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feoMeTpR'!eCKRH nOllXOll K peweHRlQ KOHdJop,tHD-RHBapRaHTHhiX 

ypaaHeHHH non11 

PeweHHII HenRHeilHoro KOHdJOPMHo-RHBapRaHTHoro aonHoaoro ypaaHeHRII 

KnaCCHdJRUHpOB8Hhl ITO HX rpynrraM HHB8pH8HTHOCTH C HCITOnb30B8HH€M Knac

CHdJRK8llHH EHnllnoaa-DeTpOB8 KOHdJOpMHo-DnOCKHX npoCTpaHCTB no HX rpyrr

IT8M H30MeTpall. DpH 3TOM HallneH pllll HeaaaecTHhiX paHee peweHHll HenaHeli-

Horo aonHoaoro ypaaHeHHII od> + A<i> 3 = 0. 06cy>KnaeTCI! 3Ha'!eHHe 3THX 

peaynbTaTOB an11 peweHHil ypaaHeHHil HHra-MHaaca nn11 rpyrrrrbi ST1(2) 

( HnH SU(2) ® ST1(2)). Lln11 nonHOThi Hano>KeHH 11 rrpHBOlli!TCII ocHOBHbie cae

neHHII 0 llBYX noHI!THI!X KOHdJOpMHOll CHMMeTpHH B DpOH3BOnbHbiX ITC€Bll0pi!M8-

HOBbiX MH0!"'006pa31!1!X, 

Pa6oTa BbiiTOnHeHa B Jla6opaTOp1!1! TeopeTH'!eCKoll dJH3HKH OY! Hl-1. 
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A Geometric Approach to the Solution of Conformal 
Tnvariant Field Equations 

Solutions of nonlinear conformal invariant scalar wave equa
tion o¢ + A<i> 3 = 0 are classified according to their invariance 
groups following the Bilyalov-Petrov classification of conformally 
flat spaces according to their isometry groups. A number of pre
viously unknown solutions of this equation are found in this way, 
'I'he relevance of these results to the solution of the SU(2) (or 
SU(2) ® STJ(2)) Yang-Mills equations is pointed out. Background ma-
terial on the two notions of conformal symmetry for general pseudo
Riemannian manifolds is reviewed in order to make the exposition 
reasonably self-contained. 

'I'he investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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INTRODUCTION 

Some of the four-dimensional classical field 
equations with lump-type solutions* considered 
recently (see, e.g./ A 1£ /B2-5,9/,/ C2,3/, Jn 1.2,5/, /F1/, /H 1/, 
/J1-3/, /P2/, /R 1/, /s1/,/w1,2/,/Y1/) ** contain no dimen

sional parameters and are in fact conformal inva
riant. The lump-type solutions, having a non-tri
vial x -dependence, are clearly not translation in
variant. They are, therefore, rather unconventional 
candidates for describing the ground state in a 
world with spontaneously broken conformal sym
metry /F 1,D2/. It has been argued (see/D4,E2,Gl/) that 
a more appropriate framework for describing such 
a type of symmetry breaking is provided by the 
general t{leory of relativity. 

There is a more fundamental reason for going 
beyond Minkowski space in the study of conformal 
invariant equations. The class· of conformally flat 
(pseudo) Riemannian spaces provides a natural 

*We use here the words "lump-type solutions" in 
a loose sense including singular solutions like the 
Minkowski space counterparts of "instantons". The 
term "classical lump" was introduced by S,Coleman/c7/, 

** LetYcs note that the papers by Petiau1P2/and 
Castell c 2/actually precede the present fashion; the 
latter paper was apparently rediscovered in the 
midst of the new development by the authors of 
ref. /D 1/. 
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framework for such a study since these spaces 
possess isomorphic (local) conformal groups and 
give room to closely related conformal invariant 
equations, whose solutions are obtained from one 
another by a simple transformation law, !V1oreover, 
the family of conformally flat spaces contains a 
distinguished curved space M, the universal covering 
of the conformal compactification of :\1inkowski space 
M • Global special conformal transformations (which 

are always sJngular on a hypersurface in M) are well 
defined on M and preserve the natural causal 
orderi~ ,on t_!tat space (see/S~-4/,/M2/ and Appendix 
to ref, T<>/ ). M is a static (pseudo) Riemannian 
space of constant scalar curvature; it is diffeo
morphic to the 4--dimensional cylinder R 

1
® S 

3 
(its constant time surfaces being 3-spheres in R 

4
). 

The (quantum) field theory in a Riemannian space
time has been studied extensively in recent years 
(see, e.g., /Bs/,/c 5·6/,/os/, and references cited 
therein). In the present context one is confronted 
with a new problem in that framework; the considera
tion of (quantum) fluctuations around a non-trans
lation invariant ground state. 

The objective of this note is to study classical 
solutions of the conformal invariant wave equations 
for a self-interacting scalar field with a prescribed 
symmetry. It is observed that such solutions are 
expressed in terms of the factor O(x) relating the 
intervals ds 2 in different conformally flat spaces of 
constant scalar curvature, 

If the space V 4 with metric tensor gflv (x) '= 

= H
2 

(X)T) flV has a K -parametric isometry group (or 
group of motions) GK ( K ::; 10), then the correspond-
ing solution is CK -symmetric, Its conformal trans
formations give rise to a 15- K -parametric family 
of solutions (with symmetry groups conjugated to 
G K ). We also remark that non-static solutions in 
Minkowski space (like the singular solution des crib
ed in ref, IF!/ ) appear as static solutions in terms 
of the conformal time variable r of M • 

4 

We start (in Sect. 1) with a brief review of con
formal symmetry in the framework of general rela
tivity. The classical solutions of the massless >..¢ 4 

theory in a conformally flat space are studied in 
Sect. 2 for both signs of >.. • New solutions are found 
in terms of both elementary and elliptic functions. 
.All new solutions, however, are singular on some 
surfaces in the Minkowski space. (The only bound
ed solutions are those related to a compact 
subgroup of S0(4,2) and they have been 
previously known). In Sect. 3 we discuss the rele
vance of the scalar conformal invariant wave equa
tion to the solution of the classical Yang-Mills 
equations. 

