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0 HepenHTHBHCTCKOM ypaaHeHHH nopeHUa-ilapaKa 

Amna3HpyiOTCH npH'IHHbi B03HHKHoaeaas ae¢H3H'!ecKol'o peweaas 

HepenHTHBHCTCKOI'O ypaaHeHHH nopeHUa-ilapaKa, noKa3SH0
1 

'ITO OOHOA H3 

npH'IHH HBnHIOTCH TSK H83biBSeMble o6pS1'8Mbie noTepH Ha H3ny'leHHe, Hc

TO'IHHKOM STHX noTepb HBnHeTCH 6eCKOHe'!H8H MSCCS TO'!e'!HOrO sneKTpOHS, 

Ka'!eCTBeHHO HCCnenyel'CH ypaeHeHHe nopeHUa-ilapaKa nnH OOHOMepHOI'O 

KynOHOBCKOro cnyqag, noKa38HO, 'ITO npH'IHHOA B03HKKHOBeHHH He~H3H
'!eCKHX CHTySUHA HBnHeTCH lie CRHrynspHOCTb KynOHOBCKOI'O 8HeWHe!'o HC-

TO'IHHKS, a l'O'!e'!HOCTb sneKrpoaa, HeTo'!e'IHOCTb sneKTpoaa y'IHTbiBaeTcs 

no Merony repr-noTua, KOTop~A a cny'!ae ocuannsTopaoro aaewaer-o nons 

nonycKaeT TO'IHOe peweaae. Y'!eT aero'!e'IHOCTH sneKrpoaa yc rpaHseT He

ljJH3H'!eCKRe peweHHH, 06CylKOSIOTCH CBOACTBa nony'!aeMbiX ljJI!3H'IeCKHX 
peweaaA. 

Pa6oTa BbmOnHeHa B na6opaTOPHH Teopera'!eCKoA cjlK3HKH OH.HH. 

Openp&HT 06'bellHHeHHOI'O HHCTBTyTa SUiepHblX HCCnellOBSHHit, .Uy6Ha 1978 

Afanasiev G.N., Schpe.kov V.P. 
E2- 11179 

Remarks Concerning Nonrelativistic Lorentz-Dirac 
Equation 

Reasons for the nonphysical solutions of the nonrelativistic 
Lorentz-Dirac equation are examined. It is shown that these are 
due to the reversible radiation energy lasses. The source of 
those losses is the infinite mass of the point electron. The Lorentz
Dirac one-dimensional equation for the Coulomb external force is 
analysed, It is shown the nonphysical character of the solutions 
obtained is due to the point electron structure, but not to the singu 
larity of the external Coulomb force. The extension of the electron 
is taken Into account using the well-known Herglotz method, which 
for the oscillator force allows the analytical solution. There are 
only physical damping solutions in this case., For special values 
of the oscillator constant the stationary radiationless motions are 
possible. In this case the energy becomes an approximate integral 
of the motion and takes the discrete values, 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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1. We want to analyse a somewhat controversial 
situation with the Lorentz-Dirac nonrelativistic equa
tion. The matter is that this equation can be solved 
explicitly only for quite limited cases which have 
physical meaning. First, it is the motion of the free 
charged particle. In this case the physical solution 
(corresponding to the motion of the charged particle 
with the constant velocity) is coexisting with the un
physical one (which corresponds to the motion with 
selfacceleration). Second, it is uniformly accelerated 
motion in the constant field. Third, it is the motion 
with increasing or decreasing (in time) amplitude in 
the field of the harmonic oscillator. The most in
teresting and controversial is the particle motion 
in the Coulomb external field, It was proved by 
C.Eliezer analytically in refs. /1,2/ that for the one
dimensional motion (more exactly for the motion with 
the zero angular momentum) in a field of the Cou
lomb center the physically unreasonable situation 
always takes place. For example, let at the initial 
moment the particle be placed at distance r 

0 
from the 

attractive Coulomb center and let the initial velocity 
be directed towards this center. It was shown in 
the same refs./1.2/ that the particle initially approa
ches to the center at the finite distance, then stops 
and goes to infinity. For the Coulomb repulsion with 
the velocity off the center the situation is opposite: 
the charged particle firstly goes away from center, 
at finite distance stops and then falls on it. In this 
case there are no physically reasonable solutions. 
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This is in contrast to the case mentioned above, 
where the physical solutions coexisted side by side 
with the nonphysical ones. 

