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O HepenaTHBUCTCKOM ypaBHeHmm Jlopenua~/Jdupaka

AmAR3UPYIOTCH NPHYHHB BOSHUKHOBEHHS He(HIUYEeCKOro pelleHHs
HepelATHBACTCKOro ypaBHeHus /lopenua-[upaxa, [TokasaHo, 4ro onHoH ua
MpHYHH SBAAIOTCA Tak Ha3biBaeMbie O6paTEMble noTepH Ha u3nydenwe, Uc-
TOYHHKOM 3THX NOTepb ABIgEeTCH GeCKoHeumas macca TOYEYHOrO 3/IeKTpOHa,
KauecTeenno uccnenyercs ypaBHesdne Jlopenua-[dupaka ans ONHOMEPHOr o
KyJlOHOBCKOro  cayyas. [ToxasaHo, 4To npuummoft BO3HHKHOBEHHS HepH3Iu-
"ECKHX CHTYauUHR SB/ISeTCR He CHHLYASpHOCTH KY/IOHOBCROI'O BHEIIHEero HC—
TOYHHKA, & TOYEHHOCTHL 37eKTPOHA. Heroueunocrs snexTpona yumrhipaercs
o metony TleprnoTua, xoropsift p Cl/lydae OCHHJ/UIATODHOrO BHEWHEro moas
AomyckaeT TOYHOe pelleHHe, Y4eT HeTOYeYHOCTH 371eKTPOHA yC TPAHAET He~

duanyeckne pewenns. O6cyxnaorca croftcrea nony4yaeMblX (HIUYECKHX
pelenuit,

Pa6Gora Bbimonnena s JlaGoparTopun TeopeTuueckolt ¢uauxku OU AU,

Ipenprur O6venunennoro WHCTHTYTa anepHEIX ucclenosanuti. [y6aa 1978

Afanasiev G\N,, Schpakov V.P. E2 - 11179

Remarks Concerning Nonrelativistic Lorentz-Dirac
Equation

Reasons for the nonphysical solutions of the nonrelativistic
Lorentz-Dirac equation are examined, It Is shown that these are
due to the reversible radiation energy losses. The source of
those losses is the infinite mass of the point electron. The Lorentz-
Dirac one-dimensional equation for the Coulomb external force is
analysed, It is shown the nonphysical character of the solutions
obtained is due to the point electron structure, but not to the singu-
larity of the external Coulomb force, The extension of the electron
is taken into account using the well-known Herglotz method, which
for the oscillator force allows the analytical solution, There are
only physical damping &olutions in this case., For special values
of the osclllator constant the stationary radiationless motions are
possible, In this case the energy becomes an approximate integral
of the motion and takes the discrete values,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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1. We want to analyse a somewhat controversial
situation with the Lorentz-Dirac nonrelativistic equa-
tion. The matter is that this equation can be solved
explicitly only for quite limited cases which have
physical meaning, First, it is the motior.x of the ff'ee
charged particle, In this case the physical solut1.on
(corresponding to the motion of the charged particle
with the constant velocity) is coexisting w1th the un-
physical one (which corresponds to the motion with
selfacceleration). Second, it is uniformly accelerated
motion in the constant field, Third, it is the motiop
with increasing or decreasing (in time) amplitude in
the field of the harmonic oscillator, The most in-
teresting and controversial is the particle motion
in the Coulomb external field, It was proved by
C.Eliezer analytically in refs,/1.2/ that for the one-
dimensional motion (more exactly for the motion with
the zero angular momentum) in a field of the Cou~
lomb center the physically unreasonable situa.uti.o‘n
always takes place, For example, let at the initial
moment the particle be placed at distance r o from.the
attractive Coulomb center and let the initial velocity
be directed towards this center, It was shown in
the same refs./1.?/ that the particle initially approa-
ches to the center at the finite distance, thefq sto;?s
and goes to infinity., For the Coulomb re:pu.151on w1th
the velocity off the center the situation is opposite:
the charged particle firstly goes away fror'n centef',
at finite distance stops and then falls on it, In' this
case there are no physically reasonable solutions.



This is in contrast to the case mentioned above,
where the physical solutions coexisted side by side
with the nonphysical ones.

