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Martpuuniie u ananMTHYeCKWe NpeacTaBlenms nng KBaTEpPHHOHOB
H OKTOHHOHOB. [,

Ons xearepruonoe (matpuun Ilayas nas cnmna 1/2) m oxTonmoHOB
(xoToprie B Nocneanee BpeMs NMHITANTCSH HCHOML3OBATL ans oGbSACHeHHN KBAp~
KOBOft CTPYKTYPEHI) MOCTPOEHH OYeHb MPOCTHM CHOCO60M MaTpHYHEI® H aHa-
AMTEYECKNE NPencTaBlleHus B CMbICIe Teopud NpeacraBiemuft Aupaxa. Onm
TipenHa3favenbl Ans $opMalu3Ma MaTPHEUObl IVIOTHOCTH. OKTOHEOHKHIE MaTpRun
YAOBIETBOPAIT MOAMQHIKPOBAHHOK (HO cpaBHeHmio ¢ anreGpofi OKTOHEOHOB)
accounarsBHON anrebpe. AHalMTHYeCkHe HPEACTARICHHS aHalOrHYHEI npeacran-
neHmo Burnepa m NpencraBleRMIo KOrepeHTHHX COCTOSHmH ansg O6BITHOH KBaH-
TOBOI MeXaHMKE GeCCNMHOBLIX YacTHO. Mpocrefimud BapuanT OXTOHEOHHON
KBAHTOBOA MeXaHHKH, BK/OYAS YDABHEHHS NBHXKEHHS Ang oNneparopa INIOTHOCTH
u nabGmonaeMsX, CYOPMyNUPOBAH BHaYame PAMO Ha H3Eike OKTOHHOHOB, a 3a-
TeM Npeo6pa3’oBaH B yka3aHHBIE NPeACTABACHUS.

PaGora Brinoanena B JlaGopartopuu TeopeTnyeckolt ¢uauxm OURH.

CooGmerne O6beaHHeRHOr0 HECTHTYTA AnepHHX HCcheoBaun#. Hy6ua 1978
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Matrix and Analytic Representations of Quaternions and
Octonions, 1, :

Matrix and analytic representations (in the sense of the Dirac
representation theory) are constructed'in a very simple way for qua-
ternions (Pauli spin 1/2 operators) and - octonions. They are appli-
cable in the density matrix formalism. The octonion matrices satisfy
a modified (with respect to the octonion algebra) associative algebra,
The analytic representations are similar to the Wigner and coherent
state representations in quantum mechanics of spinless particles,

A simplest case of octonion quantum mechanics is formulated, includ
ing equations of motion, at first, directly in terms of octonions, and
then is transformed into the representations under consideration,

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR,
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I. INTRODUCTION

The Dirac representation theory n/ deals usually with a
description in terms of amplitudes . Representations of another
kind are possible, which use the density matrix terms and, e.g.,
arc close to the classical description of angular momentum, and
relative to phase space representations in quantum rechanics of
spinless particles, such as the Wigner and coherent state
ropresentations, Here we gonerate in a very simple way, along the
line of the Dirac representation theory, similar matrix and
analytic (continuous) representations for spin %-, i,e, for qua-
ternions (Sec, 2) and for octonions (Sec, 3). The algebra of
octonion 8x8 matrix representatives certainly differs from the
octonion algebra., One can say that the latter masks an additional
term of the matrix algebra (see eqs., (73) and (74)) by means of
the non-associativity (like thg Jordan algebra does with the
non-coxmutativity). :

Eote, that the mathematical <theery ef ocontinuous re-
presentations was elaborated by J.R.Klaude 2/, Spin coherent
states and genersligations on other classical groups were conside-
rad 1n/g:¥:73/3'4. Investigating the quark sfructure, P.Gursey
et al. extensively develop now symmetry and quantum-mechani-
cal aspects of exceptioral groups based on the octonion algebdbra,
In particular, 818 matrix representation of octonions wes also
considered 6/, but approach and construction were different.

" In Sec. 4 we epply the concepts of Sec. 3 to the simplest
case of octonion quantum mechanics, The corresponding r-number



system was proposed by P.Jorda.n/'lz{ but it 1s not exceptional
quantum mechanlcs of Jordan, Neumann and Wigner/‘uf At first,

we construct the octonion quantum mechanics directly in terms of
octonions, and define the density operator and equations of mo-
tion for it and for other operators si.e., analogs of Born-Jordan-
Dirac and Neumann (Liouville) equatioqs. The Jordan algebra is
not used. All octonlon units are treated alike (the unit ez is
not isolated), and the usual imaginary unit 1  is used to
make "observables"™ ©; Hermitian, Then we transform the octoni~
on quantum mechanics into the representations under consider-~
ation, and, in particular, write Liouville equations for the
quaternions and octonions,

2, REPRESENTATIONS OF QUATERNIONS (PAULI MATRICES).

