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Radiative Decays of Vector Mesons in the Nonlocal
Quark Model

Electromagnetic interactions are introduced into nonlocal virton—
fuark model, It turned out that pure photon-photon interactions are
absent at all, but photorn~hadron interactions owing to virton-quark
exchange do exist. We investigate interactions of vector and ps eud o~
scalar mesons with virton—quark field described by Lagrangians,
which are invariant with respect to Su(3) group and gauge transfor-
rations with the simplest couplings, The rates of radiative decays of
'vector mesons are calculated, The results are in good agreement
with experimental data.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR. .
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1. Introduction

The nonlocal quark model was proposed in paper /1/, In this
model quarks do not exist as usual physical particles but they
do exist in the virtual state only, These nonexisting particles
were called "virtons", The physical assumption consists in that
hadrong described by the standard quantum-field equations do not
interact with each other directly but through an intermediate
virton-quark field, In this model with the simplest choice of the
interaction Lagrangians,mass corrections of pseudoscalar and
vector mesons and rates of weak and two-particle strong meson de-
cays were calculated /2,3/, The good agreement with experimental
data was achieved,

It turned out that coupling constants in this model for
strong interactions of mesons are less than unity and the
perturbation theory is applicable. It should be noted that physical
amplitudes in the nonlocal theory increase in each perturbation
order with growing energy. It means that this model in perturbation
theory is applicable to hadron physics of low energies only. If
we want to consider high energy phenomena,we have to go beyond

perturbatior methods.



In this paper we will consider the electromagnetic inter-
actions in this nonlocal quark model, First of all,we have to
find good calculation formulas since the introduction of the
electromagnetic field in a nonlocal theory is not trivial. Then
we consider the photon-photon interaction and the interaction

between photons and other physical particles,

This problem was investigated in /4/. The authors considered
the npnregularized theory and have found that in a particular
cagse of the nonlocal propagator the photon~photon interactions
due to virton exchange are absent , On the ground of this result
they conclude that the interactions in this model are always

absent.

Strictly speaking, their investigation is not correct
because they considered the nonregularized theory.
Their conclusion that any interaction is absent in this model
is wrorg if hadrons are considered as usual particles, If we
want to consider hadrons as bound states of virtons, we have to
look for bound states in full S-matrix for an appropriate virton-
virton interaction. At present this question is at all unsolved,

and it isg difficult to conjecture what answer will be,

It is important to stress that the gauge invariance and regula-
rization are the principal poiunts of the introduction of electro-
magnetic field in ahy nonlocal model, Without regularization we
cannot construct the nonlocal theory, therefore any exploited
regularization should not destroy the gauge invariance if we want
to get physically meaningful results.

In this paper we satisfy these two requirements. It turned

out that all matrix elements describing the pure photon-~photon

interaction due to virton-quark loops disappear on removing
regularization, But the photon-hadron interactions due to
virton-quark loops are not trivial in the same limit. Thus we can

describe electromagnetic interactions of hadrons in this model.

We consider radiative decays of vector mwesons in this virton-
quark model and our results are in satisfactory agreement with

experimental data.

2, The interaction of virtons with the electromagnetic field

The classical Lagrangian of the free virton field has the

following form (see /1/):

Z,(x)= ) Z(p)9x)

(2.1)
where /;zz‘é‘ and
Z//g)=—/‘7€X,D)J—/ﬁ-§P2])‘ o

In order to obtain the Llagrangian which describes the interaction

of the electromagretic field with the virtor field jZ ﬂxj we

mugt replace %‘X/‘ by
0] )
1L— —> =
?.I/.‘ ng/“ + 6; /4/,‘ (x)
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Then the gauge~invariant Lagrangian will be of the form

o{i,,,(x}:- é(x}f@aue;/f(z))?(x) —_
AN

7
g ‘rvor (2.3)

The quantization of the virton field was performed in /1/.
Instead of the free Lagrangian (2.1) we introduce the regularized

Lagrangian

2 (x) —>OZ§?1) = g“?x)?},ﬁ}g‘?r) =

— = 59 4 '
-2 G

where /

2')=0 Al g
J=1

The constants /‘5 /5} and Ad/é-)

in an appropriate manner with the function ;E' in (2,2)

(2.5)

are connected

so that

MO=(E-2)L (e20; j-12..),

CIAG) 8 05 L
= A - / /D-*9 /D
‘/‘g'/\fﬂ}‘ﬁ"'f @[,D)J-:; é(ﬁ)-/7€ .