1. CONFORMAL SYMMETRY IN THE 
FRAMEWORK OF GENERAL 
RELATMTY 

A. The Conformal Group of a Riemannian 
Space 

A point transformation (that is a local diffeomor
phism) x _,'lt = 'x(x) in a (pseudo) Riemannian space 
V with a metric tensor g afj (x) is said to be con
formal* if 

* For a lucid discussion of various types of con
formal mappings and their interrelations see IE 1/ and 
the first part of /F3/. Note that we are using a metric 
tensor of opposite sign {our signature is + - - - ). 
Gravitational fields are classified according to their 
conformal properties in Chapt. VII of ref. /P3/ which 
also contains a comprehensive bibliography on 
this and related subjects up to 1964. 
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or 

g Jll! ( 'x)a a 'xfl a {-3 'x lJ =W 
2(x)~f)(X) (a a c-c _a-) 

Jxa 

a {-3 

(1.1a) 

, (, )= ~- Jx -2 ' 
g/lV X .. d'xfl a'Xvgaf)(X)=(I) (X)gJ11,(X), (1.1b) 

where w(x) is a (smooth) non-vanishing real valued 
function. (In other words, a coordinate transforma
tion in V is called conformal if it leaves the form 
of the metric tensor invariant up to a local factor.) 

Not every Riemannian manifold admits a non
trivial group of conformal transformations. A one -
patameter group of coordinate transformations with 
infinitesimal generator L =!;a a a is conformal if 
there exists a function f(x) such that the conformal 
Killing equation /E 1/, /P3/ 

V a !; {-3 + V {3 f, a = 2f g a(3 (1.2) 

is satisfied (here V a is the covariant derivative: 
Vaf,{i=aat;{-3-I'!{-3 l;y). If f=O, then the factor 

w (x) in ( 1. 1) is one and the corresponding trans
formation is an isometry. The group C(V n) of con
formal symmetries of an n -dimensional Riemannian 
manifold vn has at most 'h(n+ l)(n+ 2) pa.rameters 
(15 parameters for V 4). A criterion for two spaces 
V and V to have the same (local) group of con-
formal transformations is given by the following 
statement. Let there exist a mEtpping X .... x(x) of 
some neighbourhood 0 '=- 0 x of ~ach F?_Oint_ x >=; V 
onto a neighbourhood 0 of a point x ~ V such 
that, if we use the x_'s as (local) coordinates in 
both 0 C V and 0 C V, the corresponding metric 
tensors are proportional: 

g JlV (x) = 0 2 (x)g jlV (X) (02 (x) > 0 for x>;Q). ( 1. 3) 
f 

Under these conditions the (Weyl) conformal c·.tr
vature tensor* 

c ,\ = ,\ - __ 1 - ,\ ,\ 
JlVP - R JlVP n- 2 (RJl[vo p] + g Jl[v Rp] ) + 

+ 

R,\ 
(gJl[lJ p] 

__ 1__ ,\ 
(n- 1)(n - 2) RgJ1[v

0 
p] ' 

,\ ,\ 
- g Jll! R p - g JlP R v ) 

(1.4) 

is the s arne in the two neighbourhoods and the 
conformal groups in 0 aQd 0 _are isomorphic. In 
particular, thEI_ solution I; a , f of the Killing 
equation in 0 is related to the solution f, 
of the (1.2) in 0 by a 

f, a (x) = n2 (x)f, a (x) ' 

f(x) = f(x) + gaf\x)f,a(x)a f3ln0(x). (1.5) 

f 

*We are using the standard notation (see, e.g., 
ref./E1/,/P3!) for the Riemann curvature tensor 

,\ ,\ ,\ ,\ a A a 
R JlVP =av r JlP- apr JlV+ r avlflp - rap r flV' the 

Ricci tens or R flV == R~va , and the scalar curvature 
a ,\ Aa 

R == R a. r flV = 1;2 g (aflgav + avgajl-aagp.v) 

being the Christoffel symbols. 
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A (local) mapping of Riemannian manifolds, in 
which the metric tensor at identified points is 
changed according to (1.3) is called conformal 
(Domokos /D4/ uses the term "Weyl transformation" 
for it), It should be clearly distinguished from the 
conformal transJormations defined by (1.1) * , Two 
spaces V and V for which the metric tensors are 
(locally) related by (1.3) are called conformal (to 
each other). It can be shown, that light-like geode
sics go into light-like geodesics under a conformal 
mapping, and classical equations of motion for mass
less particles and dimensionless coupling remain 
invariant. 

The conformal group of a Riemannian space 
is maximal (and locally isomorphic to S() 

0 
(n, 2) ) if 

and only if the space V n is conformally flat, i.e., 
if 

g JlV (x) n2
(x) 77 1

w ( 77 = diag(l, -1, ••• , -1) , (1.5) 

or, equivalently, if 
,\ 

C JlVP = 0. 

*The conformal transformations are point or coor
dinate transformations within the same Riemannian 
manifold V whim only exist in a restricted class of 
Riemann spaces and from at most a (n + l)(n + 2)/2 
parameter group. The conformal mapping, by con
trast, relates one Riemann space, V, to another, V, 
(with a different metric structure), The group of 
such mapping is isomorphic to the group of all 
positive local factors O(x) and is, therefore, in
finite dimensional, 

8 

~ 

... 

