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1. INTRODUCTION 
Last y e a r s a cons iderable p rogress h a s been 

achieved in investigation of the nonlinear equat ions, 
which p o s s e s s the localized so lu t i ons - so l i t ons ' 1 - 3 / . 
In field theory the great interest to such equat ions 
is stimulated by the h o p e s of building of the rea l i s 
tic models of the extended particles on the b a s i s of 
solitons. In two space-t ime dimensions in the mani
fold of nonlinear equations with soliton solut ions there 
is an important c l a s s of the integrable sys t ems ' 2~3/ 
with the unique propert ies . T h e y a re exactly soluble, 
p o s s e s s the infinite se t of the integrals of motion; 
the soliton interaction dynamics is beyond the ex
haust ive description which manifested in the e x i s 
tence of the explicit N-soliton solutions; most of 
them a r e the complete integrable systems. T h e s ig
nificance of finding and the investigation of integ
rable sys tems (in particular, they a r e of grea t inte
rest from the pure mathematical point of view) con
sis ts a l so in the possibility of describing a soliton 
interaction in the "proximate" nonintegrable s y s 
tems'*/ . Lately the only Lorentz-invariant integrable 
system - the s ine-Gordon equation - was known. It 
s eems of great importance the problem of finding 
some new Lorentz-invariant integrable sys tems , and 
due to some c o n s i d e r a t i o n s ' 5 ' it is almost evident 
that such systems may be the multicomponent field 
sys tems only. Recently the essent ia l p r o g r e s s was 
obtained in this direction. T h e massive Thirring mo
del h a s been s o l v e d ' 6 ' and shown to be complete 
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integrable system us ing the inverse scat ter ing 
method (iSM). In ref. ' 1 ' the author p roposed the mo
del of the complex s c a l a r field desc r ibed by the Lag-
rangian 

|d .Д|2 

l = т ^ т г ~ т 2 щ г ( | ^ ^ | B e | ^ | S - ^ « | 8 ) ' ( 1 Л ) 

The equation of motion reads 

дЧ + 0 * _ - £ _ - + m 8 ( l - A 8 W 8 ) = 0 , (1.2) 
f 1 -А2|.Д| 

the exact multisoliton solutions of (l.2) were found 
in r e f . / 7 / by Hirota 's method and it was conjectured 
for (l.2) to be the complete integrable system. After 
publishing ref. ''1' we have known about the Pohlmyer 
work/ 9 '* in which integrability of the c l a s s of 0 -
invariant relativistic models for the nonlinear field 
descr ibed by Lagrangian 

f = - L « ^ ) 3

 + A(q)(q 2 ~l) (1.3) 

was proved; in the simplest nontrivial c a s e n = 3 
the system corresponding to (l.3) r e d u c e s to the 
s ine-Gordon equation; and for n= 4 - (0 = SUv2)xSU(2) 
- a nonlinear a -model) - to the sys tem with the 
Lagrangian 

f = T V ) 8 + r t g 2 -rV ) 2 - 2 s i n 2 ir ( 1 , 4 ) 

for the fields фф being the nontrivial general iza
tion of the s ine-Gordon equation. 

The system of equations 

д2ф + tg2-|-W /3)2/sin<£ + втф = 0 , 

2 a U> 5) 

following from (l.4) was obtained a l s o by Lund and 
Regge / 1 ( J / by analyzing the motion of vor t ices in 

* The author thanks P.P.Kulish who referred him 
to papers/9.Ю/, 
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s u p e r f l u i d . In s u b s e q u e n t p a p e r s /И-12 / L u n d p r o p o 
s e d t h e e l e g a n t g e o m e t r i c i n t e rp re t a t i on of P o l m y e r ' s 
r e s u l t s for a - m o d e l * .He s h o w e d t ha t t h e G - a u s s -
W e i n g a r t e n e q u a t i o n s of s u r f a c e t h e o r y for c o n s t r u c 
t ing t h e normal a n d t a n g e n t v e c t o r s t o a s u r f a c e 
e m b e d d e d in t h e t h r e e - d i m e n s i o n a l E u c l i d e a n s p a c e 
c a n b e wri t ten in t h e form of t h e s y s t e m of l i n e a r 
e q u a t i o n s 

д xw = loco jW 
W (1.6) 

д w = icrw.w , w = ( w ) , t 1 w

2 

(here oi - the Pauli matrices, <u 1 ( ш 2 depend on pa
rameter, functions <£(x), /3(x) and their derivatives, see 
eq. (9-10) in ref/^/jjthe (G-auss-Codazzi) integra-
bility conditions for (1.6) are precisely the equa
tions (l.5). 

