basis of chiral Lagragian satisfying the rule $|\Delta T|=1 / 2$ (see $/ 5 /$) , or from current algebra by using the relation between the amplitudes of transition $K \rightarrow \pi^{\circ}$ and $\mathrm{K}_{\mathrm{S}} \rightarrow \pi^{\circ} \pi^{\circ} / 4,6 /$. This gives the value ${ }^{*} \mathrm{~L}$

$$
\begin{equation*}
\mathrm{a} \approx 4.5 \times 10^{-2}(\mathrm{MeV})^{2} \tag{2}
\end{equation*}
$$

* The close value for a follows from consideration of an interaction of the type "current-current" with the universal weak coupling constant $/ 7 /$

$$
\mathfrak{L}_{W}=\sqrt{2} \mathrm{GF}_{\pi}^{2}: \partial_{\mu} \mathrm{K}_{\mathrm{L}}\left[\partial_{\mu} \pi^{\circ}+\frac{1}{\sqrt{3}} \partial_{\mu} \eta\right]:
$$

The Lagrangians of strong meson-baryon interactions

$$
\begin{align*}
\mathscr{L}_{1}= & 2 g\left[a \mathrm{~d}_{\mathrm{ijk}}-\mathrm{i}(1-a) \mathrm{f}_{\mathrm{ijk}}\right] \overline{\mathrm{B}}_{\mathrm{i}} \gamma_{5} \mathrm{~B}_{\mathrm{j}} \Phi_{\mathrm{k}}, \tag{3}\\
\mathscr{L}_{2}= & \frac{\mathrm{i}}{2 \mathrm{~F}_{\pi}^{2}} \overline{\mathrm{~B}}_{\mathrm{i}} \gamma_{\mu} \mathrm{B}_{\ell} \Phi_{\mathrm{j}} \partial^{\mu} \Phi_{\mathrm{k}}\left\{\left(\mathrm{~g}_{\mathrm{A}}^{2}-1\right) \mathrm{f}_{\mathrm{i} \ell_{\mathrm{m}}} \mathrm{f}_{\mathrm{kjm}}+\right. \\
& +\mathrm{g}_{\mathrm{A}}^{2}\left[\frac{2}{3} a^{2}\left(\delta_{\mathrm{ij}} \delta_{\mathrm{k} \ell}-\delta_{\mathrm{ik}} \delta_{\mathrm{j} \ell}\right)+\right. \\
& \left.\left.+2 a(a-1) \mathrm{f}_{\mathrm{kjm}}\left(\mathrm{f}_{\mathrm{i} \ell \mathrm{~m}}-\mathrm{id}{ }_{\mathrm{i} \ell_{\mathrm{m}}}\right)\right]\right\} \tag{4}
\end{align*}
$$

were discussed in detail and applied to the description of decay $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ in ref. ${ }^{1 /}$. In these formulae, B_{i} and Φ_{i} are the fields of the baryon and meson octets; g is the strong interaction constant, $\mathrm{g}^{2} / 4 \pi \approx 14,7 ; \mathrm{F}_{\pi}$ is the constant of π meson decay $\mathrm{F}_{\pi}=$ $=92 \mathrm{MeV} ; \mathrm{g}_{\mathrm{A}}=1.25$ is the renormalization constant of axial current; $a=2 / 3$ is the parameter of mixing of f and d coupling in $\operatorname{SU}(3)$ theory.

The electromagnetic interaction Lagrangian is

$$
\begin{equation*}
\mathscr{L}^{(\mathrm{A})}=-\mathrm{e}: \mathrm{A}_{\mu}\left[\overline{\mathrm{p}} \gamma^{\mu} \mathrm{p}-\bar{\Xi} \gamma^{\mu} \Xi^{-}+\bar{\Sigma}^{+} \gamma^{\mu} \Sigma^{+}-\bar{\Sigma}^{-} \gamma \mu \Sigma\right]: \tag{5}
\end{equation*}
$$

By using the Lagrangians (4),(5), (3) in ref. $/ 1 /$ the width of decay $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ in the one-loop approximation was found in the form
$\Gamma_{\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)}=\bar{a}\left(-\frac{\mathrm{g}_{\mathrm{A}} \mathrm{c}_{\eta}}{3}\right)^{2}\left(\frac{\mathrm{~m}_{\eta}}{\sqrt{2} 4 \pi \mathrm{~F}_{\pi}}\right)^{6}\left[1-\left(\frac{2 \mathrm{~m}_{\pi}}{\mathrm{m}_{\eta}}\right)^{2}\right]^{5} \mathrm{~m}_{\eta} g_{\eta} \approx 47 \mathrm{eV}$.