We start with the completeness relation for Pauli spin L
matrices 2

lel®les| —_"; (‘eo\@“eo“‘ lQ:J®“€'1\D = | (1.a)
4 -
= da 2 a

. g a S(“-;. 1) \U(q)[@l\U( )| R 1)

which is written in ‘terms of quaternion units :

eo= C=a Q.= LA
o=8, @;=-e, e,aj__Sijeﬁafjkek (4,3,k=1,29) (2)

with quaternion conjugation e.;_—aE;}:—e;_. « We can return
to the Pauli matrices 6'-1 by the substitution -

33=—153 . ' v (3)

_ 2 . .
In eq. (1.b) 57-4- 2% is the surface of the unit 4-dimensi-
onal sphere, -U(CQ is the rotation matrix in the form of

the "matrix, associated with the vector" o, =(u a..) fs 2o
S\oy ’a- =0 A=A
F=0,4,2,3) g oGt

U(CQ = Qoo+ a;e;= (Lrer . ’ (4)

—_—

g

Inheqa. (1) we employ indexless matrix notation, using single
and double vertical lines. It is easy to reproduce index notati-
ons, e.g«y if [eil®@lle;ll 1s translated to be (e;)AP(eQ,‘s .
then leoll®lles|  means %&SC‘;XF . In eq. (1.b) 1t 18-
explicitly stressed that we deal with integration over the group
0(4), The 0linde Rodrigues parameters Oy aTO in many relations.
more convenient than angles (the Euler angles and others/ 14115/ ).
The integral over .y is trivial (Sa\‘la‘S(a};—ﬁa&aE-‘g‘SmSlq \
and eq. (1.b) reduces to eq. (1.a). '

Usual derivation of the completeness relation begins with
the proof that {daU(§)FU(g) or enF g is a constant
multiple of the unit @,  whatever the matrix F=coe°+c;e£
is. ‘lildfe that this fact is a simple consequence of the identities

eieei=-3e,,. jege;= ej. (5)

Really, the terms i:l,th g canc‘el‘,; and we have

CePer- eFeymdeeo=4ThF . 0 (®

With such a normalization the trace turns out to be the real part
of quaternion (TrsRe)  (The definition independent of dimen-
sionality of représéntative matrices), Equation (1.a) follows
from eq. (6) by subs‘titutihg for F all possible matrices with
all but one zero entries. - )

In this simple way one can obtain analogs of egs. (6) and
(8) (main consequences of eq. (1.a)) for other complete matrix
sets (e.g., for 4x4 X -matrices), and for some non-complete
matrix sets (see, e.g. eqs. (17) and (18)), and also for the
ootonions (eqs. (62) and (66)).

Now we proceed to consider representations.

N TR F). o

Any operator F (2x2 matiix) is completely defined by the rep-
resentative (7)("4-vector "), since according to eq. (1.a)

F=e, e F) _ (8)

(the reconstruction theorem)., The multiplications of P by .eﬁ



on the left or right may be written, using (3) a8 operators, ac-
ting on the representative (7)

T‘L (EMQ—QP):( Euo%(rﬁ- E-oaat,)T"l-("—r-P) (e-e_)x T‘Lc’z.p?
Te@aFeg) = (Su&%tw DuderConep) ToE,F)= =(eD)up (e, F)
Hence the left and the right representativee of QL are .f.ogag)

to be
(ee)ur:%&@ro—ﬁmhp— E.o?_p_’.‘ = Tm@.uee_er\ , D
(eZ)uﬁ&uSg«o—‘ém‘Sqr Eoxtp = T(Ep ey e_a (12)

where the last expressions follow from eqs, (9) and (10), put-
ting F = 2,‘ . Now any operator, constructed out of quaternions

e, , and any equations for such operaters may be written in
terms of these representatives (see Sec.4)., The representative
(7) mey be used for density matrix (F = f) , snd

eqs. (11), (12) for operators (observables), acting on it (e.g.,
Hamiltonian)., As & general rule for all repres’entetions, the left
representatives are multiplied in the sane order as  e; , but
right ones in the inverse order. t

The above representatives and the matrix 7[_-1 (eoteje -.,)
may be written in an explicit matrix form as follows

