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Electromagnetic interactions are introduced into nonlocal virton
ua rk model. It turned out that pure photon-photon interactions are 

absent at all, but photon-hadron interactions owing to virton-quark 
xchange do exist. We investigate interactions of vector and pseudo
calar mesons with virton-quark field described by Lagrangians, 

which are invariant with respect to SU(3) group and gauge transfor
ations with the simplest couplings. 'I'he rates of radiative decays of 

vector mesons are calculated. 'I'he results are in good agreement 
"th experi·nenta.l data. 
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1. Introduction 

The nonlocal quark model was proposed in paper /1/. In this 

n1odel quarks do not exist as usual physical particles but they 

do exist in the virtual state only. These nonexisting particles 

were called "virtons". The physical assumption consists in that 

hadrons described by the standard quantum-field equations do not 

interact with each other directly but through an intermediate 

virton-quark field. In this model with the simplest choice of the 

interaction Lagrangians,mass corrections of pseudoscalar and 

Tector mesons and rates of weak and two-particle strong meson de

cays were calculated /2,3/. The good agreement with experimental 

data was achieved. 

It turned out that coupling constants in this model for 

strong interactions of mesons are less than unity and the 

perturbation theory is applicable. It should be noted that physical 

amplitudes in the nonlocal theory increase in each perturbation 

order with growing energy. It means that this model in perturbation 

theory is applicable to hadron physics of low energies only. If 

we want to consider high energy phenomena,we have to go beyond 

perturbation methods, 
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In this paper we will consider the electromagnetic inter

actions in this nonlocal quark model. First of all,we have to 

find good calculation formulas since the introduction of the 

electromagnetic field in a nonlocal theory is not trivial. Then 

we consider the photon-photon interaction and the interaction 

between photons and other physical particles. 

This problem was investigated in /4/. The authors considered 

the nonregularized theory and have found that in a particular 

case of the nonlocal propagator the photon-photon interactions 

due to yirton exchange are absent • On the ground of this result 

they conclude that the interactions in this model are always 

absent. 

Strictly speaki.ng, their investigation is not correct 

because they considered the nonregulartzed theory. 

Their conclusion that any interaction is absent in this model 

is wrong if hadrons are considered as usual particles. If we 

want to consider hadrons as bound states of virtons, we have to 

look for bound states in full S-matrix for an appropriate virton

virton interaction. At present this question is at all unsolved, 

and it is difficult to conjecture what answer will be. 

It is important to stress that the gauge invariance and regula

rization are the principal points of the introduction of electro

magnetic field in any nonlocal model. Without regularization we 

cannot construct the nonlocal theory, therefore a~y exploited 

regularization should not destroy the gauge invariance if we want 

to get physically meaningful results. 

In this paper we satisfy these two requirements. It turned 

out that all rr~trix elements describing the pure photon-photon 
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interaction due to virton-quark loops disappear on removing 

regularization. But the photon-hadron interactions due to 

virton-quark loops are not trivial in the same lintit. Thus we can 

describe electromagnetic interactions of hadrons in this model. 

We consider radiative decays of vector mesons in this vjrton

quark model and our results are in satisfactory agreement with 

experimental data. 

2. The interaction of virtons with the electromagnetic field 

The classical Lagrangian of the free vjrton field has the 

following form (see /1/): 

cZo (x) = ff:xJZ(f)~(z) • 

"' "' where f = i e and 

I JJA L2 2( Z(/)=-/'1-e:xp -cp-'ff j· 

(2 .1 ) 

( 2. 2) 

In order to obtain the Lagrangian which describes the interaction 

of the electromagnetic field with the virton field 

must replace 

·? 
1-

?x . I' 

~.xr 

~ 'd z ·-
p~ 

by 

-r f$ A} (x). 
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Then the gauge-invariant Lagrangian will be of the form 

d':m {:x) = ~ (:xJ E' {f + e,_A(x:1r; r~J -

- / /fv ;:;.., . (2.3) 

The quantization of the virton field was performed in /1/. 