(2.6)

The fields % (x) are quantized as the Dirsc fields with
indefinite metrics /1/.

If we introduce the electromagnetic interaction, the gauge
invariance must be kept at all stages of calculations. It means
that the electromagnetic field should be introduced in such a way

that the regularized Lagrangian must be gauge invariant too, i.e.

5 S
2 (x) — z?x/Z/,Sng{r)/ﬁxJ.

(2.7)

Now let us introduce the system of fields

) A
y Z(P¢dE) ¢
g (x)=|4.6) === () (j=12..
" 4 ,o+<;Am-/‘;/vz iz

d, et '
(EK = —_ J é\
=2 g
so that under thé gauge transformation

/4/“—, /1/. +of 7[_, ;’e ‘57

and

')
the fields ja. are transformed in the same way

5 5 g f=)
Z/()—) ALY .

The Lagrangian (2.7) can be represented in the form



A Z NG (e Al)-H6)g ) =
=o/j (1) + "/em( ) (2.9)

where

‘;ifenv(zx,) 7 %Z: ( ;)/Z£~ (59) >

(2.10)

g__w_J'_S._ fx
J/u(a)_%;() AT AN

Further we will use this interaction Lagrangian.

The regularized S-matrix is defined in the usual way

- Texlp{ie;/a/x%?i)Af.(")}.

Any physical matrix elements are given in the limit 5i—> 67

§
As the virton field Z (>) disappears in this limit (see /1/),

we have to investigate Feynman diagrams containing virton loops
only.
Let us consider the interaction between photons owing to

the exchange of virtons.,

First we consider the diagram of vacuum polarization (Fig.l).

Fig.1

The S-matrix term which corresponde to this diagram may be

represented in the form
, by .
=1 /zu(ét) /Z:g (5(2?2)/4‘/47)’
where

5 N
V=G G S (o

2

T 5] o=y § o)
g, L [dpen
di (2rr)’ M (5)-F- €

The vacuum polarization contains the ultraviolet divergences.

In order to remove them, we will use the gauge invariant Pauli-

Villars regularization procedure with additional conditions

(see /5/). Then we obtain

g ‘991' S‘&f —_ 2 8\ 2
et /”/M 7/2,()—[%,,07%,)7/‘,;0),
0
[T ()= 2

This aerlea converges well because for &> 0

N(,;‘/—v_J_ (6) /) and we get (when d > 0 )
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- é\ ? 2 272 X7 2
T1F)= o P2

J=1

(2.11)

S, 2
The function }7— ()D{) tends to zero as é~ because
the series in (2.11) converges.
The virton loops containing more than two photon lines

(Fiz.2) can be represented in the form

9

Maspun (P pre) ~
«2_) i)

(1

~

‘ ) ~5
Z S US €Sl Slemp St

(2.12)

,2n

=

Here 4§:j: means the sum over all permutations of photon
,2n)

vertlces J}1)~_ 5 J;Z”
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The integral in (2.12) does not contain ultraviolet divergences
and the series over d‘ converges well., In the limit d-0
because of /"5 (.)') >0 we get

/, &
L3 { )=
r"o ]7ﬂ-l“~‘,f'z” P’"”JPZI! 0_

Thus any matrix elements of the S-matrix describing the

photon~-photon interaction by means of the virton loops are zero.