1 . . . 1 o e . . 1 . . o . 1 _1‘, P

ng_: B eg‘,__ e .. e,%__ (R | e'ti. AR IR . o
O IREPEE S LA RERIES-L ] Pt it = BUCIEEE [kl IO ¥ R ’Yl_ “ . 1 +{2(13)

RS | 1l oM. < Ao .. o4
where dote denote zeros, The matrices e; satisfy the quater-

nion algebra (3), and the matrices e.i_"‘ the similar algebra,

but with the change €., —— E‘ijk « Both kinds of the repre-
sentatives commute with each other

2
[ei,€§]=0 (14)

and are related as follows

I ¢ 4 L. 2
ei=-nei,  p=jeteiel), q=e - a5
In fact, e;L, and e."-f have much in common. with

familiar Dirac 4x4 matrices pi _and Gy '.)__Only 16 matrices
)However, el’r 1,r 2

are real and ey

=—8,9 but some ef O. and 6;
are nagimy and gt _6 =@5.

., ei, 'i and '}-°d together, i.e.,e e)‘ with 2,\ = 0,1,2,3,
I?:m a complete set (but not é or e- separately) with the
completeness relation

4 lelellecl= ledetloliEresl . (16
However, there exist enalogs of usual consequences of eq. (16)
for e and € separately; _

eg Pe‘ ¢ _e_?- ¢ ?._' 4 T'LP(" CF'LERe) , an
pt - ! AT T (18)
. ‘ o«
where P —C—oeo +Ci&y and the same is true for €g .
Equations (17) and (18) are derived along the line. indicated
on Pe Se
Another identification of el' . If we denote 1=(o1) (1
then "’ef—' reduces to Pauli ma.trices as follows

(10 _: L( = e _1( =16 .(19)
€$=1(o~1)"~657 €1=N1 0 16’- » Ss IR0

Note that

- ¢ _ L _nt o
T (Q.&P)= peey«TT-(er)r‘P‘ago =Fes - , (20)
‘ . .
Ir ¢ and '\:‘ are a density matrix and any operator
(both are quaternions), then the expectation value of F is

given by i,'T'q (’Pg) . Let us give possible representations of
the latter in terms of our representatives,
a) Futting

¢ = epn Te(Zp) (21)
we get

P (F)=Tr (e YT €9 =T & ‘:)T"’-@r?\-“‘-@ ol

(22)
where dots indicate a possibility of other dispositions of the
symbol of conjugation. Here ¢ and are converted
into column (row).

) - Ta(Fg)=d Te(@uFoea) (=1) . @



Putting here

Per=ey ‘T'q.( 192a) | ‘(24)'

we obtain (cf, eqs. (11) and (12)) the matrix realisation

T (Fp)=dTe (& =P ea,) d T (8 Fe )T'L(e gea&)_

£ ¢ :
=d(F )aq‘ (9 | (25)
where e poebepie %, F‘E—coe&+cie‘f:_ .
B T (D@F) . ‘ (26)
Due to eq. (1.b) we haye the reconstruction theorem
F=2 S‘ﬁl 8 (@f-1) V@) T (T.Y(CQF) . (@)

The representation '(26) 18 a funotion of three continuous para-
meters (instead of the discrete indez r( in 4 )

(q) o\t z 2 .
_\]___ ’A Mo —J—T) +(ﬁ) =1 (28)
(instead of a, , one can take the Euler angles),

The rotation matrices U(X)  form a basis like the density
matrix basis. Consider properties of this basis:

T’L U(‘Q— \'—E—g .v . ’ . (29)
Te (T@)e;) = " (30)
T,L(U(a)v(e)) = (31)

,! 9.] T .
Thus, @; are like "expectation values" of matrices €; in
"statea" U(d-) (up to factor 1/\|¢1’- e 'I‘herefore, the "state"
U(GQ is given in terms of these "expectation values"™,

Further, we must find left and right representatives for €;
such that

] 1(E(¢3Qip) = Q{ Tm(U(&)p) , - (32)
T (U@ Fe) = et T2 (T@F). (33)

It is easy to check that

(aes d’e)Q =W +AiRo+ eqkd' ek‘(“"l - b{- E\,skq‘ }Ib@“%*a‘et)
34)

e-t(u,eo—a-,eik et aies i{iktl-‘ekz(u.@ oo O3+ E.{;y_a.sbq(%? %)e‘) ,

where 3°='3/3ao,3i=’al'bai . Hence,left and right representati-
ves of €, are given by

. |
@ =0y ~0adi ~Eiju oy | (36)

e'-‘; = &ibo— (Lo’b‘i"‘iiikajau . (37

This representation is characterized by the same three
continuous parameters as the rotation in classics ‘(the Euler
angles), Recall, that ususl_].y matrix F is characterized by
matrix elements between states with definite spin projectiens say,
by <mz{R|m{> , where exploited are two discrete variables
having no snalog in classics, The representation under considera-
tion permits us to complete the Wigner description of spinless
particles in terms of phase space, by the similar "classical”
description of spin degrees of freedom.