Thus (1.5) may be solved by the ISM. Its using 
consists of considering of the linear problem (l.G), 
Recently Lund solved/*8'the initial value problem 
for (l.5) and proved its complete integrability. 

It is an easy task to ckeck up, that the substi
tution (in dimensionless variables) ф = sin î/S e'P/2 
transfers (l.l) into (1.4) and, therefore, model (l.l) 
turns out to be the integrable system. The corres
ponding linear problem is (l.6), where ф = 2 arcsini.'/1, 
,3 = -2Пп(ф/\ф\). н 

The aim of this paper consists of finding N-so-
liton solutions of (l.l) with the inverse sign of m g . 
This model is integrable too, because for m^0(1.1) 
transforms to (l,3) by substitution ф = cos ф/2 е ' P"/2, 
but the structure of solutions appears a quite dif
ferent. It turns out that this difference relates to 
arbitrariness of choice of the boundary conditions 
for function j8 in (l,5). In particular, using of the 
boundary conditions <£-»(>, j8x-»A"i£2, /3 t->A'<£s, 
when |x|-»oo for solving the linear problem (l#6) in 

* Similar results have been obtained by P.P. Ku-
lish. / l 3{ 
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ref/ 1 2 'corresponds to ma<0 in (l.l). The "physical 
meaning" of the field /3 is not quite clear, and to 
our mind, the attractiveness of the formulation (l.l) 
consists of the larger clearness and closeness to 
the traditional field theory, and of the simplicity in 
the structure of N-soliton solutions (the last ones 
are not written in ref. ')• 

Sec. 2 is devoted to finding and discussing 1-
soliton solution of (l.2) for m2<0.1n Sec. 3 we found 
by means of Hirota's method 2-soliton solution that 
is generalized for the N -soliton case. We look for 
the solution in form ^ = g/f; the knowledge of the 
explicit form of the 1-soliton solution allows one to 
find and sol\-e the system of Hirota's equations for 
g and ' f. 

Some comments about Hirota's method will be 
useful here. The ISM provides, of course, the more 
complete information, in particular, we can solve 
the initial value problem and find explicitly the infi
nite set of integrals of motion. But the regular 
methods of finding the corresponding linear problem 
for the given nonlinear equation are unknown now, 
in this sense Hirota's method is more "direct". Ir 
particular.in some cases (for equation д^ф+пРф-К ф\ф\2 =0 
for example) we are able immediately to show the 
absence of the soliton solutions for N>2 and, there
fore, to "eliminate suspicion" of the integrability of 
the model. It seems that the region of the applicabi
lity of the Hirota's method is in ore wider than that 
of ISM: there are known equations /14.15/* in two 
close but not transformed from one to another forms, 
which are solvable by Hirota's method but only 
one of them is solvable by the ISM. 

In conclusion, to our mind, the Hirota's method 
may turn out to be perspective one for finding 
"integrable" models with localized solutions in more 
than one space dimensions and to shed the light 

5 4 The author thanks V.E.Zakharov, who referred 
him to paper 1 4 . 
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on the problem of soliton interaction in the real 
space-time. 

2. THE 1-SOLITON SOLUTION 

As was pointed out, the knowledge of the 1-soli-
ton solution is desirable to use Hirota's method. 
Here we find it by the Bogomolny's method which is 
applicable in the cases of soliton solutions with the 
nontrivial boundary conditions. 

The starting equation reads 

dfr + ** a < t t 12 - n f y a - A ' W ^ - O , ra2>0. (2.1) 

Look for the solutions to (2. l) subject to boundary 
conditions №|-»A, , "Ax"*0 when |x| -> ~. 