Here $\bar{\alpha}=1 / 137$ is the electromagnetic coupling constant ($\bar{a}=\mathrm{e}^{2 / 4 \pi}$) ,

$$
\begin{equation*}
\mathrm{C}_{\eta}=6 a-\mathrm{g}_{\mathrm{A}}^{2}\left[1+(2 a-1)^{3}\right]=2.4 \tag{7}
\end{equation*}
$$

is the $\operatorname{SU}(3)$ factor arising from the consideration of contributions from all one-loop baryon diagrams (see Fig.3), \mathscr{I}_{η} is the phase integral

$$
\begin{equation*}
g_{\eta}=\int_{0}^{1} \mathrm{dxx}{ }^{3}(1-\mathrm{x})^{3 / 2}\left\{\left[1-\left(\frac{2 \mathrm{~m}_{\pi}}{\mathrm{m}_{\eta}}\right)^{2}\right]^{-1}-\mathrm{x}\right\}^{-1 / 2} \stackrel{2}{\approx} 0.034 \tag{8}
\end{equation*}
$$

The probability of decay $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \gamma$ is defined by two diagrams of Fig.1. The contributions of these

Fig. 3.
diagrams to the decay width can be easily calculated by using the Lagrangian (1),(3)-(5) and the width of decay $\eta \rightarrow \pi^{+} \pi^{-} \gamma(6)$. The result is

$$
\begin{align*}
& \Gamma_{\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \gamma\right)}=\frac{\mathrm{a}^{2}}{3 \mathrm{~m}_{\mathrm{K}_{\mathrm{L}}^{4}}}\left[\left(\frac{\mathrm{~m}_{\eta}^{2}}{\mathrm{~m}_{\mathrm{K}_{\mathrm{L}}^{2}}^{2}}-1\right)^{-1}-\right. \\
& \left.\quad-3\left(1-\frac{\mathrm{m}_{\pi}^{2}}{\mathrm{~m}_{\mathrm{K}_{\mathrm{L}}}^{2}}\right)^{-1}\right]^{2} \Gamma_{\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right)}^{\left(\mathrm{m}_{\eta \rightarrow \mathrm{m}_{\mathrm{K}}}\right)} . \tag{9}
\end{align*}
$$

$\Gamma\left(\begin{array}{l}\left(m \rightarrow m_{2}\right)\end{array} \quad\right.$ is the width of the decay of η meson
into $\pi^{+} \pi^{-\gamma}$ (formula (6)) but with the mass of the decaying particle equal to $m_{K_{L}}$ instead of m_{η}. It turns out that

$$
\begin{align*}
& \left.\Gamma \quad \begin{array}{l}
\left(\mathrm{m}_{\eta} \rightarrow \mathrm{m} \mathrm{~K}_{\mathrm{L}}\right) \\
\left(\eta \rightarrow \pi^{+}{ }_{\pi}{ }^{-} \gamma\right)
\end{array}\right)=16 \mathrm{eV}, \\
& \tag{10}
\end{align*}
$$

i.e. it decreases by a factor of three as compared to (6). And finally, we get the following estimate of the probability of decay $\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi \bar{\gamma}$

$$
\mathrm{W}_{\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \gamma\right)}=0.6 \times 10^{3} \mathrm{sec}^{-1}
$$

while the experimental data ${ }^{/ 8 /}$ are

$$
\mathrm{W} \underset{\left(\mathrm{~K}_{\mathrm{L}} \mathrm{~W}^{+} \pi^{-} \gamma\right)}{(\mathrm{exp})}=1.2 \times 10^{3} \mathrm{sec}^{-1}
$$

Since the calculation of amplitude in chiral theory is accurate within $20-30 \%$, the agreement with experiment can be considered to be satisfactory.