The two-dimensional Coulomb case was also 
treated in references cited above. Intuitively we ex
pect that the charged particle should rotate around 
the attractive Coulomb center with constantly dec
reasing (due to the radiation) radius. However 
C.Eliezer prooved the existence of the solutions, 
corresponding to the departure of the particle in
finity for the attractive case and to the continuous 
falling at the center for the repulsive case. These 
res~ts were criticized by G.Plass/3/ and P.Cla-
vier 4/.At first they noted that although C.Eliezer 
has found solutions with mentioned above proper
ties, he has not prooved (for the two-dimensional 
case) their uniqueness. P.Clavier has been able to 
show the existence (for r ... 0 ) of the solutions cor
responding to the charged particle motion along the 
spiral shrinked towards the center. G.Plass calcu
lated numerically a very small part of the particle 
trajectory and found that it goes inside the radiation
less ellipse. From this he concluded (although with 
some reservations) that this solution goes asympto
tically (for t ... oo) to the class solutions found by 
P.Clavier. (At this point we note that there are no 
guarantee that particle being catched once inside 
the radiationless ellipse, does not leave it later). 
The results, obtained by C.Eliezer for the one-di
mensional Coulomb case were rejected by P.Clavier 
and G.Plass on those grounds that this case has 
no physical meaning and that singularity : is too 
strong for the one dimensional case. So they sug
gested to find the physical reasonable solutions of 
the Lorentz-Dirac equation on the class of the gene
ralized functions. We believe, however, that this ar
gi.tmentation is not very convincing because there 
are physically reasonable solutions on the class of 
the usual functions for the radiationless motion with 
zero angular momentum. Finally, we mention the 
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recent numerical solutions of the Lorentz-Dirac 
equation for the Coulomb one-dimensional case 151, 
These calculations support the analysis given by 
C. Eliezer. Also they present an argument for working 
with the usual functions. In fac\ one may change 
the singular Coulomb potential r by the potential 

without singularity: 
1 

_.As the numerical calcu-
yr2 +a2 

lations show that aoove-mentioned turning point is 
on the finite distance from the Coulomb center then 

1 1 
substitution - ... --====-does not change the results 

r yr2+a2 
of the numerical calculation if parameter a is suffi
ciently small. So, the nonphysical character of the 
solutions is not due to the irregularity of the Cou
lomb potential. 

2. Here we give an analysis of the Lor·entz
Dirac equation for the Coulomb case. 

2 2 3 d x i yx i 2 e d x i 
mo--- -- = ------. (2.1) 

dt 2 r 3 3 c 3 dt 3 
dx · 

Multiplying (2.1) by ctf• summing and transforming 

the right-hand side of ( 2.1) one has 

~[.!.:m (dxi )2+2:_-~_:.: d2xi. dxi]=-~~(d2xi)2<0. 
dt 2 o dt r 3 c 3 dt 2 dt 3 c 3 dt 2 

(2.2) 

The right-hand side of (22) corresponds to the so
called irreversible radiation losses, whereas the 
last term at the left-hand side corresponds to the 
reversible losses/6/. The origin of these terms is 
due to the radial dependence of the en,.rrgy flux 
produced by the accelerated charge/7 ·8 .In fact, the 
energy flux contains three parts. First there are 
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terms which depend only upon the charge velocity. 
They are exactly the same as for the uniformly mo
ving charge. It is known that such charge carries 
the electromagnetic field with itself. The disturbance 
of the electromagnetic field caused by the charge 
motion is called sometimes as electromagnetic "fur
row''. Second, there are terms which contain both 
the velocity and ::1cceleration of charge. These are 
needed to rebuild the electromagnetic furrow from 
one velocity to another. Both of these terms decrea
sing sufficiently rapidly do not contribute to the 
energy flux at infinity. So, the energy flux produced 
by these term is contained in a finite region of 
space, surrounding the moving charge. At last, the 
energy flux contains the terms which depend only 
upon the charge acceleration. Being integrated over 
the sphere of the infinite radius they do not dis
appear. So, these terms are responsible for the 
energy flux to infinity and they give rise to the 
origin of the right-hand side of eq. (2.2). 