The two-dimensional Coulomb case was also
treated in references cited above, Intuitively we ex-
pect that the charged particle should rotate around
the atiractive Coulomb center with constantly dec-~
reasing (due to the radiation) radius. However
C.Eliezer prooved the existence of the solutions,
corresponding to the departure of the particle in-
finity for the attractive case and to the continuous
falling at the center for the repulsive case. These
results were criticized by G,Plass/3/ and P,Cla-
vier/¥ ‘At first they noted that although C.Eliezer
has found solutions with mentioned above proper-
ties, he has not prooved (for the two-dimensional
case) their uniqueness., P,Clavier has been able to
show the existence (for -0 ) of the solutions cor—
responding to the charged particle motion along the
spiral shrinked towards the center. G.Plass calcu-
lated numerically a very small part of the particle
trajectory and found that it goes inside the radiation-
less ellipse, From this he concluded (although with
some reservations) that this solution goes asympto-
tically (for t - «) to the class solutions found by
P.Clavier, (At this point we note that there are no
‘guarantee that particle being catched once inside
the radiationless ellipse, does not leave it later).
The results, obtained by C.Eliezer for the one-di-
mensional Coulomb case were rejected by P,Clavier
and G,Plass on those grournds that this case has
no physical meaning and that singularity + is too
strong for the one dimensional case, So they sug-
gested to find the physical reasonable solutions of
the Lorentz-Dirac equation on the class of the gene-
ralized functions, We believe, however, that this ar-
gumentation is not very convincing because there
are physically reasonable solutions on the class of
the usual functions for the radiationless motion with
zero angular momentum, Finally, we mention the
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recent numerical solutions of the Lorentz-Dirac
equation for the Coulomb one-dimensional case /5/,
These calculations support the analysis given by
C.Eliezer, Also they present an argument for working
with the usual functions, In fa.ct,1 one may change

the singular Coulomb potential e by the potential

without singularity: -——1—-; As the numerical calcu-

12 +a? . L
lations show that above-mentioned turning point is
on the finite distance from the Coulomb center then

———1———_—does not change the results

Vieia? ,
of the numerical calculation if parameter a is suffi-
ciently small, So, the nonphysical character of the
solutions is not due to the irregularity of the Cou-
lomb potential,

1
s ubstitution — ~»

2, Here we give an analysis of the Lorentz-

Dirac equation for the Coulomb case.
3
d2xi YXi 2 32 d Xj (2 1)
m - = — . .
° at? r3 3 ¢ al ,

dx . .
Multiplying (2.1) by = summing and transforming

the right-hand side of (2,1) one has

2 y. . 2 3%,
4Ly ey 2 e afy &y 2 of e,
adt 2 o dt r 3 .3 gz @ 3 o3 a2
(2.2)

The right-hand side of (22) corresponds to the so-
called irreversible radiation losses, whereas the
last term at the left~-hand side corresponds to the
reversible losses/8/, The origin of these terms is
due to the radial dependence of the /en rgy flux
produced by the accelerated charge 7.8/ In fact, the
energy flux contains three parts, First there are



terms which depend only upon the charge velocity,
They are exactly the same as for the uniformly mo-
ving charge. It is known that such charge carries
the electromagnetic field with itself, The disturbance
of the electromagnetic field caused by the charge
motion is called sometimes as electromagnetic "fur-
row", Second, there are terms which contain both
the wvelocity and acceleration of charge, These are
needed to rebuild the electromagnetic furrow from
one velocity to another, Both of these terms decrea-
sing sufficiently rapidly do not contribute to the
energy flux at infinity, So, the energy flux produced
by these term is contained in a finite region of
space, surrounding the moving charge. At last, the
energy flux contains the terms which depend only
upon the charge acceleration. Being integrated over
the sphere of the infinite radius they do not dis-
appear. So, these terms are responsible for the
energy flux to infinity and they give rise to the
origin of the right-hand side of eq. (2.2).

Forget for the moment about the terms containing
the acceleration in eq. (2.2). Then we have for one-
dimensional Coulomb repulsive case:

_d_[im .dL2+Y]=0'

°\dt T (2.3)

If at the initial time the electron has velocity di-
rected towards the Coulomb center, then the motion
takes place in the following way. At first, the dis-
tance of the electron from the Coulomb center is
decreasing, This results in increasing the potential
energy 'rL But the expression in square brackets
has the constant value, so the kinetic energy is dec-
reasing and the electron is slowing down, At