In the following we shall use the dimensionless 
variables excluding constants m, A by the trans
formation Кф ->ф, mx„ -> x „. In such variables the energy 
functional for a static * solution is 

Let us rewrite this expression identically in the 
following form 

H = ф / 1—— y/l-M2 | 8 + j " W +ф*)\. (2.3) 
^ 2 ~~ V 1 - I 0 I 2 -°° 

The second term is I 2 =2-£-(D2-Dt), where D =<Д' 
A& 1 

D 2 = ф' | x _ „ , ф' and ф" are the real and imaginary 
parts of ф, respectively. Without loss of generality 
let D 2 > D j . The minimal value of H is evidently to 
be achieved when ф obeys the equation 

* It is possible to show that the substitution in (2.1) 
iA=etot 0(x). , where ф(х) is a localized function, 
leads tow =0. 
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фх - 1 - | ^ | 2 =0 . (2.4) 
Prom (2.4) we get ф"- с (const), then from the 
equation for ф'\ ф' = 1 - сг-ф' 2 and the boundary 

x 
condition ii', . =0 we get 

X X = + °° 

By integrating the equation for ф' one obtains 

ф = ф' + \ф" = A thAx - iVl -A 2 , |A| < 1 . (2.5a) 

The general solution of (2. l) contains the arbitrary 
constant phase multiplyer ew; boosting (2.5a) we get, 
finally, the solution that depends on four arbitrary 
parameters A, v, x Q , u: 

ф = A cosiHhtAyfx - x n - vt)] + y/1 - A8 siav + 
(2.5b) 

+ i[A sinv th[Ay(x - x Q - vt)] •- VI -A 2 cosH ; у =(l-v 2 r ' / 2 . 

By using the formalism of the complex Lorentz-vec-
tors proposed in ret.'1' the solution (2.5b) may be 
written in the more compact and convenient for the 
following purposes form 

- , z + z * + ia 

l + e z + z 

Here 
- и n 

(2.7) 
z = z ' + i z " = к (x - х ( 0 ) ) ' ' -

- Lorentz-invariant complex variable, k„ - complex 
space- l ike vector in the two-dimensional pseudoeucl i -
dean space-time: 

k j - k » 0 - k « - - l : (2.8) 
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x̂ **' is an arbitrary constant vector, x „ =0 fixes 
the soliton location in the centre of frame of refe
rence of the pseudoeuclinean space-time. 

The complex vector к depends on four parame
ters from which only two are independent in spite of 
(2.8). The following parametrization of k„ is conve
nient 

k0=sh;B; к = ch/3; jH = |8' + ij8". (2.9) 

Then in (2.6), (2.5) a=2jB"+iT, cos« = ( V * ) , 
A = cos/3", у = chjtf'. Evidently in the real limit fi" = 0 
the solution (2.б) becomes (up to the precision of the 
constant phase rnultiplyer) ф = th z' = cos<£/2, where 
$ = 4arctgez is the solution of the sine-Gordon 
equation. 

The first integrals of motion, - the energy, the 
momentum, the charge 

A 2 - 1-\ф\2 

P = m 
\ 2 _ 4 1- |<£| 2 A2 -4o 1 - | 0 | 2 

- for t h e so lu t ion (2.9) a r e equa l , r e s p e c t i v e l y , 

E = yM, P =yvM, M = 4AmA - 2 , G = 0 . (2.Ю) 

T h e c h a r g e i s e q u a l t o z e r o b e c a u s e in c o n t r a s t 
to t h e so lu t ion of e q u a t i o n ( l . 2 ) ' 7 ' 

ф = A s e c h z ' e i z " (2 .1 l ) 

t h e s o l u t i o n (2.5) in t h e r e s t frame i s t i m e - i n d e p e n 
d e n t . I n s t e a d of t h i s w e h a v e n o n z e r o t o p o l o g i c a l 
c h a r g e I 0 ; it i s c o n v e n i e n t to def ine 1 0 by the 
expression 
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I = | / J 0 d x | = 2A 
~°° (2.12) 