The representations A snd B are connected as follows

Ti(euv)-—gd‘a%w “)ETTOF) , (38)
Tm(U(aW) = \?_"; (39)

The relationship between T’L(Q-N_.F) "and T’L(U(“-)F) is simi-
lar to the one between a distribution and its characteristic
function in mathematical statistics (they are comnected via the
Fourier transform)., To emphasize this fact we write eqs. (38)
and (39) in the other form

T =L §dy TE (DT (TI) (1)
Tm('U(Q,W) Z T“ ROEICTOMN )
where T z are the generalized apherical harmonics of

order -1-/15/ and 'T' ‘ are conjugated ones. The coeffi-
cients 3-(10'«") are, in fact the traces 'T'c Gmnp) . ’ , where
Bwmn  are the set of four matrices (o o) ) ( y
i.e.;i(eo.;.ie.‘\, 1(29_ Fie,) . Thus, quantities ?’Q_@m



are linear combinations of T'LCQ}‘F). The identities (8)
and (27) take the form

Feim s VOT@EF)= S 6 Flhma), ()
©) QIT@FU@OI> =2Tr(T),

Any operator IS is completely defined by these expectation
values (see egs.,(55)) in the "coherent stateg"/3s4/

>=TE0>, ) =T@)Io>O{Ta) , (44)

where (0D i any fixed veitg (column), ‘wg adopt that 0> ig
an elgenvector of 6%= 0_13 with eigenvalue +1 :

10>= (10) ,  10>l= 1%) = 4,_-@# 6,) . (45)

The coherent states are labelled also by three continuous parame-

ters, characterizing U(a)., From eq.(1.b) we immediately get the
completeness relation for coherent states

'547« (4 S (@imt) (@) 0> <0l Tiw) = e . (46)
Row 1t 1s convenient to use the Cayley parameters
T@=t [u -v“]' T@s= 3t (*“ U*} '
Vw4t W) ? V() N[y EEURTY

The expectation values of the matrices 6, are

47)

¥
a6 Jad = MUWY _ 2(@ydptaiay)
tult +1uj2 a2t 13

<a| CHRN ___'i(lr*u-u‘ﬂ = i(d“!ag,‘dod1l -
‘u|l+|ul’. az— +§:2 _113 (48)

L8 2
<a6ylaye B afrad -af-of
Ity fyf2 ad +a& I )
where the relations '

15,105 =K0(6,100 =0 , <0164(0> = | (49)

T@5;U) = 16, (50)

10

were used, Since the vector rotation matrix |l 'L.;-s[l is ortho-
gonsl 3
Listig=1 (51)

only two of 11371,3,'!-3; are independent, and we cannot use
them instead of @y to characterize the coherent state la> ,
unlike the usual coherent state representation. The non-normali-
zed states la.>'=\l|u|"+hr|’- 1> and Kat) depend on independent
variables

= (u* %) , '\°L>,=[(:g] (52)

and we easily get, e.g., the left representatives as follows

al6,= ("*%di*' u*%—-m)‘(d\ , Kal6,FlaY = (w2, +uﬁ}\-§)‘<aﬂi‘lm>' (53)

BUF
and after returning to the normalized states

<al6;F 10> = (%25 4P +<atib ) < Pla> = sl -

U
<alsgPiad =(-Lu¥,%a; -1 u*%,ﬁ <0L(6,_(a))<q|Pla>.=.6§<a|\?'l¢> (54)
. R _
<au63,F\¢>=_(w=,}—u;-u*,ig?,+<a\sga>)<a\v|a>=6&\?\@ :
o v

The right representatives are compex conjugate to the left onmes.
The construction of above representatives 1s similar to that in
the Wigner or in the coherent state representations: a differen-
tial operator plus expectation Vﬁlue-ésee, e.2.,718/y,

Fow we can express any operator via 1ts coherent state
expectation values &s follows

- é; fa 5(a2-14) ey &, AT@WFU@)1> = (55.2)
16 SA"qS(4;-4“&"é%@&-ﬁU(G)AU(&KO\T—J(GLWU@O\(’)G&b)

3 |
where &, with V=0 equals to unity and with ngo to all
ey from eqs. (54) (or equivalently to all €, ),acting
op variables &, . The same substitution also transtorms U (8) into
T(®) . ome oan easily check egqs. (55), using the completeness
relations (1). '
The cemneotion with the previous representations A and B