Now we briefly discuss what gives the consideration of pole diagrams with η_{0} and η_{c} mesons. The cons ideration of $\eta_{0}\left(\eta^{\circ}\right)$ meson results in the appearance of a new term

$$
\begin{equation*}
\Delta=\sqrt{6} \frac{\mathrm{C}_{\eta}^{\prime}}{\mathrm{C} \eta} \frac{\mathrm{~g}_{\eta^{\prime} \mathrm{Dp}}}{\mathrm{~g}_{\pi^{\circ} \mathrm{pp}}^{\circ}}\left(-\frac{\mathrm{m}_{\eta}^{2}}{\mathrm{~m}_{\mathrm{K}_{\mathrm{L}}}^{2}}-1\right)^{-1} \tag{11}
\end{equation*}
$$

in the brackets in formula (9). Here $C_{\eta}, \approx 4.8$ is the $\mathrm{SU}(3)$ factor for η^{\prime} meson, and $g_{\eta} \eta^{\prime} p p$ is the coupling constant of η^{\prime}-meson-proton strong interaction. The decay $\eta^{\prime} \rightarrow \gamma \gamma$ gives the estimate g $=0.5 \mathrm{~g}_{\pi}{ }^{\circ}{ }_{p p}$. Thus, the term (11) equals $\Delta \sim 0.877^{\prime} \mathrm{pp}^{\sim}$
After the addition of this term the value of the probability of the $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \gamma$ decay increases and better fits the experimental value, $\bar{W}_{\left(\mathrm{K}_{\mathrm{L} \rightarrow \pi^{+}} \pi^{-} \gamma\right)} \approx 1.3 \mathrm{sec}^{-1}$.
However as far as our estimates are very rough we notice only that the contribution of η^{\prime}-meson is less than the corresponding contributions of η and π° mesons, and the addition of it can improve, in certain extent, the previous result. The contribution of the heavy η^{c}-mes on is not essential that could be seen from eq. (9).

We conclude this note with the one-loop approximation formula obtained for $\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma$ (see also ref. ${ }^{/ 4 /}$ and Fig.2)

where

$$
\Gamma_{(\eta \rightarrow \gamma \gamma)}=\frac{\mathrm{m}_{\eta}}{3 \pi}\left(\frac{\bar{a} \mathrm{~g}_{\Delta} a \mathrm{~m}_{\eta}}{4 \pi \mathrm{~F}_{\pi}}\right)^{2}
$$

is the width of decay $\eta \rightarrow \gamma \gamma$ found in the one-loop approximation. Then the result for the probability of decay $\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma$ is

$$
\mathrm{W}_{\left(\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma\right)}=11 \times 10^{3} \mathrm{sec}^{-1},
$$

while experiment gives/8/

$$
\underset{\left(\mathrm{K}_{\mathrm{L}} \rightarrow \gamma \gamma\right)}{(\mathrm{exp})}=9.5 \times 10^{3} \mathrm{sec}^{-1} .
$$

The author thanks D.I.Blokhintsev, S.B.Gerasimov and A.B.Govorkov for useful discussions.

REFERENCES

1. Volkov M.K. Yadern. Fiz.,1978,27,p.758.
2. Malakian Yy.P., Yadern Fiz.,1977,26, p. 634.
3. Volkov M.K., Pervushin V.N. UFN, 1976,v.120, p. 363.
4. Gaillard M.K., Lee B.W. Phys.Rev.,1974,D10, p. 897.
5. Volkov M.K., Pervushin V.N. Phys.Lett., 1974, 51B, p. 499.
6. Adler S.L., Dashen R.F. Current Algebra, Benjamin, New York 1968.
7. Kalinovski Yu.L.,Pervushin V.N. JINR,P2-10175, Dubna, 1976.
8. Rev. of Mod.Phys., 48, No.2, part II (1976). on December 22,1977