Instead of the free Lagrangian (2.1) we introduce the regularized 

Lagrangian 

~ -f f [' J: (x) ~ L; {x) = Cj (.x)? (f/ Cj (x) 

oO 

\ i -S (:"· -J) X' == (._. (-) 7J (x)((J-IjfrJ;~. r~J' 
J =t 

(2.4) 

where 

S' C><) t r;;:: s 
~ r~J = E (-tvAjtrJ 'h· (:x.J. 

j=f iJ u (2.5) 

The constants and are connected l'f.(d) 
J 

1-(f} 
in an appropriate manner with the function ')! in (2.2) 

SO that 

H;ft)= ({- 2') / (6>0,) =!,?,.)' 

£ c-iA;frJ = c_~A)-- C:(fJ=_!_ e tf+{f' 
i=f /V.(f}-p-i f (! p 0 ~0 c 1'1 . 

d (2.6) 
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The fields 
s CJi (x) are quantized as the Dirac fields with 

indefinite metrics /1/. 

If we introduce the electromagnetic interaction, the gauge 

invariance must be kept at all stages of calculations. It means 

that the electromagnetic field should be introduced in such a way 

that the regularized Lagrangian must be gauge invariant too, i.e., 

J -I' ~-- A S 
~ {x) ~ ~ (x) Z lf +e1A(xJ)Cf {:K). 

Now let us introduce the system of fields 

and 

d zd/:;1 ,., . ) 
~· (:x.) == VA.fr) tP +~A(x); 

J J ;'\ ;1 f +e,A(x)-ft(r) 
d. ~ . (/ 

~ (xJ=?: (-Jd/A.(r) fi.J{:x:), 
r=t , r; 

so that under the gauge transformation 

[ r; f:K) 

f 'ef A _.,A +d.f c; t~Jett 1 r '~" , 1 _,,. 

(2.7) 

(j-=~2, . .) 

(2.8) 

d 
the fields '/i are transformed in the same way 

r ~· (x)~ ~.J'(x)€ 2·e'Jj(~; 

The Lagrangian (2.7) can be represented in the form 
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_j)[ ~ i-f (;,.., ;1 ll f 
~"- (:x) = L (-) o {:x.J f +eA (x)-/'1.(6)1o. (:x) 

~, . - f fJ 1- d 'd 
J- J' r 

= J: (x) -t- .J;em {:x) , (2.9) 

where 
J' TS' A ;t;e, {:x)= e1 ~ .. {x) I {x), 

~ "=><> • -J f 
J (x)= L (-;J ~.{x1r f {:x). 
r i= 1 J ' (J (2.10) 

l.<'urther we will use this interaction Lagrangian. 

The regularized S-matrix is defined in the usual way 

ss = T exr(;e/Jx~~"';Ar(xj 
Any physical matrix elements are given in the limit ~~ £? . 

c 
As the virton field ~ {~) disappears in this limit (see /1/), 

we have to investigate Feynman diagrams containing virton loops 

only. 

Let us consider the interaction between photons owing to 

the exchange of virtons. 

First we consider the diagram of vacuum polarization (Fig.!). 

~ 

Fig.1 

• 

The S-matrix tenn which corresponds to this diagram may be 

represented in the fonn 

- i ,4
1

{z) n;vd{x(f)Av{J). 
where 

![:(x-;J = -i f1
2 Sit t 5: ("iJ){.- S ~-cr.), 

'!" rr=t ' (J d 

(o/ 'f(q.~x) ci; G:') lJo > = {-)i£., S. {:x-.).) == ,, fJ \- '/ Jd d 

=(-JJ£. _1 --~.~e_e __ ' /; I - lf(X-:x'j 

d/ (21r/z' 1·{J)-p -i E 

The vacuum polarization contains the ultraviolet divergences. 