11



is clear from (55), in partioular,
Te(e M=% {ia B(h-D & OIT@FU@I0> (56)
T (TP =& |44 36-) V@O TOF V@)D . o0

This coherent state representation also uses the para.métera
of “classical nature®,

D) <0IPlc>, <olle; FIIod>, <oleiFe;+eFelod . (s8)

These expectation values form one more matrix representation,
Fote only that it is connected with the coherent state represen-
tation like & distribution with characteristic fuﬁction, in
particular, ' '

OIT@FU@|0d= %‘i—<ow\o>— %(o\cemlo>-“—;%i<o|e{?e3\o>
Y v

: (59)
This equation is similar to eq. (39) or (41), but now with
Toun, T T T
mn 4 Vw804 Vi, 1nstead of win e+ An inverse relation

follows straightforward from eqs. (55.a) and (49).
3. REPRESENTATIONS FOR OCTONIONS

The current discussion by F,Girsey et a1,/5=10/ ¢ symmetry
and quantum-mechanical aspects of the exceptional groups makes
it of interest to introduce the representationa, similar to the
above ones, for octonions., It is possible, in spite of the ab~
sence of the matrix realization (in the usual sense) and correg-
ponding completeness relation. Now we assume the trace for octo-
nions to be also the real part ('T"z,s Re_) « Further we find
from the octonion algebra

el_e.s = “Siieo"'&.“‘_ikek (i—,i)k:"_’?’,“?‘) (60)
the analogs of the identities (5), (6) and (8): .
eie,e; =-fe, , eteiei=5?—j (61)

e Fe~eiFe)=coe, =To T  (62)

(where F is an art:trary octonion p=C°2a+Ci_Qi) and eq. (66).

12

g it

SR

S R

el i — o = ”#’_vm

However e,Fe, _eip ey= Reoe, —QQLCL#T’LP . (63)

With the definition adopted for the trace (T'/L:Re_) we get
the assoclativity and corresponding cyclic interchangeability
under the trace sign in the situations *

Tr(ab), Te(abe), Tr(abce), Tulabea) , (64)

where a,b,c are arbltrary octonions. No additional brackets
are needed here. o
.Now introduce representations.

A) T (€, F) (65)
F= ethCe'_r\P) . : (66)

Left and right representatives bave the form (11) and (12), and
in the explicit matrix form read

r. L TR ( Y O [« « v 4 o e 0
R ) KRR R - IR
¢ ..£‘;1.... ¢ e o loEte o
O “ e a e SR E s B A R L
e ={.. . .. % aa_" ..... ‘- e-_l,‘ KRS 2|
+] R < | . M-
t . *1 . . ~t1 « o 0 I [ |
B 44 J L - . 11 v ) \* » .t1 .J
r N P (o s | A r . N A
. . R X | . . . # - P CECE- < B
e P I Y ‘ . .« . i1 2 LN BRI
e1= .. :1 . . e&_ . 3 < Q’L: “ e« 4 v e '.H
T R LR s$™ . b~ I (3 < | o e e
. e i1 - ~1 v s s a s ;{ « a0 o .
| . . .. .. <4 - PPN
Sk « veon el I | . < J TR | J
(- - DR 1} (1 . N ' DRI N
Moo - . 11
0 . - ¢ . A - . e e e
T _|- - . .;‘ 'Ls . 1 - . . = PR 1 a
e?“ £4. - . . &o- . . 1 - 'l R
R YRR R P e g
. t1 < . e . D Y 1 . P 1‘
t‘ e e e e e . 'J \- « e e o e W 1} I . 1)
T _ (A e 2 (67)
ei=-1ein, n=teotreie}), wi=e (68)

*) T of any associator =0 (associator is élways pure imagi-
nary). The associator anticommutes with imaginary part of each
its element: {Tma ,(x,8,C)¥=0 .

13



Ao a matter of fact, these matrices do not satisfy the octonion

algebra, Instead of eq. (60) now we get
e ¢ ~t .

N eie; =—-‘51._3e_° +E ke, (69)
where et differs from elr.‘ only in aign of entries, being
 depsndent on i and § .