Forget for the moment about the terms containing 
the acceleration in eq. (2.2). Then we have for one
dimensional Coulomb repulsive case: 

d [ 1 dr )2 y ] --m (- +- =0. 
dt 2 ° dt r (2.3) 

If at the initial time the electron has velocity di
rected towards the Coulomb center, then the motion 
takes place in the following way. At first, the dis
tance of the electron from the Coulomb center is 
decreasing. This results in increasing the potential 
energy f . But the expression in square brackets 
has the constant value, so the kinetic energy is dec
reasing and the electron is slowing down. .M 
s orne moment it stops, and then goes to infinity with 

the velocity growing up to the value v 2E • Now in-
mo 

elude the right-hand side of the ( 2. 2) : 

I 

.. 

d [ 1 dr 2 Y ] 2 e 
2 

2 ( ) - - m (-) + - = - - - w < 0. 2 4 
dt 2 o dt r 3 c 3 • 

Initial conditions being the same as in the previous 
case, the motion has also same qualitative features. 
Due to the negativity of the right-hand side of eq. 
(2.4) the electron stops at an earlier time and at 
a greater distance from the Coulomb center than in 
the previous case. There are no anomalies in this 
case and it is possible to show their absence also 
for the attractive case. So, nonphysical behaviour 
of the solutions is only due to the term correspond
ing to the reversible energy losses. Or, in other 
words: rebuilding of the electromagnetic furrow re
quires too much energy and this exceeds the energy 
losses due to the radiation. There is the obvious 
reservoir of energy: the infinite electromagnetic mass 
of the point charge. 

3. Here we consider the exactly soluble motion 
of the charged particle in the field of one and two
dimensional oscillator. The same physically unrea
sonable situations are present in this cas~ but there 
is possibility for the analytic analysis of the so
lutions obtained. Nonrelativistic Lorentz-Dirac equa
tion has the following form in this case: 

d2 x 2 e 2 d3 x 
m ------- +kX=O. 

0 dt2 3 c 3 dt 3 
(3.1) 

It is convenient to measure distance in units of 
2 

the classical electron radius r = _e_ , time in 
o moc2 

units of time needed for the light to cover the dis-
2 

tance equal to electron radius r = _e_, velocity in 

units of the light velocity 

0 
moc 3 

c, etc. Tnen we have 

d2 X 2 d3 X -- - - -- + yx = 0 . 
dt2 3 pt 3 

Where y is dtmensionless constant 
of the oscillator constant to that of 

equal to the ratio 
radiation reaction: 
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e 2 2 
y =k·(--) 

m e 3 
0 

The solution of eq. (3.1) is a combination of three 
exponents: 

x(t) = A 1 ·exp (a 1 t) +A 2 ·exp(-a :f)·eoswt +A 3-exp( -a
3

t)· sin wt: 

(3.2) 
vvhere 

a1=f31+{32, a = 
2 

{31.+{32-1 

2 
w 

v3 
-2-({31 -{32)' 

~ y 1 y y 1 1/3 
~--'12 =[-

2
-+-± v-<-+-)J 

' 8 2 2 4 
(a 

1 
,a 

2 
> 0). 

The coefficients A 1, A 2 , A 3 are determined by the 
initial coordinates x , v , w 

0 0 0 

A = 
1 

A3== 

W 0 +X 0(a~+w2) +2a
2

v
0 

(al+a2) +w2 

v o + a 2x o - A 1 (a 1 + a 2) 
---------------w 

A2 ==Xo-A 1' 

It is clear that in general case the charge particle 
moves away from the center of force (located at 
x == 0 ). Now consider how the motion depends upon 
the relation between A 1• A 2 , A 3 . For A 1 sufficient
ly large the charged particle gives away from the 
origin to infinity at once. For smaller values of A 

1 
the interference between increasing exponents takes 
place: particle initially approaches the origin, stops 
and then goes awy to infinity (fig. 1). For still 
smaller values of A 1 the particle oscillates with 
decreasing in time amplitude, then the growing ex
ponent begins to play, after that particle goes to 
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.. 