In order to remove them, we will use the gauge invariant ~auli

Villars regularization procedure with additional conditions 

(see /5/). Then we obtain 

fl.,....., sf (, -zixllS ;: 2 ) TTS z J 
iJ lf}=:;rlxe t"(:x)= 1Jrl1J-f.- I (f J, 

a- 2 (X) , 

1T(f~= 5_. \ f
2 

;clu~(1+ju) 
t2.7i 2 L ~-!1 2/r, 2. 

'=f 7 J (OJ 1- __p_:_ -tl • J o f#YU~ -ll 
J 

This series converges well because for 
. ., f 

/1. {6)== .L. - I fi;.. f) 
J & L l' 

o-~o 

and we get (when ~ ~ () 
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d 2. c;::.oQ i 

1T 1 z) ........... e,_ 2L2. ) a 
If - 6·o.rrz f ~ To 

J -=1 d 
•rr:e fw;ction !Ts(rz) tends to zero as 

the series in (2.11) converges. 

(2.11) 
J2 because 

The virton loops containing more than two photon lines 

(Fig.2) can be represented in the form 

rr/·r·· ( t" , t··) ~ 
~f VkL SfJj;'!' S"J~~+Jp;)~'t · ... ·~ S

1
.(KTp,}t

1
SfK)i 

• } fA / ) /l !In 2 _1 1•-1 Of.z.. I ·· • J=( lf,.-,2" -

Here ~ means the sum over all permutations of photon 
(r, .. ,2"') Y V 

vertlces oro--.) a f'zn 

p2 

pf 

Pz, 

10 

P2n-f 

2n·l 
k + r: Pi 

i• I 

Fig.2 

(2.12) 

.. 

r 

The integral in (2.12) does not contain ultraviolet divergences 

and the series over j converges well. In the limit r~ 0 
because of 1 (J) -7 00 we get 

T[ f 6 0 &-. -r ~ 0 'f,, ... ,rl .. ~ pIt) . 1'···~ z -

Thus any matrix elements of the S-matrix describing the 

photon-photon interaction by means of the virton loops are zero. 

3. The interaction of virtons with photons and other physical 

parUcles 

Let us introduce into consideration other physical particles 

(for exaaple, '3i -esona, ~ -esons and so on). We will ass'Uile 

that fields of physical particles are the usual quantized fields 

aatiafying appropriate equations. Our hypothesis consists in 

that the physical fields do not interact with each other directly 

bat by meana of the exchange of virtons. In this case it turned 

out that the S-matrix elements describing the interaction between 

photons and physical particles ( Jr-mesons, for example) are not 

zero in the limit 0 ~ 0 
As an example, let us assume that the interaction between 

mesons and virtons is described by a Lagrangian of the type 

d; (:x:)= O JI(~J(f(x}r7rx;). 
(3.1) 

where r is a Dirac matrix, Now we consider a part of the virton 

loop containing I? photon lines between two meson vertices as it 
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is shown in Fig.J. This term can be represented in the following 

form 

s 
~~,. ... ,f, ( k,, ... , K.,' f) = 

oO . J . . j . 
-L LJ-J'/M;' r (=)" (-I~" .. :c-J~, r-~A 11-f/ili-

(t, ... ,n) J=f d fJ Cfo~1 ~ f, 

C>D • 1 1 

= L IJ-i ~ M r 11~ f., 'lr" tH'" t;. .. : . ~. 1'1- ~. r . 
(1~ ... ,11) j-=1 J J r J 

~-{ 
(3.2) 

Here ~K = r -r? kz· • 
l =-1 

~. 

qn+t qn 

Fig.3 
... 