S ome moment it stops, and then goes to to_infinity with

the velocnty growing up to the value \/— Now in-

m
clude the right-hand side of the (2.2): °

2
41, (—(1:—2+-:-/—]=——§’——%w2<0. (2.4)
Initial conditions keing the scame as in the previous
case, the motion has also same qualitative features,
Due to the negativity of the rignht-hand side of eq.
(2.4) the electron stops at an earlier time and at

a greater distance from the Coulomb center Fhan in
the previous case. There are no anomalies in this
case and it is possible to show their absence also
for the attractive case. So, nonphysical behaviour

of the solutions is only due to the term correspond-
ing to the reversible energy losses. Or, in other
words: rebuilding of the electromagnetic furrow re-
quires too much energy and this exceeds the energy
losses due to the radiation, There is the obvious
reservoir of energy: the infinite electromagnetic mass

of the point charge.

3. Here we consider the exactly solukle motion
of the charged particle in the field of one and two-
dimensional oscillator. The same physically unrea-
sonable situations are present in this case but there
is possibility for the analytic analysis of the so-
lutions obtained. Nonrelativistic Lorentz-Dirac equa-
tion has the following form in this case:

2 2 3
m—d—-}——i—q—— d: +kx=0. (3-1)
° at® 3 ¢3 at
It is convenient to measure distance in units of
2
. e . .
the classical electron radius = 5 time in
mg C
units of time needed for the light tdo cover the dis-

, velocity in

tance equal to electron radius r, =

meC
units of the light velocity ¢, etc. Then we have

d®x _ 2 3x _
3 —? ta + yX 0.

Wherdet y is dimensionless constant equal to the r'aftio
of the oscillator constant to that of radiation reaction:



e? 2
)/=k'(_’—3-) .
mgC

The solution of eq. (3.1) is a combination of three
exponents:

x(t) = A 1 ‘exp(a 1t)+ A, -exp(—a d)-coswt + A 3-exp(—a3t)-sin ot

(3.2)
where
B +By1 V3
@,=B+By. a,= ) es _2—(31_32)’
y 1 y 1/3
Bro=lgtgtvglg el ey >0

The coefficients A1' A, , Ay are determined by the

initial coordinates x v o, W
(¢} (¢}

0’
w 2, 02
A o + X lag+w®) + 2a,v A
= s =X —-A
(a1+a2) +w? 2 ° 1

Ay - Vo+tagXy ~ Aj(a +ay,)

w

It is clear that in general case the charge particle
moves away from the center of force (located at

x =0). Now consider how the motion depends upon
the relation between A, A,, Ag .For A, sufficient-
ly.lf.n'ge the charged particle gives away from the
origin to infinity at once. For smaller values of A
the interference between increasing exponents takels
place: particle initially approaches the origin, stops
and then goes awy to infinity (fig. 1). For still
smaller values of A; the particle oscillates with
decreasing in time amplitude, then the growing ex-
ponent begins to play, after that particle goes to
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Fig., 1, One-dimensional motion of the charged ra-
diating particle which is attracted to the origin with
the force proportional to the first degree of the dis-
tance (F =-kx). In this figure and in the following

ones the distance is measured in units of the clas-
2 2
sical electron radius r_ = —e—-;time, in units —e—,
° moC2 m°c3
etc, The particle approaches the force center,
then stops and goes to infinity.

infinity (fis. 2). At last for A;=0 the particle oscillates
around the origin with a decreasing in time ampli-
tude. The period of the oscillation is determined

by the constant y. So, for one-dimensional case

the situation in the oscillator and Coulomb cases

is very similar,
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Fig, 2, The same as in fig. 1 but for somewhat
different initial conditions, The curve 1 corresponds
to the highly specific initial conditions (see eq.
(3.4)). For any other choice of them particle goes
away from the force center, although it may os-
cillate near it for a very long (though finite) time,
The curve 2 illustrates this,

Now we consider the motion in plane, For non-
zero values of coefficients A, _, A 1y the particle
goes to infinity at once or after several circulations
around the origin with decreasing radius (fig, 3).
For A, = 0,A1y=0 the charge particle is spiralling
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Fig., 3, Two-dimensional motion of the charged radia-
ting particle in the field of central attractive force