B, Conformal Invariant Wave Equation 
for a Scalar Field 

The analogue of a massless scalar field equation 
with a dimensionless selfcoupling in a curved 
( n -dimensional) space-time is 

n + 2 

(o + n - 2 R)¢ 
n - 2 

+ ,\¢ = 0 ' (1.6) 
4(n -l) 

where 

0 = gaf1vaaf3 = 1 -aa<vfigaf3 af3)' g= detgaf3' 
y'JgJ 

is the invariant d'Alembert operator, It has been 
noted already by Penrose /P 1/ (for the case ,\ = 0) 
and further justified in/C4/ (see also/M1/,/T1.21 that 
the term proportional to the scalar curvature 
( R/6 for n = 4) is necessary both for the invariance 
of Eq, ( 1,6) with respect to the conformal mapping 
(1.3) and for the correct physical interpretation of 
the theory, 

I ndeec., if ¢ (x) 
then 

is a solution of (1.6) in Vn, 

1-~ 
¢(x) = n 2 ¢(x) (1. 7) 

is a solution of the same equation in Vn (with 
o and R replaced by iJ and R ). That follows 

from the identity 

n+2 

(o + n - 2 R)¢ = 0-2 - ( o 
4(n - 1) 

2-n 
+ n-2- .--

4(n- 1)R)Q 2 ¢ 

which can be obtained from the known transforma
tion law for the scalar curvature 
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Rd2-2 lR+2(n-1) olnD +(n-1){n-2) gaf3 a a ln na f3lnn! (1.8) 

under the mapping (1,3) (see, e.g./P 3/ Eq. (35,8)). 
The invariance property thus established is 

related to the conformal invariance of Eq. (1.6) in 
the sense of coordinate transformations. If the 
space V admits a non-trivial conformal group 
(of transformations x ~ 'x satisfying (1,1 )) 

n-2 

(, 0, 
X 

n-2 -2- (' 
+ --- 'R('x))w (x)¢ x) 

4(n-1) 

=W 

n+2 
2 (x){o, + n- 2 -R('x))¢('x). 

x 4(n-1) 

(1.9) 

Consequently, if ¢(x) satisfies Eq, (1,6) so does 

n-2 

'¢(x) = (u 
2 (x)¢('x(x)). (1.10) 

It is rerrarkable that the factor n in the mapping 
(1,3) not only allows one to relate the solutions of 
Eq. (1,6) in V and V , but for n=4 and R = con
stant it is proportional to a solution of (1. 6) inva
riant under the isometry group of V • Indeed, the 
transformation law (1.8) for the scalar curvature 
can be rewritten in the form 

(o + _R_)Q R 0 3 n-4 af3 
2(n-1) - ~n-1) + 2n"g a ana {30=0.(1.11) 

10 

,J 

rc 

For n = 4 the last term drops out and we obtain 

( 0 + 
1 1 - 3 
-R)O - -RO = 0 
6 6 

that is nothing but Eq. ( 1,6) for n=4 and ,\ = - _!_R 
(=canst). A real solution of 

6 

( o +! R)¢(x) + A¢
3

(x) = 0 (1.12) 

for arbitrary ,\ (of the same sign as -R ) is given 
by 

R 
¢(x) = v- __::_n(x) . 

6,\ 
(1.13) 

If the space V admits a nontrivial conformal group 
C(V), then Eq. (1.10) gives rise, in general, to 
more solutions of Eq. (1.6),· The particular solution 
( 1.13) is ·invariant under the isometry subgroup of 
C(V) [ = C(V)] , or, in o_!her words, under the group 
of motions of the space V. 

We shall exploit the above observation for 
studying symmetric solutions of Eq. (1,12) in a 
( 4-dimensional) co nformally flat space - particularly 
in Minkowski space - in Sect, 2 below. First of 
all, however, we shall review in the two following 
subsections some general properties of the symmet
ric solutions of Eq. (1.6) in an n -dimensional 
(pseudo) Riemannian manifold, 

c. Solutions of the Nonlinear Wave 
Equation with a Given Symmetry 

The observation made at the end of the pre
ceding subsection allows one to apply known re
sults on the classification of Riemann spaces accord
ing to their isometry groups in order to find solu
tions of Eq. (1.12) invariant under a given subgroup 
G of the conformal group C(V

4
). The following auxi

liary statement will be useful in the sequel. 
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Proposition 1. Let V n admit a nontrivial con
formal group C(V n) and let ¢(x) be any smooth 
function on V n conformal invariant under one-para
meter subgroup of C(V n) with generator L = ~a (x)iJ a '; 
then 

n~R¢ 
exp + 4(n _ 1) _ ) = 0 0 

L(- -- n~2-

¢ n- 2 

( 1.14) 

Proof. Let x _, 'x(x, E) be indeed a one-para
meter {conformal) transformation group (with para
meter E ) satisfying (1.1) with cu= cu(x.d and such 
that 

'x(x, O)=X, 
a 

--,-- 'x(x. d I = t(x), 
ch E = 0 

a 
--w(x,dl =f(x)o a( f = o 

Then differentiating Eq. ( 1. 9) with respect to E 

obtain for < = 0 
we 

(L + n+ 2 f)(o + Jl~-R)¢ 
2 4(n -1) 

· n-2 n-2 
= ( o + --. -R)(L + --f)¢ . 

4(n - 1) 2 

Now we assume that the transformation 
¢ conformal invariant so that 

n- 2 
(L + ---f)¢ = 0 0 

2 

12 

(1.10) leaves 

(1.15) 
I. 