Let us introduce into consideration the ~ -operator follo- ~ 
wing paper /6/. This operator is defined as follows 

12 

r;. r{. r 4'(f J = f;; ; e r.-.~) [F(1 ,,,; er~ii J-F(i!J-
(3. 3) 

wher~ tz/"' is a 4-vector, F (f} is a function depending 

on tp . For the Dirac propagator this formula €:ives 

( 1 1 

'rr·J/1-f = !1-if-" rr 11-i , 
d. 1 1 f y__i_+ 

'fL {l(z)d,.,(r,} 1'1-~ == N-f-t<~ -~ Of1 /'1- f -~ Ofz 1'1-i 

f ~ 1 1 + "'1 -'\ A ~ _, "1 (3,4) 
1'1-&J, -1<,-kl 'f'z 1'1-'f-K, ft 1 1'1- cp 

Applying these formulas to (3.2) we obtain 

r 00 • 

I;1,· 'Jr" (K,, .. ') ~ _) 1) =-~. (1(.} ... 'dr/'4) r.z (-JJ A~(O r = 
d =1 'J-t -1! 

= d (1<.)· . c~. 1/(.JI--csrqJr t..\. .. .. . 'ft (. ( c /1 . 

For example, let us consider the Feynman diagrams shown in 

Fig.4.(a,b,c). Ne get 

r . I s /~~) -= fc~7 ~ 1 (t:J{i rt/ r J, 

13 
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1'1r~ = /d't stf {.J~<,Jcl;-. (K,JtJ/(f) r }, 

fl(~ P'~ st!f?l/(J~"ffJ)tGi'rl~tJrj. 

k ~{a) 

_1'_-ck, 
k2 

---··~ 
~---

F1g.l. 
,F· 

( b ) 

(c) 

(3.6) 

In order to take the limit J'~o 

i'=O 
we have to go to the 

Euclidean metric and then put • The 'integrals in 

(3.6) will converge and are not zero. For matrix elements 

( 
. ...., • "" E' E t- l" (' ) 

(3.6) we obtain f = 1fE ~ frtJ., +O"Or =201'"' 
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... 

r 

· /1raJ-= l'/clt£5;/~(Ke-JC'(t~)r}, 

1'1riJ = 7/cl~cSf/aj.z(lruJc}1 (~£)C:(ife-)r}, 

f'1r<) = 1ft7E Sf/(rf.firc)C:(ij.}j r'C(>j,+if; )rj. 
(3. 7) 

Here all momenta are taken in the Euclidian region. 

4. The calculation of cfj K,.) . .. o(.,{l(,) fi(p) 

Now the problem is how to calculate the functions 

t}.JI<~)· ... ·1-, (k,) ~{p) because the direct use of the 

definition (3.3) is quite difficult. We proceed in the following 

way. The propagator {; (j)) is the entire analytical function 

(2.6). We can represent it in the form 

G0'fe) =-~ f ci-s G{z'~J 
2711 ; ...., 

(>' - Cj,E 
(4 .1) 

where the contour C: envelops the positive real axis as is 

shown in Fig.5 because we integrate in the Euclidian region 

(o~~: (.oe) ,where 

() {l'fE) =; ~?/7tr;- i 2
t:] 

and 

G(1'5) = ~ exfj?·t:s- f~2} 
. (4. 2) 
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c 

Fig.5 

r.,aking use of the representation (4.1) and formulas (3.4) we 

obtain 

~~(k;,E)' .. .' f,(lcf£) f(th)= 

f
' { 

= ~ d) ~(t))c( (t-.,£)· ... ·~, (lcfE)~_f) ' 
27i1 I" / J yE (4.3) c 

This representation is very convenient for different calculations. 

For example, simple calculations produce easily: 

c~{K,J(/(.j,) = 2/,jis 6'(ts) J-£-Pc 1/ r -fE 
c 

= ~~ e~r 6!(isJ[r~tfet-Kc-JJt.E!r+icl = 
2r.lC {!2-(1£+-KEf][!2-~; J 

1i 

j 
1 

,\ 

v 

= to;t ~ «fe+Ke )JT 2 frE :Kc~£· fc. «rE+Kc}j-r;; rr: )+ijE[ t; r~~~~,,-~ (~~ 
(fcTI<t)- ~£ (4.4) 

where 

G!{t5)=C,(52)+i'5~(r2). 

