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Effective methods for evaluating renormalization group quan-
tities are worked out, which allow computing the diagrams with
all external momenta put equal to zero, The Gell-Mann-Low function
of ¢% theory is calculated in the three- and four-loop approximation
using different renormalization schemes, The dependence of this
function on the ratios of external momenta is studied.
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1, The perturbation theory in coupling constant
is the basis of almost all quantum field theory cal=-
culations. In the renormalization group (RG) approach
a perturbation theory information is also required to
write down the basic equations, The typical situa-
tion one encounters solving these equations is as
follows: RG quantities which in an exact theory are
independent of the renormalization scheme, may
acquire such a dependence so far as only several
lowest orders of perturbation expansions are taken
into account. In such cases we have no obvious
criteria to prefer one renormalization scheme to
another, The reasons of computational convenience
seem to be the only possible criterion.,

In my previous paper/ i/ the general relations
between the different renormalization schemes have
been presented, and the problem of choosing the
most suitable for practical use renormalization
scheme have been investigated, In the present
paper the comparison of different schemes from this
point of view is carried out in the framework of ¢*
theory which is the simplest renormalizable field
theory model, So, this paper is a sequel to ref, /1/
representing an application of general results to
a concrete model, All the notations of ref./l remain
unchanged, ' '

2, A comparison of different renormalization
schemes in ¢* theory requires at least three-loop
calculations of RG parameters, because the Gell-
Mann-Low (GML) functions 8 of various schemes



begin to differ only at three-loop level in this theory,
These calculations are nontrivial even in massless
scalar theory we investigate, Considerable simplifica-
tion occurs if it is allowed to put all (or all except
one) external momenta of the diagrams equal to zero,
The 't Hooft renormalization scheme gives us such
an opporturity,

This scheme, based on dimensional regulariza-
tion, may be formulated in the language of counter-—
terms and renormalization constants /2/ or as a re-
cursive subtraction procedure, R -operation /3/ (see
also ref, /4 ). Let KG be the pole part in ¢ of the
contribution of diagram G to the corresponding Green

4-n

function, As usual €= 5 n being the space-time

dimension. Then the R -operation of 't Hooft's scheme
isof the form -

R(G) = R(G) + A(Q),
RG=1+ 3 A®G ) AG ), (1)

G=0C %% G
1 m

0 if G; is one-particle reducible,
A(G )= 1-if Gy 'is an elementary vertex, -
-KR'(G) if G, is one-particle irreducible.

The sum is over all partitions of the diagram ¢
into a set of subdiagrams with . 1<pq« N, N- being
the number of vertices in G. We see that 't Hooft's
scheme differs from the standard subtraction proce-
dure /% only in the definition of the operation X .

. To deduce the basic RG equations it proves

to be more convenient to use the other equivalent. .
formulation of the 't Hooft scheme in terms of renor-
malization constants /2/, While in the R-operation
approach the renormalized Green function is



k2
T, (——-—,H) = Ym}) RO H k2 o),
£
whereH is a coupling constant, k; are external
momenta, and p is a renormalization parameter, in
ancther approach it is
k2
'y (—— H) = #im Z
#

>0

2 —-—)F(H e), (2)

where in the case of ¢* theor*y

- (4 ®) HZ (.22, 5.
Here Z ard Z “are the renormlization constants
of four—point vertex and propagator, respectively,

given (as well as Hp) by power series in H and L
. 3

{u2)€ 1 S A
(.u ) {H+V§1 ev)\_%ﬂamH 1, 3

zr_1+2~1--2cH)‘. (4)
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The coefficients a , and ¢, , enter the expressions
for GML function

£ H) =‘\22 A -1Da,H

A
and anomalous dimension of 1"R
ot A
YI*(H) =_)\§1‘\C1AH »
which are the parameters of RG equation
9 k%
(u? —+B(H)——y(H))F (-1, H) -
du ® dH pn2
Let us now rewrite Zp in terms of R ‘~operation
defined by (1). Consider N-th order inH of eq. (2).
From (4) it follows that Zp= 1+/\z HAZA(-—). All sub-
=1 €

tractions prescribed by R -operation may be regar-
ded as an effect of adding the counterterms to the