;r 

Since L is a differentiation we obtain 

l. n-2 ] n+2 o¢ + R¢ ---
- 4(n- 1) = ¢ n-2L(o¢ + n-2 R¢) _ 

..1L±..2..._ 4(n -1) 
n-2 

¢ n +2 
----1 

~~¢ n - 2 (Lc,b)(o + -~)¢ = 0 ° 

n -2 4(n- 1) 

That completes the proof of Proposition 1. 
Corollary. If ¢ (x) is conformal invariant under 

a K -parameter group G C C(V ) , and G is 
transitive, then c,b(x) satis'h~s Ec{. ( 1.6) with ~orne 
(constant)A • 

Indeed the transitivity of G K means that the 
matrix ,; (i = 1, .. , , K) has rank n. Therefore, the 
set of all equations of the form (1.14) implies 

(

0 n "' ] ( o + _-=...:___R)¢ 
a 4(n- 1) = 0 

11 ..!l±L . 
¢ n-2 

or (1.16) 
n-2 r1.. 

(o + ----R)'f' 
4(n-_1_) ___ =A ( = const), 

---n+-2 
¢il-=-2 

which coincides with (1.6). (Note, however, that the 
constant in the last equation may happen to be zero; 
that is the case, for instance, when GK is the 
( n -parameter) translation group in the flat space-

time). 
Thus in the case of a transitive group G of 

K 

conformal transformations, the G -invariant solu-
K 

tion of the non-linear equation (1.6) is found to 
satisfy the set of linear equations (1.15). If the 
conformal group in V n has N parameters (N 2: K ) , 

then transforming our solution according to (1.10) 
we obtain a N - K -parameter family of solutions. 

13 



Next, we shall consider the case when the 
rank of the matrix <et} is n-1 and will show 
how to reduce Eq. ( 1.6) in that case to a (non-li
near) ordinary differential equation. Under the ac
tion of a group G K with the above property the 
space V n splits into a one-dimensional family of 
GK -transitive hypersurfaces a(x) = const. GK 
leaves each such surface invariant: 

Lia =~~a11 a = 0, i = 1, ... ,K(::::_n-1). (1.17) 

If a satisfies this set of equations and F is an 
arbitrary (differentiable) function, then F(a(x)) also 
satisfies eq. (1.17) (That exhausts the freedom 
left by the GK-invariance). hly function ¢ which 
satisfies the invariance condition ( 1.15) can be 
written in the form 

¢ = ljJ (x) F(a), (1.18) 

where l/J(x) is some fixed solution of Eq. ( 1.15). In 
particular, any G K -invariant solution of ( 1.6) should 
be of this form. 

Proposition 2. The substitution of (1.18) where 
l/1 and a are nontrivial solutions of (1.15) and 
(1.17), respectively into Eq. (1.6) leads to an or
dinary differential equation for F: 

n+2 

A F" A F' A F 'F n-2 = 0 2 + 1 + 0 +1\ . 

The coefficients 
n+ 2 

- n-=2 n-2 
A = ljJ (o + --R)lji, 

0 4(n- 1) 

n+2 

A 
1 

= ljJ- n- 2 ( o (ljia) - a olji) , 

14 

(1.19) 

(1.20a) 

(1.20b) 

h 

., 

4 
-~ (1 

A 2 =ifi aaaaa (1.20c) 

of this equation depend on x through a only. 
Proof. The derivation of (1.19) and (1.20) is 

straightforward • In order to prove the last asser
tion, it is necessary and sufficient to verify the 
equations 

L . A = 0 for i = 1, ••• , K ; a = 0 ,1, 2 . 
1 a (1.21) 

For A 0 this is true because of ( 1.14), since lji(x) 
is assumed to satisfy the conformal invariance con
dition (1.15). Then we express oljJ in A 1 in terms 
of A 0 and if1; Eq. (1.21) is again verified, since 
alji also satisfies (1.15) (if ljJ does). 

Finally, 

n + 2 
- ""'i1=""2 4 a 

L.A 2 =l/J 1---l'>aaa aL.ljJ + 
1 n-.;a 1 

+ 2ljiaaa(aaLia- 'Va~f3a13 a)l = 0, 

( 
a {3 a 

because according to 1.2) 2a a v a~ i{3 a a = 2f i a a a a a 
and ljJ satisfies (1.15). That completes the proof 
of Proposition 2. 

2. SYM\IIETRIC SOLUTIONS OF THE 
NONLINEAR WAVE EQUATION 
IN MINKOWSKI SPACE 

In this section we shall exploit the observation 
of Sect. 1.B that the symmetric solutions of Eq. 
(1.12) in 4-dimensional space-time are expressed in 
terms of the conformal factors O(x) mapping, say 
Minkowski space, onto a (conformally flat) space 
V 4 of constant scalar curvature. That allows one 

15 



to relate the solutions of a sufficiently high symmetry 
to the known classification of conformally flat spa
ces according to the isometry groups (see /P3/ ). 

A. Conformally Flat Spaces of Maximal 
Isometry 

We are primarily interested in finding and 
classifying symmetric solutions of the equation 

o¢ + A¢ 3 
= 0 (2.1) 

in Minkowski space ~1 = M 
4

. 

Three conformally flat spaces of non-vanishing 
constant scalar curvature and transitive isometry 
groups are well known. These are the de Sitter 
spaces of constant positive and negative curvature 
(also known as de Sitter and anti-de Sitter space
times) and the cylindric (Einstein) static universe M. 
Although the corresponding conformal factors only 
provide previously known solutions, these simple 
cases can serve as a good illustration to the me
thod and we proceed to their description. 