3. The interaction of virtons with photons and other physical
particles

Let us introduce into consideration other physical particles
(for example, OV -mesons, {© -mesons and so on), We will assume
that fields of physical particles are the usual quantized fields
satisfying appropriate equations. Our hypothesis consists in
that the physical fielde do not interact with each other directly
but by means of the exchange of virtons, In this case it turned
out that the S-matrix elements describing the interaction between
photons and physical particles ( 37 -mesons, for example) are not
zero in the limit 0-—> O

As an example, let us assume that the interaction between

mesons and virtons is described by a Lagrangian of the type

52§>Ci}):=:67 JVCI)(}Z(@}/iz(ké),
3.1)
where /7 is a Dirac matrix. Now we consider a part of the virton

loop containing /2 photor lines between two meson vertices as it

1



ig shown in Fig.3. This term can be represented in the following

form

8
L (o) =

—ZZUW/ A i e - M-

(f ”)J/ et
=) YUy 1
o g g
k-1 (3.2)
Here ? _71—2/(2
1=
? Kn kn4 k3 kz k4 ;.
| i
| I
| |
T
ri - ‘ $ ) r
4., 9. 4, 49, ¢

Fig.3

Let us introduce into consideration the ﬂ;. -operator follo-

wing paper /6/. This operator is defined as follows

12

14 9F1G)= oy LW [5.006 7). 1))

where /2/“ is a 4-vector, F[ZA) is a function dependi(ij)

on 7 . Por the Dirac propagator this formula gives

‘{“Mﬁ—; :M.;_E I M;A ’

) ”)Mjé ':M-gf«?-z 2 M-;‘—a dr /ng ”
+/"/-gf—k, P J//" M; (ﬁ" /"/12 -4

Applying these formulas to (3.2) we obtain

J S A )
Ty (i ’"’”:4“’”‘""“/‘“"’{,7;?% r-

- 8
=d, (). d,6)C(7)]

(3.5)

For example, let us consider the Feynman diagrams shown in

Fig.4.(a,b,c). #e get

Mo = Jty i 0650,
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May = iy Sp{eflic)fu(5) 01},
Mo = i8] rE G|

3.6)

K K {a)
kl

-E (b)
k2

- (c)

F_lg.l.

In order to take the limit d —> O  we have to go to the
Euclidean metric and then put f:O « The ‘integrals in

(3.6) will converge and are not zero. For matrix elements

(3.6) we obtain (ﬁ: 7‘,?;-’ J;\[Jvf"'d//‘:d,/«g:?gv)

14

‘/\7(01) — z’//it. %/4‘(’(5) (:/Iﬁ;)/—,jz)
M= /45 Spid, 61 ) 667,
Mo =+ oo Sp e ECR I Gl )Y

(3.7)

Here all momenta are taken in the Buclidian region.

4, The calculation of aﬁ”(&} 0{.,(‘6) G‘ﬁ)

Now the problem is how to calculate the functions
/A .
"9:,(/(.)‘“‘ .4' («,) F(P) because the direct use of the
definition (3.3) is quite difficult., We proceed in the following
way. The propagator G(ﬂ) is the entire analytical function

(2.6). We can represent it in the form

G5, )= ¢ (d3 G(E3)

277 _a .
I S =%

(4.1)
where the contour (~ envelops the positive real axis as 1s
shown in Fig.5 because we integrate in the Euclidian region

(OS?: €=0 ),where

@(z'ft,):ﬁ/- esr/u/z‘/i‘__‘_f_zzﬁj

C:(VfS) = /—% ex/o)j'z‘/j— ‘—f—zjzj '

and

. (4.2)
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Fig.5

Laking use of the representation (4.1) and formulas (3.4) we

obtain

A lioe). G e) C(1fe) =

—2,,/36/25)/ (oc)-.. - };F’:?"

£ (4.3)

This representation is very convenient for different calculations,

For example, simple calculations produce easily:

54‘("5}6'({;‘)—2r1ﬁ§é]ﬁ;)j-A 2 %\ 3- ?

— 1 (43 6’(15)[r+fszz5](r,[r+ie] _
[3%-(gevie)[[3%- 92 ]

-l Wt

‘J

=z;;_‘6((,+4)) —?ri*ﬁi?—{é’((;«f)/ AR S c@]/

(fevie) - (4.4)

where

Gli5)=6,(32)+is & (v2) .