5



Lagrangian. The singular in ¢ coefficients of these
counterterms are constructed from Z )\(}1—) . The

terms in the r.hs, of eq. (2) which does not con-
tain 7 A correspond to unsubtracted diagrams; those
which contain Z,,A< N, correspond to the subtrac-
tion of subdiagrams, and the ZNHN term corresponds
to the subtraction of diagrams as a whole, i,e, to
the operation A, We arrive at the relation

2, L) 21 - KRT (D B k2 ,0), (5)

which holds for any renormalizable theory., Eq. (5)
proves to be very useful for RG calculations in
the 't Hooft scheme, It is shown/3.6/ that KR‘G

for any diagram G is a polynomial in external mo-
menta (and in masses as well if they are present
in the theory). This allows one to put momenta and
masses equal to zerc when computing the contribu-
tions to Zp from the logarithmically divergent diag-
rams, where the above-mentioned polynomial is

a constant.

3. We proceed now to the calculations at the

three-loop level of ¢* theory

.Y - b ge g _h

- Baﬁ‘ﬁa}l(ﬁ 4!c'{) , He= 1672
To prevent the appearance of fan and the Euler
constant it is convenient to multiply the sfandard
dimensionally regularized integrals /" by #¢I'(1-e¢)
that is equivalent to finite renormalization /8/

To simplify the computation of three-loop diag-
rams two different methods have been used. One of
them consists in putting all external momenta equal
to zero, while several internal lines are supplied
by a mass to avoid the infrared trouble., The other
method deals with all propagators massless, one of-
the external momenta being nonzero, As a rule three-
loop diagrams can easily be calculated by both
methods.




The following expression for GML function B(H)
has been obtained at the three-loop level:

g = 2n? - Hud 18 L ern . ©)
2 6 16

The three-loop term of eq. (6) does not coincide
with the result of previous calculations /9/, This is
an example of the general property of GML function
B(H) namely of its dependence on the renormalization
scheme used, However, this does not yet mean the
absence of the physical sense of the third coeffi-
cient in the expansion (6). Indeed, the momentum

- 2
dependence of the invariant charge H(-l-‘—z—,H) is
explicitly given not by the equation Witifl GML func-
tion B

2 9 9 \h k®
k® — - —)H(—,H) =0,
6F 5 - BEGHCT, )
but by the other equation

4 T k#® = k®
k2—FH(—,H) = f(H(—5,H
ok n? p? )
with function f related to 8 as follows:

dq(H)

- H 7
T A =HAB. (?

f(q(H) = B(1)

- The function f (as well as ultraviolet behaviour of
invariant charge) does not depend on the choice of
renormalization scheme, _

An invariant charge H is treated here as a func-
tion of k? with other momentum arguments assumed
to be proportional to it. Let k* denote the invariant
momentum variables, and let t =as, k2i =a ;8 (i=1,2,3,4).
The coefficientse and ¢; are hidden in the defini-
tion of H. It follows from (5) that GML function S(H)
in the 't Hooft scheme does not depend on ¢ and
a, while the function f(H) does, To find this depen-
dence explicitly it is required to calculate q(H) at
the two-loop level and use (6) and (7). The result is

.1



fa(}n=_§_n2--16?-n3 ni 3L 6{(3)+——F.Pna -

165=1
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4
where a =3 - 3% a -a -1,
5 8 4=y
Ka, b) = f dxf fly+a(1l-y) + p2Y)y

1-x

For symmetric asymptotics « —l,ai=~%- the known re-
sutt’¥ is r'eproduced

Lo =302~ PHoH4B e, Lmd - 22,3y

We see that f depends essentially on ¢ and aj,
i,e.,, on the choice of asymptotical regime, Due to
this dependence f,(H) may be equal to zero at H £0.
For instance it takes place when a;= 3 , 107184 <1012,
Whether this connection between the asymptotxcal
regime and the existence of nontrivial zero remains
in an exact theory, or it is an effect of the trunca-
tion of perturbation series at a finite order, this is
an open question.