J

M " V d Ф • 
It is useful to draw an analogy of equations (l.2), 
(2.1) with the nonlinear Schrodinger equation /8,17,18/ 

for various signs of к 2 . Рог кЯ>0 the functional form 
of solutions of (2.13) and (l,2) coincides (the dif
ference is only in the form of the dispersion equa
tions). But for к2<0 the analogy (2.13) and (l.2) is 
broken: the solution of (2,13) has a time-dependent 
phase multiplyer (in paper/ 1 8 / in formulae (З), (4) 
this multiplyer is absent. Such a form of the solu
tion corresponds to the presence of a term цгф in 
(2.13)). 

Just the same situation is for the analogy to the 
nonlinear Klein-Gordon equation: for the equation 

д^ф + ф - UA|.£|2 = 0 (2.14) 

the solution is of the form (2.1l), and the interac
tion of the solitons of (2.14) is determined by the 
"proximity" to (l.2); the localized solution of the 
complex Higgs equation 

а*Ф - 8 0 ( i -\ф\2) = о 
reads 

ф = A t o A x e 1 ^ 2 - 1 ) ' . 
In spite of this the divergent term depending on the 
arbitrary constant A appears in the Hamiltonian and, 
therefore, in contrast to the above-discussing equa
tions we can't eliminate the divergence in the Ha
miltonian by the subtraction procedure for all the 
solutions simultaneously. 
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3. N-SOLITON SOLUTIONS 

Let's look for solutions of (2.1) in the form iA = g/f 
where f is a real function. In the following it is 
convenient to use the Lorentz-invariant D -operators 
generalizing ones proposed by Hirota /a/. 

D 2 g(x) • f(x) = id -d') 2 йхЖх'), , ч 

H ' ' I х = x (З.Д) 
= f<92g -РЭцВд^ + gr9M

2f. 

The basic important property of D-operators for cal
culations consists of the easily checked identity 

и z i + z n 2 z i 
D e ' 

V-

z. • e • 1 = < « , -

where z4 - k » } . Ьц is gr 
Now ( .2.1) reads 

[fD2 g- f -g j D J j f . f ] + 

v ^ • ч (3.2) 

[ g f D 2 g . f 
f 2 - | g | 2 м (з.з) 

- I g ^ ^ . f - L ^ g - g l - g ( f 2 - | g | 2 ) = 0 . 

By using the known 1-soliton (2.6) we can decom
pose (З.З) on the system of two polylinear on g 
and f equations 

(D 2 + 2)f . f - 21g| 2 = 0 

f(DM + l)g.f--|-g* (D2 + 2)g.g = 0 , 

so that the function (2.6) (g = 1 + e z + z * + i a , Г = J + e z + z * ) 
satisfies (3.4). 

We should stress, that in contrast to all the 
known up to now cases of Hirota's method using, 
similarly to ref.'7', one of the equations (3.4) appears 
to be trilinear one on g and f. This fact appreciab
ly complicates the calculations; in particular, we 
have not been able to get the rigorous proof of the 
general N-soliton solution. We point out also, that 
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(3.4a) may b e writ ten a s 

\ф\г = 1 + a 2 l n f . (3.5) 

Let u s l o o k for g a n d f a s a p o w e r s e r i e s o n 
a p a r a m e t e r e 

1 + f 2 g g + 14g4+ .. 

1 + e s f 2 + f 4 f 4 + 
(3.6) 

Subs t i tu t ing (3.6) into (3.4) a n d co l l e c t i ng t e r m s with 
t h e s a m e p o w e r of c, we ob ta in t h e o v e r d e t e r m i n e d 
s y s t e m 

(8 ; ( D 2 + 2 ) l . f p - g „ - g g = 0 , (3.6.1) 

(D 2 + 2)(2-f4 + f 2 - l - 2 ) - 2 ( g 4 + g * + | g 2 | 2 ) = 0 , (3.6.2) 

( D 2

+ 2 ) ( f 2 . f 4 ) - g * 2 g 4 - g 2 g * = 0 . 