Let us calculate the function /"fra.J in (3. 7) for ('- dv • 
We have 

11:~ = ifJ~E sf (~(J(E)G'{lj~)~E} = 

' f. { ;· /.· (" I! E I F 1 j 
== l pl1e 2r,i tl)C( 15).Jf(~ j-~-~ J; ?-fc . 

(" 

Using the Feynman o( -parametrization, one can get after 

standard transformations 

!1.~~=i:Jr2Jduu2}1« _f __ ( dt {;(i>) >< 

/" o a 2;;z) [r2-?A.-o({1-o~)k;] 2 

X ! ~v [2) 2-2ol(1-.{)K:-'U] + ~.x(f-c(J[ ~~~K: _ J<f.E k'vt] J. 
It can be easily verified that the term with O'rv is zero. 

Really 

~ -jdu ~fJsGiiJ) 'U 12:s 2
-2..{(f-a()K/-u] _ 

2H [ ·-
0 c ! 2-U- ol(1-at)K/J

2 

<:>0 

= jdu 2•~ j.t;r:(r:r/1 + (r2--<(t-.t:JK) )2 } -
o c r { U- ('52- o<{1-.,9KE1j2 -
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{j C>O = -. d)G(z}"Jj du (!
2
-o<(f-ol)k/)

2 

2~l E = 
c o [u-(s2.-o<(1-o<)k',/)) 2 

= 2:/ fc~s G{1-s)[~ 2- o((t-<>~)k'cj ~ 0. 
c 

For the remaining term one can obtain finally 

(G<) J! I [ 
/'1('{ =- 8.7r2(*/-K.- -J;.,K~)'clatr:<(l-oi)/C/u {j (u+,x(f-<)K/). 

0 0 

Now let us calculate the function ~~) in (3.7) for 

f'= or~ . This matrix element is connected with the decay 

J/ 0 -J'<f . r.raking use of the representation (4.3), we obtain 

/1:~ =-ifyESff/sE}(*'J/v(tt,c)~{1tJ} = 

~f.. ~~ · /t E 1 r 1 £ 1 =-'~/'f,. 2.,. JrG'(z'5JS; Is,._~_~-~ ft. J _ ~-K. 1- .,._q + 
(' ). ft kfc 'l£ 7e fe J yE 

E 1 E f J;£ 1 J 
+ (s 5'-~-~c-RzE lv )-~E-~E t r- tt: =: 

00 1 

=-i(bJr2 
f;,...-a<f kf"'£ ~/ jJ~u JJ/tl..t,clo<tdol_; S(t-~-.f~.-O!J)'· 

i} 0 

_j_ fc~ c? )I r ;z z. 2. z ]-3 _ 
x 2,2 >t l 2 5~3" -1f-I(,Eo<'z.~-l(z"ot1oll-?e4~ -

c 
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1 

=-7' ~Ji2 ~va<f/(,: i<'zf Jf!ol..r,clc(:c/~ d(f-v(,-d,-6)x. 
0 

)( GJ { kt~t ocJ + k'z i elf al_r + f: q/1 dz ) ; { p; = (4',/ Klc l) 

If ' 'Z. 0 k, = Kz = > then this matrix ele)Jlent can be written 

in the form 
1 

11(i) _ '2 2 c F E ( /l(f: ~ /) f+;;:t 
t v --2 71 CJ-11/c(.r Ktot /(z(I ;elf Uf -f [11-

l ,- 0 y 1-Vf-t 

The last matrix element /~) in (3. 7) can be calculated 

by using the explicit form for cf(1<£)G{l'f"c) (4.4). The 

transformations are standard and we will not list them here. 