The ¢ -dependence of the invariant charge forces
us to put also another question: can it serve as
a tool for investigating the ultraviolet properties of
a given theory? Let us consider the RG equation for

the propagator D (—, It can be written in two
pa, ri=3

various forms /1/



23 k2 o = k2
k¥ D (=, H) = -y H(=S,H), (9)

ok m u
2 - 2
k2D o ) —my G By, (10)
Ik 2 p? .u
where

¢ @) = g LD, a(®) = B,

K2k my C ekl my.
ok® - R o2
It is known /1 that Y- does not depend on the re-
normalization scheme and depends on the asymptoti-
cal regime. Conversely, the function Y1 does not
depend on asymptotical regime and depends on the
choice of scheme, Thus, in exact theory the Lh.s,
of (9) and (10) given by Yy or ¥p®  in ultra-
violet limit loses both these dependences, However,
it is not so in any_finite order of perturbation theo-
ry, where ¥ and ¢ are polynomiais, For example,
using an implicit «-dependence of H in eq. (9) one
can change the ultraviolet behaviour of Dy drasti-
cally from "zero-charge" to the ultraviolet stable fixed
point, Analogously in the case of eq, (10) in diffe-
rent renormalization schemes the propagator Dy may
display absolutely different asymptotical behaviour.
Consequently, as concerns the investigation of the

ultraviolet properties of DR(—kE""H)' the invariant

charge H in spite of its independence of the renor-
malization scheme,has no advantages over an "ef-
fective charge" ¢, It is easy to observe that an analo—
gous conclusion may be drawn in any other field
of application of RG equations, when an invariant
charge itself iz not studied but is used as a tool
for studying ultraviolet behaviour of other objects,
The effective charge ¢ may serve for these purpo-
ses equally well.

However, in the computational aspect the charge ¢
possesses obvious advantages over the change H. It



is ,gecause we need only GML function g(H) to find

5(5—2——,1-]), and there are effective methods for com-
H .

puting B(H) in the 't Hooft scheme. It will be shown

that similar methods can be applied also in some

other renormalization schemes.

4., We consider now one of these schemes that
appears to be extremely suitable for RG calcula-
tions in the massless ¢* theory, This scheme is
based on the ultraviolet cutoff of momentum in--
tegrals at some A after the Wick rotation is done,
This schemé ( A2 -scheme, for brevity) is a correct
regularization procedure 710/ its A%5w limit being
invariant under RG transformations, where A® plays
the role of the renormalization parameter. In the
case of massless scalar theory the following valuable
features of A2-scheme may be used: 1) The Cheby-
shev polynomial techniques /1t/ is applicable, be-
cause the momentum integrations are performed in
four space~time dimensions. 2) The renormalization
parameter A® of this scheme is introduced quite in-
dependently of the asymptotical regime; Therefore,
the RG functions B(H) and y(H),as in 't Hooft's
scheme, don't depend on this regime /1, 3) In A%
-scheme, one can calculate the logarithmically di-
vergent contributions to Zp with all external momenta
and all internal masses equal to zero,

To prove the last statement let us consider the
RG formalism of A® ~scheme in more detail. The re-
normalized Green functions of this scheme which
satisfy RG equations are constructed as follows:
the momentum integrals are cutted off at A, the quad-
ratic divergences proportional to A% are subtracted
(to retain m2=0 in the renormalized theory), and the
asymptotical limit A%.x is taken; Le., all terms of
the type (fInA%)MA2) ¥ N>0, are dropped out. After
that the Green functions appear to be logarithmically
dependent on A% In brief notation



A% A% Enk% -
ren— M) =I'n— - n—L M) =I'(L -k,H),
(Enk;2 ) (EnM > E ) H)

where M? fixes the momentum scale, To arrive at
the RG equation for [@N{L-kH)let us consider the R-
operation removing the L -dependence from I'(L-k,H).
The recursive subtraction procedure acts analogo-
usly to the 't Hooft scheme (1). The operator K now
picks up all "singular" in A? terms (i.e., all the
terms which contain L ),

RC(L-k, ) =(1-K)RT(L-k,H =T(-k, H.
It may be rewritten in the language of renormalization
constants,

Z (L, H (L - &, H(L H) =Tk, H ), (11)

where ZF(L"HO) - 1—KRT(L—k,H0) ,
-2
H(L.H) =HyZ (L,H)Z (L, H).