The de Sitter spaces S can be defined as 
h b l 'd . r" fJf yper o or s rn :J-s pace 

2 2 42 2 ( ) s p< =I yc;. R5; (y0
) -y -dy ) + ffJ = O,E=±,p>Ol. 2.2 

Here < is the sign of the curvature and p is its 
radius; S p+ is the "closed isotropic universe" with 
isometry group 0(4, 1) ' sp- corresponds to the 
open ·universe model with isometry group 0(3, 2). 
The space S p< is conforma 1 to the domain p 2 ><x 2 

of Minkowski space. Indeed, setting yil = 2p 2 (p2-<x2)-lxii 
y 

4 
=p(p 

2-<x2f 1(p 2 +<x2A.ve obtain the follovving expres-
sion for the (anti) de Sitter space-time interval 

ds; = (dy 0
) 

2 - (dy) 2 -ddy4 ) 2 = n; (x)dx 2, (2.3) 

16 

"\ 

, 

l. 

1 

where 

n ( (x) 
2p 2 

f = + -- . (2.4) 
p2-fX2 

The Riemann tensor and the scalar curvature are 
given by 

Ra 1 oa 
i11'{l = f 2g 11 [ fJ fl] p 

'R=E___!! p2-. (2.5) 

Hence, according to ( 1.13) the corresponding 
( 0(4.1) or 0(3.2) -symmetric) solution of Eq. (2.1) is 
given by 

' 2 6 (x) = v -f, ~ fJf 1\ 

_?£ __ 
p2-<x2 . 

(2.6) 

The positive A solutions ( < = -1), which correspond 
to a positive classical Hamiltonian, have been used 
by Fubini et al,/Fl/,/02/ in an attempt to describe 
spontaneously broken conformal symmetry, while 
the negative A solutions are applied by Lipatov 
and others /Ll/,/86,7/ in their study of the large 
order be he.. vi our of the perturbation series in the 
Euclidean quantum field theory. (Note that ¢ p+ 
is finite for pure imaginary time~) Following the 
general prescription of Sect. 1.C we obtain (by 
translating (2.6)) a five parameter family of solu
tions 

2 2..e_ ___ • 
cp (X- a)= y-<-;.,_- ~<(X-a)2 

fJE p 
(2.7) 

(The fifth parameter is the radius p of the universe 
which plays the role of scale or _dilatation parameter). 

The Einstein static universe M = R 1 ® S 3 can be 
identified with the universal covering of the confor
mal compactification M of Minkowski space/Ul< 
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considered by Penrose and others IP1I,Is2-4I,IT5I,IM21. 
Representing the points in Minkowski space l'v' 
by 2x2 hermitian matrices 

X=Xfla 
fi 

Xo +X 3 

1 . 2 
X +IX 

x 1- ix 2 

Xo- X 3 ) ' 

and using the S:ayley transformation U= (1- iXf
1
(1 + iX)' 

we can define M as the set U(2) of all unitary 
2x2 matrices. Parametrizing the points in l.l(2) = 

S 1 ®8 2 I Z 2 by four angles 

u = eir (cosx + i sinx!_l~), ~=(sinO cos¢, sinO sin¢, case), 

-rr < r :S rr , 0::; X ::;_ rr , 0 ::;_ X ::; rr , 0 ::;_ 0 < 77 , 0 < ¢ < 2rr, 

we will have 

1 + x2 
sinxn = f!(x)x, cosx = f!(x)----, 

- 2 

1- X 2 
cosr = f!(x)----, sinr = !1(x)x0

, 

2 

where 

f!(X)= [ ~(1-x 2) 2 +(X0 ) 2 )-Y, (=COSX+COSr) 

(2.8) 

(2.9) 

(Eqs. (2.8) define a map of M on the submanifold 
qps x + cosr > 0 of S 1 ® S 3 ). The isometry group of 
M is the maximal compact subgroup K=S0(2) ®80(4) 
of SO 0 (4, 2). The K-invariant quadric of M is given 
by 

ds
2 

= dr 
2- ctx 2- sin2x(d8 2+ sin2 8d¢ 2) =!1 2(x)dx~ (2.10) 
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I 

' 

\ 
I 

The scalar curvature of M is constant, R= 6 , 
(although the Riemann c~rvature is not). The compac
tified Minkowski space M and its covering spaces 
are distinguished by the fact that global conformal 
transformations are everywhere defined and non
singular on each of these spaces. The universal 
covering space M (obtained from M by replacing 
the circle S by the real line -oo < r < oo ) is distin
guished for having a conformal invariant causal 
ordering on it (seeiS2-4/,IT5I, IMl I ). It is the carrier 
sp<:~.ce of the infinite sheeted universal covering 
C(M) = C(M) of the Minkowski space conformal group* 
so 0 ( 4,2) I z 2 • 

The K-symmetric solution of (2.1) is ¢(x) = 

= 1 
f!(x), where !1 is the factor (2.9). This solu-

V -A I I 
tion was described by Castell C2 and further 
explored iniDll. It gives rise (through conformal 
transformations) to an 8-parameter family of soluti
ons: 

¢ e (x- a' u) = _ _g_-=:.H 1-( X- a -)2] 2+[2 u(x-_&_]2! -Y, 

ev-A e e ' 
(2.11) 

where u is a unit time-like vector (u 2 
= 1). These 

solutions are distinguished for being hounded on 
the entire Minkows ki space and for carrying a 
finite energy. 

We conclude this subsection with a remark on 
the solution of Eq. (1.12) in other conformally flat 
spaces. 