F =—kf. The particle once being catched inside the
radiationless ellipse, initially approaches the force
center along the shrinked spiral. At some moment
the character of motion is changed and particle
goes to infinity,

around the center with decreasing in time radius,
So, the situation mentioned in section 1 is realised:
the particle being catched inside the radiationless
ellipse, approaches the origin spiralling, and then
goes to infinity, It is highly probable that solution
found by P.,Clavier for the Coulomb case corresponds
to the oscillator solution with A (=0and does not pre-
sent the analytical continuation of the numerical so-
lution obtained by G.Plass, So we believe that the
following situation is wvalid for the charge particle
motion in an arbitrary central potential: for an arbit-

n
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rary r ,V ,w_a particle goes away to infinity;
for very specific choice of the initial conditions
particle remains in a finite region space near the
origin,

To complete the discussion, we analyse the case
of the repulsive oscillator potential, i.e.,

kx?
V=-—"—.
2

In the absence of the radiation, the particle goes
to infinity without complications. For example, if
energy E>0 (and x0>0), then the particle goes to
the left or right infinity (depending on the sign of
v, ) at once, If E<0 (and x, >0), then particle always
goes to right infinity: at once (if v,>0) or after
passing the turning point xlz\/x%—r&n—v%(if v, <0)
e?
c3
than 1/2 the solution has the form similar to (3.2):

¥ s greater

Now include the radiation, If y{(=k-(

(1) = A 1-exp(—alt) + exp(azt)-(Az-cosm + A 5 sinawt) ,

1 1+8,+8 v
a= B tBy-g: ap= __21_3" @ =“‘2"‘(ﬁ1"/32)’

y .y 1)]1/3

Y 1
Bre=ly - g Vgl -7 (a,ap > 0).

In this case the solution is presented as a com-
bination of continuously decreasing exponent and of
the increasing exponent with the periodical factor
in front of the latter one, This means that the velo-
city of particle periodically vanishes and that direc-
tion of motion reverses at these moments (fig. 4).
For 0<y< 4 the situation is slightly complicated.

, All three roots of the cubic equation are real. The
solution has the form:

X(t) = A 1-exp(alt) + Az' exp(a2t) + A 3-exp(—a3t),
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Fig, 4. One-dimensional motion of the charged
radiating particle in the field of repulsive force F=kx
for sufficiently large values of the constant k. For
the chosen initial conditions particle approaches

the force center where it may stay for a very long
(though finite) time, After that particle begins to

oscillate around the origin with increasing am-
plitude,
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a1=72—+0083—, a2—72—-——2——(0083 \/35—11'13,
XL 2y
Y
Iy 2 4 2
ag= - %— + %(cos—éﬁ +v3 Sin—gl), tgp = ————————.
1 _ v
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The solution now is a combination of two increasing
exponents and one decreasing, Coefficients A,
A, , A jare determined by the initial condition, If the
coefficient in front of the major exponent is large
enough, then the particle goes to infinity at one,
For smaller values the particle initially goes to one
side, then stops and goes to infinity (fig. 5).

These difficulties of the point electron theory
which are the same both for the singular and non-
singular potentials give a credit to the consideration

of an extended model of the electron.

4, G.Herglotz/g/ for the case of the uniformly
charged electron obtained following equation which
takes into account the seélfinteraction of the electron:

_zan 1 dﬂ+2x.
(=2a) 1 i __f

dt® ac® n=o0 (n+2)n +3)n+5)-n! ¢ gy "2 (4.1;

m -
mech

where F; is the external force, mpe., is the mass
of the nonelectromagnetic origin, The first two terms
of the sum in (4.1) are giving the electron accelera-
tion (with coefficient equal to 4/3 of the electromag-
netic mass) and the usual Lorentz selfaction of the
electron., For the oscillator external force F,=k.x;
and (4.1) reduces to the linear equation, As ear-
lier, try to find the solution in an exponential form:

X = A exp (-wt). (4.2)

Then we have the following characteristic equation
for o:

14
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o?y 2% o5 (2oayn 1
(n+2)(n+3)}n+5)n!

The summation in (4.3) may be performed in a fi-
nite form/9.10/ Putting

221\“ 1

m

+k=0.(4,3)

mech ac?2 n=o C

2aw
A =HA) (A=-—2)
one has (n +2)(n +3)(n + 5)n! ¢ ¢
1 4 4, 0 1 1 4
(A) = (— - —— 4 PR SO 1.4
¢ T A2+A3)e tg g rcl (4.9)
X
1}
as|
¥
i Fig, 5, The same as in
fig, 4 but for relatively
I small values of the con~-
stant k. The particle goes
0 t away from the repulsive

center, stops, goes back
to the origin, passes it and
[ finally goes to infinity.
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Then permissible values of o could be found
from the following transcendental equation

mmech'cz'A2 N 6e?