( D ' + 2 ) f 4 . f 4 - 2 | g 4 | 2 = 0 , 

(D2, + 2)f. l - g , = 0 

(3.6.3) 

(3.6.4) 

(3.7.1) 

(D* + l ) ( l . f 4 + g 2 . f 2 + l . g 4 ) + 

+ f 2 ( D ^ + l ) ( l - f 2 + l - g 2 ) + 
(3.7.2) 

(

1 2 : f 4 ( D 2

+ l ) g 4 . f 4 - l g ; D ^ g 4 . g 4 = 0. i j B } "jx ь 4 - ь 4 - «• ( 3 . 7 . 6 ) 

z + z * we g e t from (3.6.1) g „ = e z + z * + l a , C h o o s i n g f g = e ».= S w . wv.... у ^ . ^ . ^ t , 2 

cosa=k/*k* , , a n d t h e r e s t of t h e e q u a t i o n s turn 
out to be t h e iden t i t i es for e _ f _ n 

°4 4 
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T o find 2 -so l i ton s o l u t i o n c h o o s e i„ in t h e form 
2 z. + z* 

f = 2 a ( i . j * ) e J . (3.8) 

T h e r e a l i t y condi t ion for f wh ich d i c t a t e s t h e 
most g e n e r a l form of f2 (3.8) l e a d s to the c o n d i t i o n s 
on coe f f i c i en t s a ( i , j * ) : a*(i,j*) = a(j, i* ) , fol lowing 
a*(i,i*) = a ( i , i * ) • T h e s u b s t i t u t i o n (3.8) ; n t o (3.6.1) 
g i v e s 

z j+z j+ia j Zj + z 2 * + i (a 1 +a g ) /2 
g = b ( l , l * ) e l l '• + Ъ(1,2*)е l ' ' " + 

(3.9) 
zp+z1*+i(« i+a„)/2 

+ b(2,l*)e + b(2,2*)e 

H e r e 

cosa. = k.'*к * (a. = 2/3'.'+ "), b(i,j ^ = a(i,j*)exp(/3.'-/y 1.(3.10) 

Now from (3.6.2-3.6.7) w e c a n g e t f , g : 

ч Z .+ Z p + z t + Z p f =a(l,l*,2,2*)e 1 2 1 2 
4 

z,+ z +z* +z* + i(a +a ) 
g =a(l,l*,2,2*)e 1 2 1 2 1 2 . 

a( i , j ,k ,n) =a(i , j )a(i ,k)a(i ,n)a(j ,k) a(j,n)a(k,n); С 3 - 1 1 ) 

a(i,j*) = - [ ( k . + k * ) J ] _ 1 ; a( j*, i) = a*(j, i*); 

a(i,i) = - C k j - k j ) J ; a(i*,i*) = a * ( i , j ) ; 

t he r e s t of t h e e q u a t i o n s t u r n out to b e t h e i d e n 
t i t ies . 
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Finally, we have the following compact form of 
2-soliton solution - ~* - - - * - * 

2 z i + z i z . + Z g + Z j + Z o 
l+.2_ a(i,f)e +a(l,l*2,2*)e 

ф = е{1/ 1 ' J " 1 , —T—,-,(3.12) 
^ 2 Z . + E , Z t*-Zp J. Z , + Z g V ' 

1+S a(i,j*)e ЧаЦ,1*2,2*)е 
where 

z i = Z i + J 3 1 + i | - ; a J^ f - jBf+f f ( i f^(z ,)*!); ( з < 1 3 ) 

z . ̂  z for i ф j ; 

Zj , a(i,j....,k)are defined by (2.7-2.9, 3.1l), the ar
bitrary constant с is given to be equal to unity. 
The form (3.12) is manifestly Lorentz-invariant be
cause of the Lorentz-invariance of the rapidity dif
ference 

cMft-jBJ) =-::.'' kj*. (3.14) 

In the limit t->±«= the solution (3.12) transfers to the 
direct sum of two 1-soliton solutions with easily 
calculable phase shifts. 