*C is also called the quantum mechanical con
formal group since all projective representations 
of C(M) can be lifted (according to Bargmann IBll) 
to suitable unitary representations of C • 

19 



Given a solution of Eq. (2.1) in M we can write 
q_ccordi!_1g to ( 1. 7) the corresponding solution 
<,) (x) = n (x) cp (x) of ( 1. 12) in any other confor-
mally flat space. If V is a conforrnaily flat space 
of constant scalar curvuture R v then the solution 
corresponding to ( 1. 13) for the conformul f<tctor 
n v (x) is const..-:tnt in v: 

-Rv 
I -cp (x) = " 6,\ v (2. 12) 

(That is also a direct consequence of Eq. (1.12)). 
Thus, in particular, non-stcltic solutions in Min
kowski space go into stc-:ttic solutions in the cor
responding conformally flut spaces. It is interesting 
to note that the Fubini solution <h (x) (2,6) also 
goes in~o a r -independent solutior-f-on the cylindric 
space M of radius p : 

-1 X 1 2 1 
c,b (x) = n (--)(,') (x) = \- ----. 

p- p p- A p cos X 

(2.13) 

B. Solutions of Eg. (2.1) Corresponding 
to Homogeneous Spaces* 

The general study of the symmetric solutions of 
Eq. (2.1) is greatly fckilitated by the classification 
of conformally flat space-time according to their iso-

*We recall that a space V with isometry group 
G K is called homogeneous if G K is transitive on V 
(that is if any two points of V can be transformed 
into one another by an element of G K ). 
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metry groups due to Bilyalov and Petrov *. We 
shall only present here an extract of the relevant 
results. In order to facilitate comparison with the 
Petrov listing we shall denote the group under con
sideration by G~A), K being the number of parame
ters of G and A for the number in the Petrov list 
of group:::, with given K (see /P3/ p. 314-318). Solu
tions of Eq. (2.1) will be written in a Lorentz cova
riant form; for this purpose we introduce an ortho
normal basis in M 4 constituted by four constant 
vectors u , q , r , s : 

u2 = 1, q2= r 2= s 2= -1, uq=ur=us=qr=qs =rs= 0 

and two isotropic vectors 

n=u-s, p=U+S (p 2 = n 2 = 0). 

Generators of the subgroup of SO 
0
(2, 4) (of the iso

metry group of the corresponding conformally flat 
space-time) under which a given solution is sym
metric, may be obtained by projection of the cot·
responding generators from the Bilyalov-Petrov 
classification onto the basis I u, q, r, s l, the genera
tors of translations, Lot·entz transformations diL:tta
tions and special conformal transformations being 
considered, respectively, as a four-vector, an anti
symmetric tensor, a scalar and a four-vector. 

The only 4--dimensional conformally flat homoge
neous spaces of isometry groups GK with K ;::: 7 
are t_!:le Minko·.vski space M and the spaces S fJ< 
and M considered in the preceding subsection. There 
are two homo~(·neous spaces with 6-p-:;.ra.meter 

*This classification is presented in a systematic 
fashion in the book by A.Z.Petrov /P3/ (see, in 
particular, p. 310-318). 
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isometry groups aC~>and a<~)which both have zero 
scalar curvature and thus lead to singular solutions 
of the linear d'Alembert equation, 

There remain two more homogeneous spaces 
with isometry groups with five and four parameters 
which lead to the solutions of the nonlinear 
equations (2.1): 

(1) 1 2 2 -1 
G 5 : ¢ = v - [ 4qx - (px) J , 

-A 

(lQ) I 2 2 '/, -1 
G 4 : ¢ = v ~- [ 1 -t (px) 1 [ qx + px. rx] . 

C. Isometry Groups with a Transitive 
Hypersurface 

(2.14) 

We proceed to the case when the matrix (,; ~) 
( ) 

• • I I i= 1,2, .•. , K, 11=0,1, 2, 3 of the Killing vectors com-
ponents of a subgroup G K c C(M 4 ) ( the isometry 
group of the corresponding conformally flat space
time) has rank 3, In this case the Bilyalov-Petrov 
classification provides us with the invariant a(x) 
and the factor l.j; (x) in the substitution ( 1,18) which 
reduces the solution of Eq, (2.1) to the solution 
of the ordinary differential equation (1.19) (with 
n = 4 ). 

For some invariance subgroups G the choice 
K 

of l.j; and a is rather trivial. For instance, for 
G 6 = 0(3, 1) we just set a (x) = x 2 , l.j; (x) = 1; the cor
responding (elliptic functions') solution of Eq,(1.19) 
has been found long ago by Petiau /P2/ • In most 
cases, however, this substitution is far from 
obvious. Since it is not clear that the choice of /P 3/ 
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is the most appropriate one, we consider the ad
ditional change of variables 

F(a) = f(a) H(z), (2.15:1.) 

z z(a), (2.l5b) 

where z (a) and f(a) are given and H(z) is a new 
unknown function. We shall write down conditions 
on the coefficients Aa (1.20) under which Eq.(1.19) 
can be transformed by a substitution of the type 
( 2,15) to the form 

H ''(z) + (1- 2k2 )H'(z) + 2k2 H 3(z) = 0, (2.16) 

where k is a constant. This latter equation is sa
tisfied by the Jacobi elliptic cosine. 

Inserting ( 2.15) into ( 1.1 9), we obtain 

A 2 fz'2H"+[A 2 (fz"+2f'z') +A
1
fz']H' + 

+(A f" + A f' + A f)H + Ar 3 H 3 = 0 . 
2 1 0 

In order to reduce this equation to the form (2.16) 
the functions f and z should satisfy the system 

d 2 A 1 
-In ( z 'f ) + - = 0 , 
da A2 

f 2_ 2k 2 A ,2 
- .\ 2z ' 

A f" +A f' + A f = (1 - 2k 2 )A z' 2r. 
2 1 0 2 
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Solving the first two equations with respect to z' 
and f 

z 

f 

A- 1/3 
2 

1 a A1 
exp!-- J -da'l, a =const, 

3 a A2 
0 

j --2-----u-;-- 1 a A 1 , I 
- ~A expl-- J --da , 
- ,\ 2 3 a A2 

0 

and inserting them into the third one, we obtain 
the following relation for the coefficients Aa of 
Eq. (1,19): 