4a? a3

The properties of the function ¢(x) were studied
in the mentioned above paper of G,Herglotz who
considered the free motion of the electron. He also
assumed that the electron has the pure electromag-
netic mass, In this case m =0 and (4.5) reduces to:

d(A)=0.

Herglotz has been able to show that ¢(A) has ze-
ros only with a positive real part that corresponds
to solution of (4.2) with decreasing in time amplitude,
The case of the free motion with m .., #0 was stu-
died by H.Steinwadel 710/ and K,Wildermith/ !/ They
prooved that selfaccelerating nonphysical solutions
exist only in the case mg .., <0. Turning back to
the motion of the extended electron in the attrac-
tive oscillator field one notes that due to the posi-
tivity of the oscillator constant k all the conclusions
of/9-11/ for free motion are valid also for the treated
case, So the complete equation (4.3) has an infinite
number of physical solutions though its shortened
version (i.e., nonrelativistic Lorentz-Dirac equation)
has only nonphysical ones. Here we want to pay
time to the pioneering works of M.Markov’1%/and
D.Bohm/18/who nearly 30 years ago stated that the
correct equation, should possess only physical
solutions,

Except these solutions corresponding to the os-
cillations with decreasing amplitude there are solu-
tions corresponding to the motion along the stationa-
ry orbits, In this case Rew =0.Putting w=iy in (4.3)
we have the following equations for real and imagi-

nary parts:

HA) + k=0, (4.5)

mech

tgy - __4y_, (4.66)
4-y2
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2.2 2

Dyech® Y 2e
kK = mech _ . 4,.6b
4a2 a3 ( )
Equation (4.6a) defines the discrete spectrum of fre-
quencies o, Equation (4.6b) tells us that the statio-
nary motion is possible only for the discrete values

of the oscillator constant k:

2 2
m c”w 2
K - mech _ 2e ) (4.7)

n 43,2 ad
Equation (4.6a) has infinite number of zeros, For
large values of y they are forming the equidistant
spectrum

y, = D7 for n>>1. (4.8)

For such n the second term of the right-hand side
of (4.7) can be neglected and we have:

2 2 2
Mmech* C -0 -7
k, = —2 . (4.9)

Despite of the fact that energy losses its sense
(as the motion integral) for the motion defined by
eq. (4.1) (the same is true for the Lorentz-Dirac
equation) the energy has well defined discrete va-
lues for y,, k, given by the (4.8), (4.9):

E_ - mx . kx ? _ Mmech 2.n%n?

n 2 - 2 4&2
So, under definite conditions radiating charged par-
ticle can move along the stationary orbits. This
means that irreversible energy losses are not re-
duced to

2 82 2

- _3 zs_w

as for Lorentz-Dirac equation, but they are repre-
sented as a more complicated expression, For the
Yo » k, satisfying (4.8), (4.9) these losses are neg-
ligible, Due to the finite dimensions of the electron
the radiated energy has a chance to be absorbed

before it leaves the oscillator region,

.c
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5, Here we want briefly to review the present
situation with the Lorentz-Dirac type equation, There
are marny attempts to substitute another equation
for the Lorentz-Dirac equation. As an example, men-
tion Mo-Papas equation /14/in which the radiative
effects are treated phenomenologically through the
term containing the products of the four-acceleration
vector and the external force one, the Bonnor 15/
equation, where the loss of the radiation is due to
the reduction of the proper mass of the particle,
the Herrera equation/w,which contains terms quad-
ratic in external forces, etc. It is possible to
write many similar equations, but they must have
as a limiting case the Lorentz-Dirac equation. The
interesting -attempts in this direction are the
papers/7-19/ In ref/17/ it was suggested to substitute
the finite-difference equation for the Lorentz-Dirac
equation: for the motion of the free particle this
equation contains, as in our case, radiationless motion,
This idea was developed further in refs,/18,19/ To
this end we mention the series of papers of
E.Monit and D.Sharp’/ 2922/ who also considered the
extended model of the electron, These authors have
shown, that for the forces which do not depend upon
coordinates the selfaccelerated motions are absent.
So, the content of the present paper is in a line
with refs./17-22/but emphasize is made on the phy-
sical presentation using exactly soluble model,

We are very thankful to Prof. N,A.Chermikov
and Drs, E,ATagirov, S.ljin for the useful discus-
sions,
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