The generalization (3.12) for N>3is evident enough; 
we can write the N-soliton solution in the following 
compact form 

i„ det; ||I + MM T | | T 

Ф - e Г, *7 . (MT).. =M 3.15 
det I + MMT и Л ' 

z j l £ . lAlll 
:4-sech- '. "J e : M =— авсЬ ' '_ " * 2 

M.. =4-sech H i

0

P i e ; M,. = i -aech ' * H J e 
ij 2 2 ij 2 S 

i.j«l,2,...N 

j , z j are defined by (3.13). But we have not 
been able to prove rigorously (3.15) by means of 
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the s tandard Hirota techniques b e c a u s e of the tr i-
linear form of the equation (3.4.2). 

It is c lea r from the foregoing the possibility of 
checking "suspicious on integrability" sy s t ems : a l 
most in all the c a s e s we a r e able to write the s y s 
tem of (3.4) type using 1-soliton solution (to find the 
last one is not usually too difficult problem). T h e n 
for nonintegrable equations the system (3.6-3.7) turns 
out to be inconsistent (of cou r se , this is not the 
rigorous proof of nonintegrability). The emergence of 
a lot of nontrivial identities in integrable s y s t e m s 
seems to be the intrigue fact far from comprehen
sion for the present. 

It s e e m s to be the interesting problem of g e n e r a 
lizing sys tems (l.2), (2.l) for the c a s e of multicompo-
nent (_>3) fields. This problem is now under invest i 
gation. 

The author thanks V.E.Zakharov and V.G.Makhan-
kov for trie useful d i scuss ions , N.N.Govorun and 
D.V.Shirkov for the support. 

REFERENCES 
1. Korepin V.E., Eaddeev L.D. Phys.Rep. , to be 

published. 
2. Ablowitz M. et al. Stud, in Appl.Math., 1974, 53, 

p. 24 9. 
3. Zakharov V.E. In the book by I.A. Kunin. "The 

Theory of the Elastic Mediums with Micro-
structure", "Nauka", M., 1976. 
Zakharov V.E. "Lecture Notes in Mathematics", 
Springer-Verlag, 1977, to be published. 

4. Getmanov B.S. Phys.Lett., 1977, 66B, p.39. 
Karpraan V.I., Maslov E.M. Sov.Phys .JETP, 1977, 
73, p.537. 

5. McLaughlin D.W., Scott A . J.Math.Phys., 1973, 
14, p.1817. Kulish P.P. Theor . Math.Phys. , 1976, 
26, p. 198. 

6. Kuzne t sov E.A., Mikhailov A.V. Theor.Math. 
Phys. , 1977, 30, p.303. 

15 



7. Getmanov B.S. Pis 'ma v JETP (in Russian), 
1977, 25, p.132. 

8. Hirota R. "Backlund Transformations", Nashville, 
T e n n e s s e e , 1974 Proceedings (Lecture Notes 
in Mathematics, 515, 1976). 

9. Pohlmyer K. Commun.Math.Phys., 1976, 46, p.207 
10. Lund P., Regge T. Phys.Rev., 1976, D14, p.1524. 
11. Lund P. Phys.Rev. , 1977, D15, p.1540. 
12. Lund P. Phys .Rev. Lett., 1977, 38, p. 1175. 
13. Kulish P .P . Theor.Math.Phys. , 1977, 33,p.272. 
14. Hirota R., Satsuma J. J .Phys.Soc.Jap. , 1976, 

40, p.611. 
15. Caudrey P.J. et a l . , P r o c . R. Soc . Lond., 1976, 

A.351, p.407. 
16. Bogomolny E.B. Soviet J .Nucl.Phys. , 1976, 

4, p. 861. 
17. Zakharov V.E., Shabat A.B. Sov .Phys . JETP, 

1971, 61, p.119. 
18. Zalharov V.E., Shaba t A.B. Sov .Phys . JETP, 

1973, 64, p.1627. 
19. Getmanov B.S. JINR, P2-10208, Dubna, 1976. 

Received by Publishing Department 
on November 18, 1977. 

http://Commun.Math.Phys
http://Theor.Math.Phys