6A (A"-2A' +6A )-(5A'-4A
1
)(A'

2
-2A

1
) 

2 2 1 0 2 

2 a A1 
= 36(1- 2k2 )A 4/ 3 e- 3 f ~da 2 a 0 2 • 

( 2,17) 

If this condition is satisfied then the general G -
K 

invariant solution of Eq. (2.1) can be written in the 
form* 

2k2 t/6 1aA1, 
¢(x) = v-y;- A t/J(x) exp I-- f--da I cn(Z+ z ,k), 

2 3a A2 o 
0 

z = 
J da 1 a A 

A 1/3 exp I - -3 f __ l~ da , I . 
2 

A ' 
ao 2 

(2.18) 

a 
0 

= const , z 0 const, 

*See also the Note added in proof at the end of 
the paper, p. 31, 
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where k 
2 

and Aa are determined respectively from 
(2.17) and (1.20) for given t/1 and a; the sign 

-2 a of ,\ must be the sa me as the sign of A 2 = TjJ Jaa a a, 
that is the sign of the Lorentz square of the nor
mal vector to the surface a = const. (In other 
words, ,\>0 for space-like GK-homogeneous hyper
surface, and ,\ < 0 if a(x)= const has a tangent 
time-like vector). 

It turns out that Eq. ( 2.17) is satisfied for all 
five 6-parameter groups with homogeneous hypersur
faces, considered in /P 3/. Hence, for a II these 
cases the general G~Al-invariant solution of (2.1) 
has the form ( 2,18). For three of them (with 
G~l)=E(3)=R 3 ®0(3), G(~) = 0(4) and G(~)=0(3,.1)) 
these solutions have been known (see IP2/ and /c21). 

We list the values of TjJ , a , A a , z and k2 to 
be substituted in Eq. ( 2,18) for the G6 -invariant 
solutions in Table 1. All 5-parameter groups are 
exhausted by the transitive G ~) considered in 
the previous subsection. We have also considered 
all 4-parameter groups and list the cases solvable 
in terms of Jacobi elliptic functions in Table 2. 

According to the Bilyalov-Petrov classification 
there are 19 three-parameter subgroups of SO ( 4,2) 
which are transitive on a hypersurface of M 

4 
°and 

thus lead to Eq. (1.19). We are not exploring these 
here, 

3. RELATION TO THE YA.HG-MILLS 
EQUATIONS. DISCUSSION 

A. The Carrigan-Fairlie- 't Hooft-Wilczek 
Ansatz 

It turns out that the solutions of the scalar 
wave equation (2.1) (or (1.12)) can be used for 
solving the physically more interesting (or, at 
least, more fashionable) Yang-Mills equations. 
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Table 1 

G -symmetric solutions of Eq. (2,1) expressed in terms of Jacobi elliptic functions: expressions 
fo~ the functions and constants which appear in Eq. (2.18) and Eq. (2,18a) 
(see Note added in proof p 31) 

' . 
'Ihe symmetry j~roup t/J(X) u(x) Au A I A2 z 1 - 2k 2 

a<~> = R 1 ID 0(3) 1 ux 0 0 1 a 0 

0(2) -I -I 2 4/3 -I 
(qx) px(qx) -2 -4u -u -uo " 0 

6 

(3) -I 2 -I 2 1 ( 2 4) 2/3 arctg F 2 -4 3 
4(<T

0 
+ 4) 

Ge ~ 0(4) (ux) (1-x )(uXJ 2 4u " +4 2 (70+ 

a<;> (qx) -1 -1 
rx(qx) -2 -4u -(u

2
+ 1) (u!+1)2/3 • arctgu (o ~ + 1)-4 3 

G~! = 0(3.1) 1 
2 

X 0 8 4u 
4-1 1

3 2, 3 -t'3 -4 3 
"o lna -4 fT O 

c''' 4 

Table 2 
G4 -symmetric solutions or Eq. (2.1) expressed in tenns of Jacobi elliptic function.•;;: expressions for the f11nctions 

and constants \mich appeoar in Eq (2 18) 

V(Jl) 

2 -l/2 
(I ) 

2 -1/1' 
(I ) 

-I 
(pi) 

e p1, 2 

--~..!.. 
2Y 3 

(pi) (I ) 

2 -w 
(I ) 

ql 
jiX - lap• 

pxe ""'11• 

-I 

-I 

0 

0 

0 

0 

A l 

2 
-4(v+fv ).> 

4w~ n 

0 

0 

-2 

2 2 

- ¥-·" 
2 2 

4w a 

-I 

-4 

-4a 

-2 3 I 2 
(~) "o Jn, 

,-1 3 
~ " 

I- 21;2 

0 

1 1 -2 a -e a 
-4 w 

0 

0 

0 

*In this case the group al~ebm deperds on two constants, v and w, in genemt. 



In order to fix the ideas, we consider an SU(2) 
Yang-Mills field 

e i 
A

11
(x) = 2 qiA 

11 
(x), (3.1) 

where q i are the quaternion units satisfying 

qiqj =-oij +f ijk qk, i,j.k= 1,2,3 (3.2) 

and e is the Yang-Mills coupling constant. In the 
2-dimensional representation q j can be expressed 
in terms of the Pauli matrices 

q. =-ia. 
J J 

so that trq. q. =-23 .. 
I J IJ 

(3.3) 

In a Reimannian space-time manifold V we introduce 
the extended covariant derivative 

D = V +A 
J.1 J.1 J.1 (3.4) 

(where \711 is the usual covariant derivative, defined 
after Eq. (1.2)). The Maxwell Yang-Mills field will 
be defibed by 

F = [D , D ] . 
J.lV J.1 V (3.5) 

Note, that with this definition F J.lV does not in ge
neral vanish even if A

11 
= 0, since it contains the 

term [VJ.l' Vv] proportional to the curvature tensor. 
The advantage of such a definition comes from the 
fact that the second set of Maxwell equations, 

KAJ.lV [D F ] = KAJ.lV [D [D D ]] = 0 ( 3.6) 
( A ' J.lV ( A ' J.1 ' v ' 
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in this case is nothing but the Jacobi identity for 
the double commutator (.iust like the Bianchi identi
ties in general relativity). 