X 

1 

0.5 

0 ~~~~--~~~~~t 
1 2 

Fig. 1. One-dimensional motion of the charged ra
diating particle \1\lhich is attracted to the origin with 
the force proportional to the first degree of the dis
tance (F == -kx). In this figure and in the following 
ones the distance is measured in units of the clas-

. • e2 • . • e 2 
steal electron radtus r

0 
= --

2 
;hme, tn units -3, 

m
0
e m0 e 

etc. The particle approaches the force center, 
then stops and goes to infinity. 

infinity (fig. 2). At last for A1==0 the particle oscillates 
around the origin with a decreasing in time ampli
tude. The period of the oscillation is determined 
by the crmstant y. So, for one-dimensional case 
the situation in the oscillator and Coulomb cases 
is very similar. 
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Fig. 2. The same as in fig. 1 but for somewhat 
different initial conditions. The curve 1 corresponds 
to the highly specific initial conditions (see eq. 
(3.4)). F'or any other choice of them particle goes 
away from the force center, although it may os
cillate near it for a very long (though finite) time. 
The curve 2 illustrates this. 

Now we consider the motion in plane. For non
zero values of coefficients A 1x , A 

1 
the particle 

goes to infinity at once or after sev~ral circulations 
around the origin with decreasing radius (fig. 3). 
For A1x= O,A 1y=0 the charge particle is spiralling 
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' • 

A. 
~' 

I 4t"'""\ I I t I I I l 
10 • X -I. 

Fig. 3. Two-dimensional motion of the charged radia
ting particle in the field of central attractive force 
F = - kf. The particle once being catched inside the 
radiationless ellipse, initially approaches the force 
center along the shrinked spiral. At some moment 
the character of motion is changed and particle 
goes to infinity. 

around the center with decreasing in time radius. 
So, the situation mentioned in section 1 is realised: 
the particle being catched inside the radiationless 
ellipse, approaches the origin spiralling, and then 
goes to infinity. It is highly probable that solution 
found by P.Clavier for the Coulomb case corresponds 
to the oscillator solution with A t=Oand does not pre
sent the analytical continuation of the numerical so
lution obtained by G .Plass. So we believe that the 
following situation is valid for the charge particle 
motion in an arbitrary central potential: for an arbit-
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rary 1
0 

, ~ 
0

, w 
0 

a particle goes away to infinity, 
for very specific choice of the initial conditions 
particle remains in a finite region space near the 
origin. 

To complete the discussion, we analyse the case 
of the repulsive oscillator potential, i.e., 

kx2 v =- --
2 

In the absence of the radiation, the particle goes 
to infinity without complications. For example, if 
energy E > 0 (and x 

0 
> 0), then the particle goes to 

the left or right infinity (depending on the sign of 
v 

0
) at once, If E< 0 (and x

0
>0), then particle always 

goes to right infinity: at once (if v 0 > 0) or after 

passing the turning point x 1 =vx ~- ~ v~(if v 0 < 0 ). 

Now include the radiation, If y ( = k · ( ~3 )
2

) is greater 
m c 

than 1/2 the solution has the form si~ilar to (3.2): 

x(t) = A iexp (-a
1 
t) + exp (a

2
t) ·(A 

2 
· coswt + A 

3
• sinwt), 

1 
a1= {3 1+{3 2-~, 

1+{31+{32 
a2= --2---, y3 ('j -{32), w = 2 t 1 

[ 
Y.: 1 y y 1 1/3 

{31.2= 2- 8 ±y2(2- 4)] (al ,a2 >0). 