-
Let us calculate the function /\7 in (3.7) for / = .
(=) 1%

We have

M = ifly, Sp 14, () 61718 =

= fg, L /a/sé/zs)f/ﬁf% it ;} |

Using the Feynman o( -parametrization, one can get after

standard transformations

M = 7% a2 fd 1 [— 5 E(3)
i o/ uu O/a( Zich[r

x gé}v [23%-24(1-4)k2-u ] + 410(//—4)[6;‘,;(:-/9'5 A{,E]}.

It can be easily verified that the term with S.V is zero,

r
Really

- T
/a@@(;) U [25%-2(1-0)n2-U ] _
[X2-U-L{1-¢) K] _]

"/a/u [x;éﬁr){f Gl “’”‘)} }_

[1( (32- A1)k,
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L3 G is) [dv (5P (t)?)?
2”/ 5)/[1( (st- (1)1 )]*

=5 [af; 65)[ 3% a(1- )8 = O .
For the remaining term one can obtain finally

/l’//ﬁ(:’:— EA (NG //44//-4) /a"u G (zm(//«)/.;?) .

Now let us calculate the function /‘7@) in (3.7) for

/Z: dﬂ; . This matrix element is connected with the decay
\7T°~4>c¥d/ . Naking use of the representation (4.3), we obtain

/‘7/\,/:7//5 \51/0 }} /;p/;ﬁ (kzﬂ’t/,,//(,r)g /774‘ )} -

=g [5G

3 ;efefzg N f

=7 162 (;V"'/“ A’,f/g;ﬂuu ///a/a(,o/a(,a@ 5/7-—4,-4’,:06);:
< Zns /ﬂ’rr G635t by o -

q/,o/ /)Ea/,a/]
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::-7‘a§{J72 éf Yovl 1;€/ﬁyf./l7/cfgfa{;zéf%§ 25/%—uf - l-aﬁ/}x

G (haeteos + k2 ity Pty ) 3 (o))

z .
If ‘ﬂ = k}zfz C7) then this matrix element can be written

in the form

/‘7//~?27 vazp At zp j{z‘ (&d& 7+F

in (3.7) can be calculated

a/(/(f/ é/zg} (4.4). The

transformations are standard and we will not list them here.

The last matrix element /%é

by using the explicit form for

5. Badiative and lepton decays of vector mesons

The conventional approaches to consideration of the radiative
decays of vector mesons can be divided conditionally into pheno-
menological and dynamical types. Phenomenological considerations
make use of the SU(3)-symmetry only, But in order to calculate
decays of the type V—) PX . V-—) Zf/-,

assumptions (like the vector~dominance hypothesis) are needed to

, some additional

describe decays which are not connected by the SU(3)-symmetry.

In dynamic considerations there was made an attempt to describe
hadrons as bound states of quarks. But unti1l present time good rela-
tivistic theory of bound states 1is not yet formulated and any ap—
proach(for example,the Bethe~Salpeter equation)contains many reaso—

nable and nonreasonable assumptions,
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Now let us list some papems concerning consideration of the
radiative decayvs of vector mesons.

In the "raive" ronrelativistic quark model /7/ these decays
are conaidered as I 1-transitions. Their rates can be calculated if
the operator of the quark magnetic moment is known, The results

of this work are given in Table 1, column I.

Table1.

exper.
( kev) I

w ~1y {87061 [1170 | 100 | 730 900 330 350 | 8938

<
1=<I
<
<

w =pyfl <50 6.4 13 13 138 - 19 4.8

p~my [135%10 | 120 1S 67 85.4 38 36 95

p-yy|l<160 | 4 0 | - 815 | 37 || 135 | 38
Ke-kyll 7535 280 | 270 | — 204 | 141 75 |158
Kewll<so | 70 |es | — |ews | - |15 |15
gy —n¢ 591211 0 0 1 28 - 0 0
y—yy 6515 | 304 | 110 | 6 91 - 77 |136

In review /8/ the electromagnetic decay rates of vector
mesonsg were considered in a phenomenological way under the follo-
wing assumptions:

a) the vertices L/Fiy are connected at¢cording to the

SU(3)-symmetry,
b) the "ideal" (j?—cJ mixing,

20

c) the linear mass formula for the pseudoscalar mesons,
d) ‘the rate [’(w —)Id')://OOKev is taken in the fit.