5. Radiative and lepton decays of vector mesons 

The conventional approaches to consideration of the radiative 

decays of vector mesons can be divided conditionally into pheno

menological and dyn&nical types. Phenomenological considerations 

make use of the SU(3)-symmetry only. But in order to calculate 

decays of the type V ~ P / , V _, /'~~ . , . , some additional 

assumptions (like the vector-dominance hypothesis) are needed to 

describe decays which are not connected by the SU(3)-symmetry. 

In dynamic considerations there was made an attempt to describe 

hadrons as bound states of quarks. But until present time good rela

tivistic theory of bound states is not yet formulated and any ap

proach(for example,the Bethe-Salpeter equation)contains many reaso

nable and nonreasonable assumptions. 
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How let us list some papem concerning consideration of the 

radiative decays of vector mesons. 

In the "raive" Ponrelativistic quark model /7/ these decays 

are considered as l 1-transitions. Their rates can be calculated if 

the operator of the quark mae;netic moment is known. The results 

of this work ~r~ given in TRble 1, column r. 

Tablel 

ex per 
(kev) I [} ffi !Y y_ Yl Yil 

w -1(~ 870±61 1.170 1100 730 900 330 350 898 

w -~t <50 6.4 13 13 13.8 - 1,9 4.8 

p -rcx- 35!10 120 115 67 85.4 38 36 95 

p-rt <160 44 90 - 81.5 37 13.5 38 

1(·-k·r 75:!:35 280 270 - 204 141 75 158 

.. 
k·-k· <80 70 65 - 49.5 - 15 15 

'! -1l•t 5.9.!21 0 0 11 2.8 - 0 0 

'1-2 'I 65:!:15 304 110 61 91 - 77 136 

In review /8/ the electromagnetic decay rates of vector 

mesons were considered in a phenomenological way under the follo-

wing assumptions: 

a) the vertices VP( 
SU( 3 )-syrrunetry, 

b) the "ideal" <.j- W 

are connected aecording to the 

rtixing, 

20 

c) the linear mass formula for the pseudoscalar mesons, 

d) the rate r(w_,:xd)=ff00Kev is taken in the fit. 

The results ofth~ calculations are given in Table 1, column II. 

In paper /9/ the electromagnetic decay rates of neutral vector 

and pseudoscalar mesons are calculated in a simple model corr,bining 
I 

vector dominance, SU(3) symmetry and the lJ-lf and ?..;.'? 
mixing hypotheses. The width of the decay J7°-.tf~ is used in 

the fit. The results conserning the electromagnetic decays of the 

vector mesons are given in Table 1Jcolomn. III. 

In paper /10/ the predictions of the exact SU{J)-symmetry 

are investigated in detail on the basis of reliable data on 

resonance decays. In particular, the rate r(w~.:xr) = .J00K€v 

was taken as the fit for the investigation of decays V ~ Pf' 
The results are given in Table 1, column IV. 

In paper /11/ the magnetic dipole decays of vector mesons 

are considered in the framework of a quark model with a relativis

tic harmonic oscillator. The results are given in Table 1, column V. 

~ All considered approaches predict the width of the decay 

K
o o 
-+ K! three times larger than the experimental value. 

In paper /12/ the attempt was done to remove this disagreement by 

different violations of the SU(3)-symmetry. The author concluded 

thet any simple SU(J)- breaking mechanism in the framework of 

the vector-dominance model cannot fit all the data with 

"reasonable" parameters~ 

The lepton decays of the vector mesons can be explained (with 

an accuracy of 10~) by the vector-dominance model (see, for 

example, /8, 13,14/ and further references). 
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Here in the framework of the developed electrodynamics of 

virtol1B we calculate the rates of decays V- Pr and V....,.t"'t- . 
Our results are given in Table 1>c~lumns VI and VII and in Table 2. 

The general features of our model are described in the introduction 

and in refs. /1,2 ,3/. \Ve will consider two models: with uncolored 

and colored quarks. 