It should be noted, however, that with the alter
native definition 

F' = V A - V A + [A A J 
J.lV J.1 V V J.1 J.1' V ( 3.5') 

we also have 

KAJ.lV [ D F' ] = 0 ' 
( A ' J.lV (3.6') 

since [A A, [ \7 11 , VviJ·=O. The choice (3.5) leads to 
a generalization of Weyl's conformal formulation of 
Einstein's theory (for a recent discussions 
see /Y2/.ID4/). Both choices coincide in a flat space
time and the subsequent discussion is applicable 
to either of them. 

In terms of F 11v the general covariant Yang
Mills action is written in the form 

1 KJ.l Av - 4 
S(A) =- - ftrF..J g g vlgi d X 

2e 2 IV\ J.lV (3. 7) 

(see, e.g., I 891 ); it is manifestly invariant under the 
conformal mapping (1.3) (we should just remember, 

- 2 J.lV that for gJ.lV -> g J.lV = fl (X)g J.lV , g is tr~nsformed 
according to the inverse formula: g J.lV ... gllv =il-2(x)gllv 

- 8 
while lgl = idetga{-JI-.Igl =il lgi). Consequmtly, the 
Yang-Mills equation 

AJ.l [D F ] = 0 
g A ' J.lV (3.8) 

is conformal invariant (80(4,2) -invariant in any 
conformally flat space). 

Classical finite action solutions of the Yang
Mills equations in 4-dimensional Euclidean space 
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have attracted lately much attention (see, e.g. 
/B2,3,5,9/ ,/ A1/ ,/D 1/,/ J 1-3/,/N1 ,2/ ,/ 0 1/,/P4, 5/,/S1/,/ T3,4f,/W 1 ,2/./Y 1/) 

It turns out that the ba. sic 1-instanton solutions are 
obtained from the Euclidean space counterpart of 
the solution ¢ (x- a) (2. 7) through the simple an-

p+ 
satz * 

A 
11 

(x) = gap. a a ln¢(x) (3.9) 

provided that the matrices g p.v satisfy the 0( 4) 
commutation relations 

[q KA ,q p.v] =0 Kp. q .\v + 0 ,\v q Kp. -o KV q,\p.- 0 Ap.qKv· (3.10) 

In the 2-dimensional realization (3.1)-(3.2) the mat
rices have the form 

q i4 = 'Yl - 'A 2 f ijk q jk - 2 q i . (3.11) 

We remark that the vvhole construction is readily 
extended to the gauge group SU(2) ® SU(2) ( - SO ( 4)) 
(see, e.g., /B2/,/J2/ ). Extensions to other compact 
semi-simple gauge groups have also been consi
dered (see /B5/ ). 

The ansatz (3.9) has been also applied to find 
Minkowski space solutions of Yang-Mills equati
ons/C3/,/B4/,7Rl/which is being studied by other methods 
as well (seeiD1/,/L2/,/C8/), 

* This ansatz is attributed to unpublished work 
by Corrigan, Fairlie, Wilczek and 't Hooft. We note 
that originally the instanton solutions were found 
by Belavin, Polyakov, Schwartz and Tyupkin /B2/ 
without using such an ansatz~' 
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B. Possible Applications 

We intentionally did not commit ourselves to 
any particular physical interpretation of the classi
cal solutions of Eq. (2.1), but have listed all solu
tions satisfying certain symmetry properties inde
pendent of whether they are singular or not, In this 
way, we had to deal with the vvell defined mathema
tical problem in its natural generality. 

In the recent boom of interest in classical solu
tions of non-linear wave equations most physicists 
have in mind either finite energy particle-like solu
tions in Minkowski space or finite action "pseudopar
ticle" solutions in Euclidean 4-space. We have no 
reason to challenge such views. We feel, however, 
that the possibility for using classical solutions of 
conformal invariant field equations in the framework 
of general relativity have not been exhausted. We 
would like to call attention, for exapmle (in addition to 
the papers mentioned in the introduction) to a recent 
work of Hawking and others (see/Hl/,/D5/,/c1,4/) where 
instanton-type solutions of Einstein's equation have 
been discussed in connection with black holes andre
lated cosmological problems. 

Note added in proof. 

Apparently Eq, (2.18) gives real solutions of 
Eq. (1.9) only for ,\ vvhose sign coincides v\ith that 
of A (i.e., mostly for ,\ < 0 as Tables 1 and 2 
shov0. Actually an explicit real solution with the 
opposite sign of ,\ can be written for any case in
dicated in Tables 1 and 2. To this end an imagi
nary z(a), , i.e, Z= iy, , should be introduced on 
the \<Yay that leads to Eq. (2.18). This gives instead 
of Eq. ( 2.18) 

1 a A 

A( 2k2 --J 1 , '~" x) = V- A 1/3 3 Ad a -,\- 2 1/J(x) e ao 2 -1 
[cn(y +Yo, k ')] , 

(2.18a) 
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1 u A1 , 
-- [-du 

du 3 u A2 
Y=-J-1-e 0 

, k'=~l-k2. 
A 1 3 

2 

and 1 - 2k 2 should be taken with the opposite sign 
from Tables 1 and 2. 
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