Left and right representatives always commute 1&: any other
forns of qmantum mechanics and quantum field theo:té]: /But here

tef,ef140 (70)

because of non-associativity. Nevertheless,eqs. (9)=(12) and
(20)-(25) remain valid for the octonion representatives, except
for oL which now equals 4/3 . Bquations (61)-(63) and (66)
are also valid for them. - '

Using eq. (9) twice we get

- e e o
T@uleileFM=(e; e)) T EF) , (1)
and thua the usual mstrix produci: € e corresponds to the

“ordered™ product (e{(e:‘ F)) . We get the representative of
tho product of two octonions as follows

Te (En(eie)F)) = Te(Ex (e: & F) + (21,05 ,F))=
(4 e _~ = ™ _ (ol T b -
£husa o:tainé.ng the Eelationse ¢ ¢ . ¢ »
(e"e_:‘) =e; eg' + [e-;:e}] = QiEj +[e'{'ej ]:—s{jeo‘\‘iijkek (73)
(e =efel+Ieje1=-3;;e, + £y (74)
as ea. matrix form of the ootonion algebra. The additlonsl term
[es e';] arises here. The consequences of eqs. (73) amd (74) ars

& t
Celel]=lefe{)=-4Telefl-ilelel] +euei-€}) (5)

[e.% e}]:O ( no summation ) (76)
L L x .
SLe el ~Eyy(epel) an
) .
{eied ={ey ei3=~23%;e, (78)
N (3 e ¢
Ce; 21" =[ef,ej+2el1= Lel+ael ef]. (19)

The way like that in eqz.. (9), (10), (71), (72) permits"
us to obtain many other relations., It is, in fact, the matrix

14

rea]_.ization of a more abatract mathematioal formalism of the
left and right multiplications /11/ +« The same is valid for
other our representations,

N Te(T@F) 0
R ARSIC A NG @)

Here U(4) has again the form (4) or (28), but 4 and M run
over 1,2,..,7 and 0,1,2,.,.7, respectively; 9.8=TL4/3 is the
surface of the unit 8-dimensional sphere. Equation (81) is a
congsequence of the identity '

1 : - «

E"{;g“s“— S(ﬁ?‘-ﬁ T@e V@)= ¢ @e,—e;@e; . (62)
Left and right operator representatives for ootonions are
defined also by egqs. (32) and (33) and are given by egs.
(36) and (37). The conneotion between the representations A and B
are such as for the quaternions.

¢) T (V@eN@F) = T (p@yF) . (83)

Here ?(“)‘-‘V@)?N(‘Q is an analog of "coherent state", It
is not convenient to choose V(a)=7(a) since, e.g., for

So= 43:(20‘121)
é

i;l_sgasa 8 (@p-1) T (Ula) go U@ F) = Tr(4e,+ Lie )F) | (84)
but not T“(..p . Define

V@)= N5 a.,e.+a.;€;), N*=Scsvasay , (85)
go that |
14 N '
1 2 )PSO NVON@ =L (5 ¢ 0¢,- ¢;0¢)) . (6)

The reconstruction theorem may be written as follows

14 2
F =t o, 8 Sl Ont e, &, T (p@F)= (67.2)

4€ (1?655 dfe S(of-1) N’SJSQ 3(®S-1) U(Q%(QT’L(S’@Q Per.)

U}

|

15



Connections with the representations A and B are
T (e2F) =2, 3 Sols Sak-)N* € Trlp@F), (eo)
T (UOF) = % © St\“w%(av"-ﬁ Nt T(O T(peF). (89)

It is implied in egs. (87) (89) that er, are left or right opera-

tor representatives, and 1}(@) ig constructed out of them (cf.
p. .11 ). If we represent 2

N"V(a) (e -tei\V(aq =lut(e -te1)+(hs|’-+|w|‘l+ RE)(eomie)-
~urf(epted +urv(e gried-uwk(eie) + whs (¢ +ieq)-

~ut (estieg) +ura(eg-iey),

we find, e;g., the left repésentativas for non-normalized states

(90)

as follows
N "(\T@(ec-ie,)ﬁa.\)e =
-1(&“' -v* 'bv"‘_ gus* 2% N"V@@ “IQV@ (91.2)

+\ ?‘ 12u* 9
MI(V(-“"(ee“lth@\eg (‘\S*,m-u. l;-\- \w‘u*“ 3V 1*&" -

% * . * 5 —
!L‘%:&l%w Lty %;_zu *::‘w -3;)!( V(a)(e,—ith(“),‘”'b)
etc, Representatives for normalized states are obtained after
commutation of the above operators with B2 The right operators
are again complex conjugate to the left onen, It seems possible
to replace the divisions in eq. (91.b) by second derivatives. The
representative (91.b) and further ones lack simplicity, and one
can suppose that a more adequate definition of coherent states
and corresponding representation may be given An terms of the
automorphism group of the octonion algebra