Table 2. 

ex per 
A B (kev) 

9•;_e+e- 6.44:!:0.89 1.3 6.3 

w-e-e- 0.76!0.47 0.15 0.72 

'!-e+e- 1.31:t0.15 0.42 1.22 

tr"-t~ 
(7.9~-0.4 2} 0.4·10-3 3.9 ·10-3 

·10-3 

The interaction Lagrangian of the vector and pseudoscalar 

mesons with quark-virtons is chosen in the following simple form. 

1. Uncolored quarks 

o0 = J ~SK(fl/.~J+ if. /1s{fsfs~J' 
(5.1) 
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2. Colored quarks 

(c) SKr-s K) 'h !1Si<(-S ,1() 
~ -== Jc lj:. ~a Or 'fC{ -r 

7 ~ l ~'"f)~" (5.2 > 

where q ~ 3 h - h }_ - 3% L (fe .5'1, ' e - 3 ,11 , c - and .rc = r ) 7c = f, L, 
Under this choice of parameters, in the model with colored 

quarks)mass corrections;strong meson decay widths are unchanged. 

/'1
Si( 1/SK' 

Here is the octet matrix of the pseudoscalar nesons, ~ 

is the nonet matrix of the vector mesons (we consider the "ideal" 

<f-W mixing). Further, K~ S =1,2,3 are the SU(3) indices 

and a =1 ,2 ,3 the "colored II index. The other paraheters of this 

model were obtained /2,3/ by fitting the mass corrections to the 

pseudoscalar and vector mesons and the rates of weak and strong 

meson decays. The numerical values of the parar::eters L and 

( d. 
\ - A 

I qZ 

1\h - 16 ;r 2 (ML}z. 
~ - - . _.fl.__ 'J -to rz ( 1'1Lj2 t 
as functions of paran.eter § = i are shown in Fig .6 (a, b) 

It was shown in /2,3/ that a satisfactory fit of experimental 

data can be performed in the region 0, .3-;; r -;: 3 
We suppose that our virton-quarks have the fractional 

charges ( e, = e I' = j e • el.,.. eJ =e., = e~ = - 1 e ) which are 

independent of the color index. 

The electromagnetic interaction of the quark-virtons is 

described by the Lagrangian 

3 

Zrem ?; (~s{Z(f-r~l)-Z(!Jjr:) 
(5.3) 
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2.5 3 
·5 

2.5 3 
$ 

or in the regularized form 

1;.~ = t; es fJ~(-Jtr; rrrP} Aj 
(5.4) 

Now we can calculate the matrix elements fc~ the radJ~t1VP. 

decays of the vector mesons. Methods of calculation were developed 

in refs. /1-3/ and in sections 3 and 4. Here we present the results 

only. 

I. The decay V ~ P (' 
This decay is described by the Feynman diagram shown in 

Fig. 7. The matrix element corresponding to this diagram is 

written for uncolored quarks in the form 

~:s (p) ~1) = (;~: ({-)3/di(E sf[ J;E ~[z·~-~~)~C: 

x clv(-4e)~ (i~J}. 

-==--=P 

v -q 

-p 
~ 

q, 

Fig.7 
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Here ?= f f' {), = f '/t . 
Since )""2. = !"(1'1.,L}2< f we will neglect this parameter. 

For the width of this decay we obtain for the uncolored quarks 

r(v p ) o< 2 3~ l't2)3 
~ a = 2 ~t 71/f, f1v ( I- #! / 

2. 2 f 
jvrr = 2Sb,.~J A~, L ·RvP(?)·j5vp . 

Here .f3 11 p are the SU(3) indices: 

f3 - 1 n - 1 R -1 R - 1 
~- fr; - ~ ' rf? - 3 > J""'W :1\ - ' r w7 - 2? _, 

1 ~ {( - 8 () - Q Q Jl.+ -+ = - {( lt 0 o - ....L. l"'fl - 2'1- ) l"'f1t - ) ~ K I( !) ) I.J I( I( - 3 . 