In this case the solution is presented as a com
bination of continuously decreasing exponent and of 
the increasing exponent with the periodical factor 
in front of the latter one. This means that the velo
city of particle periodically vanishes and that direc
tion of motion reverses at these moments (fig. 4), 
For 0 < y < ~ the situation is slightly complicated. 
All three roots of the cubic equation are real. The 
solution has the form: 

x(t) =A iexp(a 1 t) + A 2 • exp(a2t) +A 3 -exp(-a 3t), 
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1 

X 

1 

0 ~ · ...._ 5 *' I \ I • I 1o · t 

-0.5 

_, 

-1.5 

-2 

Fig. 4. One-dimensional motion of the charged 
radiating particle in the field of repulsive force F=kx 
for sufficiently large values of the constant k. For 
the chosen initial conditions particle approaches 
the force center where it may stay for a very long 
(though finite) time. After that particle begins to 
oscillate around the origin with increasing am
plitude. 
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where 

1 ¢ 1 1 ¢ -.¢ 
a 

1 
= 

2 
+ cos 3 , a

2 
= 2 - 2 ccos3 - y3 sm3 ), 

yL(1-=-L) 
1 1 rf.. -;- rf.. 2 4 2 

a = -.,., + -(cosL + \13 sini), tg¢ = -------. 
3 ,:;, 2 3 3 1 __ L_ 

8 2 
The solution now is a combination of two increasing 
exponents and one decreasing. Coefficients A 1 , 

A 2 , A 3 are determined by the initial condition. If the 
coefficient in front of the major exponent is large 
enough, then the particle goes to infinity at one. 
For smaller values the particle initially goes to one 
side, then stops and goes to infinity (fig. 5), 

These difficulties of the point electron theory 
which are the same both for the singular and non
singular potentials give a credit to the consideration 
of an extended model of the electron. 

4. G.Herglotz/9/ for the case of the uniformly 
charged electron obtained following equation which 
takes into account the selfinteraction of the electron: 

d 2x. 24e 2 
"" (-2a) 0 

m ·-_!_+--I 
rnech dt2 ac 2 n=o (n + 2)(n + 3)(n+5). n! 

n+2x 
1 d !_-=F. , 
~-- . 1 ~ 2 

n dt n+ ( 1) c 4, 

where F i is the external force, mrnech is the mass 
of the nonelectromagnetic origin. The first two terms 
of the sum in ( 4.1) are giving the electron accelera
tion (with coefficient equal to 4/3 of the electromag
netic mass) and the usual Lorentz selfaction of the 
electron. For the oscillator external force F i =k. x i 
and (4.1) reduces to the linear equation. As ear
lier, try to find the solution in an exponential form: 

X = A· exp (-wt). (4.2) 

Then we have the following characteristic equation 
for w· 
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2 "" 
m ·w2 + ~.w2 ~ (2coa)n 1 +k=0.(4.3)' 

mech ac2 n=o c (n+2)(n+3Xn+5)n! 

The summation in (4.3) may be performed in a fi
nite form/9,10/ Putting 

one 

A2 ~An 1 =¢(A) (A= 2aw) 
c 

has 
(n +2)(n +3)(n + 5) n! 

1 4 4 w 11 4 
¢(A) = (- - - + -)e +- + - - -. 

A A 2 As 3 A A 3 
(4.4) 

1 

0 

X 

Fig. 5. The same as in 
fig. 4 but for relatively 
small values of the con
stant k. The particle goes 

I . . , 
1
. . . • t away from the repulsive 

1 2 34 5 6 center, stops, goes back 
to the origin, passes it and 
finally goes to infinity. 

-QS 
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Then permissible values of w could be found 
from the following transcendental equation 

m ·C 2 ·A 2 
2 

mech 2 + 6e3 ¢(A) + k = 0. t4.5) 
4a a 

The properties of the function ¢(x) were studied 
in the mentioned above paper of G.Herglotz who 
considered the free motion of the electron. He also 
assumed that the electron has the pure electromag
netic mass. In this case m mech=O and (4.5) reduces to: 