2l - 2(@,0) = (TR TN VRN T@) g T@) TEH U UE). (s2)

p) Te(oF), T(CeigedT), Tuleigoe;+ €500 )F), (93)

where @;§,8;+te&; 390€4 —(etyo)e -\-(2 S’o)ﬁi 2\(902 \-}-2 (S’QQ.L)
is im lied. WO Bhall not go into further details.

u_ﬁaﬂ"""aﬂ 9 “‘“2“"“& ] ‘J—“q-'l—a.; , 2-—‘15'{"1“.5 P
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4, OF OCTONION QUANTUN MECHANICS

Now we consider as a model the quantum mechanics, which uses
the octonions as operators, but is not exceptional one . This
r-number system was proposed by P.Jorda.n/ ‘12/ Really, it is equi-
valent to the set of above matrices el‘ e,g {or e,o et ) with the
Jordan product Aob= -L{AB} and simple multiplication table:

-e& » ejoe; ~—%t,e, . We make no use of the Jordan alge-
bra in what followsa,

Eigenvalues and eigenstates, Let us solve the eigenvalue
problem for the quaternion or octonion o,

, e9=N\p, pe,=je,, (94)
where ¢=P.2,+9ie; 1s unknown, and 2, and ftq are elgenva-
lues. We have as solutions :

\)\1-1.>($i, i)

,\4=‘»l1= t4q '{Leo;ie;) ‘\1__1_)(’4\‘-—1-‘

L R -
Llezied Ix -I.><)\1 1| for qua.ternions .
hesio |-

)‘\=-”1=ti' E(?«Iie;\

Ll 4 ’ T (98)
lestie)
There exist only four first solutions in the case of the quaterni-
ons, The first two of them are orthogonal to each other density

- operators, The latter two represent the non-diagonal direct

products of bras and kets. In the case of octonions we have also
two such groups. Pirst of them contains also two solutions, two
mutually orthogonal density operators. .Hovever, the second group
includes the last six solutions,

As the eigenstates of e2 ons can found the density operators

P(N= it)—-—-(eo.n,e,) : (96)
and in the case of an arbitrary axis © T )
=3 Y=2 (o ~i0ol
POne=2i) =g (o wice), "‘ﬁ =1. (a7)

The system of operators (95) is complete and orthogonal,
when the operation Tr = Re 18 used as a scalar product. The
system of denaity operators 1(6 :ne,,) (k 2 1,2,3 or 1,2,...7)
is complete ), but not. orthogonal.

One can decompose any other operator (quatemion or octoni-.
on) into a linear combination of them,
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Any probability for finding one state ‘in another 1s")
Whe=t Na=t) = LTl 5 (e~ 8€) F(e-i1dE)]= L1488,

(98.2)
1 (g =i A=) 415 (hgmot Aty =44 2 20)+40-2) =1,

where 2 is a normalization factor. For example, IJ(\4-1_,X1—1)—-1,

w(x1=-i,\;-i)=1,us(x;--i,\fi)-o,w(\ri,\,_=i)=ii(1+c),d(\f-i,\:=i’)=;—_(1-c1).

' (98.1b)
These are valid for both quaternion end octonion cases, -In the

quaternion one, the latter two probabilities are in fact the well-
known Pauli result. .
Equations (98.a) prove that transition probabilities 5 are
always positive, Qgw<A » and their sum is equal to unity,
These properties are conserved in the course of time evolution,
since any transformation of the autoﬁorphism group preserves the
form (97) ( T—T’ with C'C'=1 ). Any similarity trans-
formation acts analogously ('U(cL)(e LE’é")U’(cQ €°~i€/_’
/=4 ). For example, the probabilities for finding the ata-
tes with definite Ny and Ny in the "coherent state”
9(@-\]’(&}1@,—&)\]@) are given for octonions

W(\ =1 (1) = 11"(. [_ (Qa-le’h ?(&)] - ‘u‘f_‘_ ‘Uli':(_'lw ‘2 + l%li 7

2.
W)= 2T [ (et iedp@ )= iR T
WA =1,a) +150=-1,0)=1, , WU* S
W=l a) =2 T [{(ﬁo-le 001"i - T T 2 ’
2)p 27 T vt iait
W=t )= 2T [t epa)) =4 + § s

it tluft st RIE’

wWn=1,a) + 18 Oy =-1, ) =1 . (98.c)
The expectation value of an operator F is as usual
Q_T.L(s,p) (99)
For example, for F =&y ( 16% for quaternions) and 9 I(e 12‘)
1T(e glea-te)=t , (100)
Onlx quantities 123 serve as Hermitian operators,