The RG equation for I(L-k,H) can be obtained by
differentiating eq. (11) with respect to L, We have

J J ~
(E +5(H)3}? =7 ()L ~k,H) =0

with
JH(L,H,}
A = JdL . H (L. .H)=const
0 (12)
dfnZ~(L.H)
T 0
yI—‘(H) =T H (L,H)=const
JL PRl

In r.hs., of eqs. (12) one can put L=0. Given any
diagram G from the definition of K it follows that
KG(L_k’H)lL—O =0. Hence ZT (0H) =1, HO(O,H)=H

and

1



IZp(LH)

d
yr(H) = - -gI'J—En ZF(L 8:D)] L=0 oL L=0 "’

BH) = H(L H)i

d

MH[—-—-—Z (LH)+2a yAl (L H)]L 0——H[y1(H)+2yD(H)]

Using (5) we get -

- 9 KRT(L - 13
yp@ = KRTL- R (13)

The quantity KR’Gcontributes immediately to the
counterterms and must be a polynomial in external
momenta k , of a diagram'G, Thus, formula (13) gives
the recipe " of computing yp(H) in the momentum inde-
pendent way, However, some further simplifications .
can be achieved,

The condition KG]L =0 shows that there are
no contributions to y(H) from the factorized diagrams
as well as from the products A(G)A(G)) in eq, (1)
when both ¢; and a, are one-partlcle irreducible,
Furthermore, the symbol K may be omitted under

the sign of é%_ It results in

d o- da |
ol oL E(G/Gm)(TR Cwy o) Lo _(14)
where the sum is over all one-particle irreducible
subdiagrams of G, and G/G_ is a result of reducing
G, into a point

it will be proved inductively that the condition
L=0 may be dropped out as well, Let us denote

9 by G and [.] in(14)byDG.At the one-loop level

dL
DC=0G is a function of [, -k, but pg|;_p does not
depend on k (because KR’G does not. It is valid for
the propagator diagrams too if we always treat them
as multiplied by the free propagator -12— ). There-

k .

12



fore, at this level DG does not depend on [, too.

Let this - be valid for N loops and let G be a (N+1)~
loop diagram, In eq, (14) DG, does not depend on'L
and k, while 3G and G/G and consequently, DG

" are the functions of L-k.But DGIL ~g = is again in-
dependent of g and consequently, DG does not depend
on L and k. Thus, the contribution of the diagram g
to the anomalous dimension e (H) depends on H only
and is givén by the recurs1ve relatlon

DG =G ~ $(G/G)DG : y. () = DI'. (15)

It should be noted that the proof of eq, (15) remains
valid for any scheme with regularization parameter
being simultaneously the renormalization parameter
(for example the Feynman cutoff or Pauli-Villars
methods) and for the 't Hooft scheme.

Formula (15) allows one to put all external mo—
menta equal to zero. To prevent infrared divergen-
ces one has to cut off the momentun integrals from
below at some «, Using the method -proposed in
ref, 6/ it is easy to show thatKR’'G and DG are inde—
pendent of «2, Really, the differentiation with respect
to the lower limit of integration x? removes .the "sin-
gularities" in A from R’G because all subdiagrams are
subtracted, and so an integrand does not include L.

With the help of eq. (15) it proved io be possible
to calculate the four-loop RG functions of ¢4 theory
in an analytical form. The logarithmically.divergent
diagrams have been treated with all external momenta
being zero. The lower cutoff x? has been introduced
in case of need.into one or more momentum integra-
tions. The propagator diagrams have been calculated
with its éxternal momentum k%£0, The following expres-
sion for B(H) has been obtained:

__:_3_ 2_]1 a ]-:9—9— a _
B(H) = 3 H . H® 4 [ 2 +64(3)H
_[604(5) + 184(4) + ?é(g) + 1_}-:1_2_1_5_11_]5 .
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With the use of conversion formulas of ref./ 1/ this
expression has been compared with the result of
calculations of ref./ 12/, where the renormalization
scheme based on the subtractions at the symmetri-
cal point was applied. This comparison has confirmed
the correctness of both results.

The author wishes fo express his gratitude to
D.V.Shirkov for interest in this work and to O, V.Ta-
rasov for helpful discussions,
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