¢(A)= 0. 
Herglotz has been able to show that ¢(A) has ze
ros only with a positive real part that corresponds 
to solution of (4.2) with decreasing in time amplitude. 
The case of the free motion with m me·ch loO was stu
died by H.Steinwadel hoi and K.Wildermith/ll~They 
prooved that selfaccelerating nonphysical solutions 
exist only in the case mmech < 0. Turning back to 
the motion of the extended electron in the attrac
tive oscillator field one notes that due to the posi
tivity of the oscillator constant k all the conclusions 
of/9-11/ for free motion are valid also for the treated 
case. So the complete equation (4.3) has an infinite 
number of physical solutions though its shortened 
version (i.e., nonrelativistic Lorentz-Dirac equation) 
has only nonphysical ones. Here we want to pay 
time to the pioneering works of M.lVfl.rkovl 12/ and 
D.Bohml 13/ who nearly 30 years ago stated that the 
correct equation, should possess only physical 
solutions. 

Except these solutions corresponding to the os
cillations with decreasing amplitude there are solu
tions corresponding to the motion along the stationa
ry orbits. In this case Re w ={), Putting w = iy in ( 4.3) 
we have the following equations for real and imagi
nary parts: 

tg y = 
4y (4.6a) 

4- y2 
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2 2 2 
mmech·C ·Y 2e 

k = ---
4a2 a3 

(4.6b) 

Equation (4.6a) defines the discrete spectrum of fre
quencies w 0 • Equation (4.6b) tells us that the statio
nary motion is possible only for the discrete values 
of the oscillator constant k: 

2 2 2 
m mech • c • w 2e 

4a 2 - ~· kn (4.7) 

Equation (4.6a) has infinite number of zeros. For 
large values of y they are forming the equidistant 
spectrum 

Yn ~ 0•77 for n >> 1. (4.8) 

For such n the second term of the right-hand side 
of ( 4. 7) can be neglected and we have: 

2 2 2 
IDmech" C •D •77 

kn a2 
(4.9) 

Despite of the fact that energy losses its sense 
(as the motion integral) for the motion defined by 
eq. (4.1) (the same is true for the Lorentz-Dirac 
equation) the energy has well defined discrete va
lues for y

0
, k

0 
given by the (4.8), (4.9): 

2 2 2 
mx 2 kx 2 mmech ·C •D "77 

E =--+---
n 2 - 2 4a2 

So, under definite conditions radiating charged par
ticle can move along the stationa.ry orbits. This 
means tha.t irreversible energy losses are not re
duced to 

2 e2 2 
-- -w 

3 c3 
as for Lorentz-Dirac equation, but they are repre
sented as a more complicated expression. For the 
Y 

0 
, k 

0 
satisfying ( 4.8), ( 4. 9) these losses are neg

ligible. Due to the finite dimensions of the electron 
the radiated energy has a chance to be absorbed 
before it leaves the oscillator region. 
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5. Here we want briefly to review the present 
situation with the Lorentz-Dirac type equation.· There 
are many attempts to substitute another equation 
for the Lorentz-Dirac equation. As an example, men
tion Mo-Papas equation I 14/in which the radiative 
effects are treated phenomenologically through the 
term containing the products of the four-acceleration 
vector and the external force one, the Bonnar I 15/ 

equation, where the loss of the radiation is due to 
the reduction of the prof.er mass of the particle, 
the Herrera equationi'16,which contains terms quad
ratic in external forces, etc. It is possible to 
write many similar equations, but they must have 
as a limiting case the Lorentz-Dirac equation. The 
interesting ~attempts in this direction are the 
papers/7-19~ In ref/17/ it was suggested to substitute 
the finite-difference equation for the Lorentz-Dirac 
equation: for the motion of the free particle this 
equation contains, as in our case, radiationless motion. 
This idea was developed further in refs/18,19/, To 
this end we mention the series of papers of 
E.Monit and D.Sharpl 20-22/ who also considered the 
extended model of the electron. These authors have 
shown, that for the forces which do not depend upon 
coordinates the selfaccelerated motions are absent. 
So, the content of the present paper is in a line 
with refs/17-22/but emphasize is made on the phy
sical presentation using exactly soluble model. 

We are very thankful to Prof. N.AChermikov 
and Drs. E.A Tagirov, S.lljin for the useful discus
sions. 
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