The traces of the products of other solutions have another
mesning, e.g., for quaternions the trasoce 9:\"«.[ (e -123)i( ei—teg]
means in terms of amplitudes: 5\;00( 1"‘>Q\)“(Lh>(ﬂ-‘l> 1.
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Equations of motion for density operator and for "observab-
les"™ F . In the case of quaternions evolution of these operators
is governed by the Neumann (Liouville) and Born-Jordan-Dirac
equations o

Low=-[¥,p0)] (o,
with the solutiona .
0= ¥ & @, Fl)= “Pco\ ) . o)

The Hamiltonian ¥ is pure imaginary quaternion, The evolution
laws (102) are transformations of the one-parameter subgroup of
the authomorphism group of the quaternion algebra,

The evolution law of octonion operators is universal *)

T (RO - F ) o) = T (o T p)) (1o

if it is also taken to be one—paramet)er subgroup of the automor—
phism group - of the octonien algebra‘

Py =e ~ted p(0)  (a), Flo= e""“lP@) (b), (104)

where ad ploy=[Tp) ?(0)]—-3@‘[575’(0)). As equations of motion in

the octonion case we have the Lie group equations

=~[Eelpl +364p,0), (105.a)
= [[&pIF),-3&,e,F), (105.5)

where d and P are two imaginary octonions, which together
play the role of Hamiltonian. The squations (105) generalize the
Foumann (ILiouville) and Born-Jordan-Dirac equations to the octo~
nion case ,

The condition of conservation in time is

[Tl e =2,p,p) . : (106)

In terms of our representatives the equations of motion for
the quaternions and octonions may be written as follows

25 =67 @, F=(tF W, (107)
2 5= (ot el 3l g 2T (et T3 gd)F )g108)

*)1¢ oqs. (102) are assumed, T-‘_(P(O\S’&“=T“L(P(ﬂ?(°» » but
T (PP 96)) % T (Fy @) TR0 90)).

E%)guoh a form was not met by the auther in literature,

'?_tp(")?[%,'?(tﬂ (®),  (101)

Y
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where rgv is either T"-(EQLS’) or rr"’(-(v@)f) or any other of .
our representatives (for F ana_logously),'l‘hpae,equations,'a're
"matrix ones and their solutions have now the usual for the Lie
groups exponential form

~ (4 ~
51 = O (@), FO=SFFQ) o) oo

PO = exp(CTopl+ 461" + 3L ) E)500) (110.8)
ﬁ(t):cxp((C*P]t-?t&(L]t——S[A&FA‘J)‘L)T-'(O)  (110.1)

Equations of motion (109.a) snd (110.a) for quaternions and
octonions are analogs of the statistical mechanics Liouville v
equation. In usual quantum mechanics and quantum field theory
quantum Liouville-like equations arise analogously (see, e.gly ’ ).
In all these cases, as in the case of the quaternions, left an—d_A
right representatives malways commute with each other and "Liou-
villians® split into the sum of commuting left and right Hamil-
tonians, This fact permits us. to split the density operator into
products of amplitudes (spinor for quaternions) and to adopt the
Schrodinger equation for them as the equation of motion.

However, for the octonions left and right representatives
do not commute because of non-aasociativity) and
exp((-Eip]o'-i-BP]l-!-?)[vLe'[bet) does not split, This peculiarity
indicates the impossibility to introduce the amplitudes (see
for other arguments). ;

Such Liouville-like equations have however zimilarity with
the Schrodinger equation.Recall that in the representation A

(and F too) is not a matrix, but column of Ta (E'aa,?) « TFor
example, the solutions (95) read ‘

4 0 V] Q
1 0 ol o
ol 1 0 0
Q 1 ) [}
of > fof{>f41{>]ol> (111
0 Q 0 1
K 0 0 £
0 0 Ft [\]

where the first pair represents demnsity operators. ~

Conservation of the probability. From egs. (101.a) and
(107.8) or (105.a) and (108.a)there follows o

T p@)=0 (a), G, (t)=0 (in repres. &) (b), (112)

20

the latter due to the fact, that matrices Y¢_Yy7 and _
E&p]‘-[&p]"—S E¢"p'7'] have only zero entries in zero rowszand
columns (both matrices [d_‘s]a—[eLp]"'= ii-,,;ge(:_guj(e&— e:) and [ (5"]
are such separately‘).. Thus, the total probability conserves

T g@) =T 9@ (a)y  Fot)=F6(0) (an reprea, 4) (v).(113)
In other representations analogously.

The author is sincerely indebted to V,I,Ogievetsky for
useful discussions of some questions, related te this work.
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