The functions Rvp{s) are defined as follows: 

00 2 

Rfr. -=Rn = Rwx-= R"'
7 

= fci'l-\-u i2~ 10,511 [~ ~ru-rJ r:!0f-uj, 
0 

C>Q 2 
0 } -2,2u. [ 1 . J "<f

7
-= d-u11.e 1~JU {1-u~J~+z"f:5mfU , 

, 

R f
oo -.u1,(2r; 

;<t-K1" = Ju1-1e ' Lq.trgrz,(l~2ru +~SJl~~/pu-qolSJtiJ, 
0 

ooO { 2. 

R f -2, u . [t /? . ' ] K()KO = duu e ii/Yl J"U ,OS u L..9'j'U t- ~S[JmJU • 
0 
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Fig 8. 

The behaviour of the rate ~tJo 0~Jt0d(} as a function of ]f 
is shown in Fig. 8. 

For the colored quarks we obtain the rates 

f;(v-?1 ) =!} /(v~ft)· 
The numerical values of the rates are given in Table 1, 

column VI is for the uncolored quarks when ];• 2,6 and 

column VII is for the colored quarks when Jf ~1,7. 
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2. The decay v~ frf-

This decay is described by the Feynman diagram shown in 

Flg. 9. The matrix element corresponding to this diagram is of 

the form as for the uncolored quarks 

T:s _ft (~) 3J /. zJ 1 y r =- (2 nJ"' ( "Lj sl (}I 11v2 or 
Here 

fs(oz) = i Jt~K£ lf(J:E c?fOe)~r·~Jj, 
0 2. 2. I 2 

=- QE = if(HvL) , 
-./ f' -} 

The width I ( v~ t I I for the uncolored quarks is 

Here 
r(V?./T~r)= ~2../'i (f/)-1 

3 v ~7( • 

(/:}

1

= ~J J.:- R:(r).fv ; 
a. . 17 1 /? _ 1 R _ 1 • 
f·'V • f-'f = 2 ' /-w - 18 > rl.f - .!} ) 

<X:> 2 

Rr (J) = Rw (I)==- jclu :Jt'n J1f e- u ) 
i) 

DC> 2 

Rr (J) = jotu i~J-u e -~ t-u 
0 
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e 

Fig.9 k2 

7/ r -) 
The behaviour of the rate / (fa~ ./ t' as a functj on 

of ? is given in Fig. 10. 

For the colored quarks we obtair' 

/~ {V-7~-rf'J == 3~ r(V?f71J. 

The numerical values of these rates are given in Table 2, 

colunm A is for the uncolored quarks when J" =2,6 and 

column B is for the colored quarks when ]; =1,7. In the second 

case the agreement with experimental data is quite good. 

1.6 

1.5 

1.1. 
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1.2 

1.1 

r (p·-e·e-) 

(l<ev) 

J 
15 2 25 

Fig.10 
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3. The decay :J\ 0 -~ Q( 

Pinally we want to consider the decay '}\0~ 0 ( in our 

model. This matrix element was calculated in section 4. The rate 

/'?( Jlo ·-'?a a) can be written i.n the form for the uncolored 

quarks 

.JI2 3 2. r( Ji"-ro)-= if o( 171.;r d.Ji 0/'tf' ) 

A :2. 

!/Jioo~ ttli2 L2 
and for the colored quarks 

r; ( Jio-rcr) = 3% t(.Ao-rr). 
The nw11erical value of this rate is given in Table 2. 

Thus our results are iri satisfactory ar:reement with the 

experimental data. It should be noted that the model with 

colored quarks looks more preferable since it gives good agreement 

with expe1·iment. 

The authors are Grateful to Dr,A.B.Govorkov for useful 

discussions, 
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