The results of these calculations are given in Table 1, column II.

In paper /9/ the electromagnetic decay rates of neutral vector
and pseudoscalar mesons are calculated in a simple model combining
vector dominance, SU(3) symmetry and the L«)—Lf and 7-—’7’
mixing hypotheses., The width of the decay ‘j79->d2( is used in
the fit. The results conserning the electromagnetic decays of the

vector mesons are given in Table 1)colomn\ 1171,

In paper /10/ the predictions of the exact SU(3)-symmetry
are investigated in detail on the basis of reliable data on
resonance decays, In p;articular, the rate /—YLJ*I{/= J00kev
was taken as the fit for the investigation of decays L/;9/%V .

The results are given in Table 1, column IV,

In paper /11/ the magnetic dipole decays of vector mesons
are congidered in the framework of a quark model with a relativis-
tic harmonic oscillator. The results are gi#en in Table 14 column V.
All considered approaches predict the width of the decay
/(o_) /(?' three times larger than the experimental value.
In paper /12/ the attempt was done to remove this disagreement by
different violations of the SU(3)-symmetry. The author concluded
that any simple SU(3)- breaking mechanism in the framework of
the vector-dominance model cannot fit all the data with

"reagonable" parameters,
The lepton decays of the vector mesons tan be explained (with

an accuracy of 10%) by the vector-dominance model (see, for

example, /8, 13,14/ and further references),
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Here in the framework of the developed electrodynamics of
virtons we calculate the rates of decays V—) P/ and V-> {f/—
Our results are given in Table 1,columns VI and VII and in Table 2.
The general features of our model are described in the introduction
and in refs. /1,2,3/. We will consider two models: with uncolored

and colored quarks.

Table 2.

exper
( kev) A B

§—eef6.44:089| 13 6.3

w-ee 0762047 | 015 0.72

¥Y-e%e§131:015 | 042 1.22

[792:042H 0 410 |39-10°°
A0 '

-y

The interaction Lagrangian of the vector and pseudoscalar
megons with quark-virtons is chosen in the following simple form,

1. Uncolored quarks

Lr =g W Tgd i h 110"

(5.1)

22

2. Colored quarks

“’-—;c /%M)ﬂm (0.9 0

wherei 3% C:?T'h" ZC=3%L and £.=7, 7C=/[’

J

Under this choice of parameters, in the model with colored

quarks mass corrections, strong meson decay widths are unchanged.

SK Sk
Here /~7 is the octet matrix of the pseudoscalar mesons, e;

is the nonet matrix of the vector mesons (we consider the "ideal"

97—>CJ mixing). Purther, Ak, § =1,2,3 are the SU(3) indices

and (& =1,2,3 the "colored" index., The other parareters of

this

model were obtained /2,3/ by fitting the mass corrections to the

pseudoscalar and vector mesons and the rates of weak and strong

meson decays. The numerical values of the paraneters Zi

by = Ay L

672 (ML) d 7672 (ML)?

and

2

are shown in Fig.6 (a,b) as functiors of parameter jf'-— VaE

It was shown in /2,3/ that a satisfactory fit of experimental

data can be performed in the region 0,32 T <3 .
‘e suppose that our virton-quarks have the fractional
= -2 7 ;
charges (e,_e/,-ie y 6,64 =@, =€, =-35€ ) which

independent of the color index,

are

The electromagnetic interaction of the quark-virtons is

described by the Lagrangian

= 2, (R (- A)-2p51.)

23
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20} L{Gev™)

Fig.6a
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or in the regularized form

Y 3

Lo = 2_6 {;eﬁ@f Mi)f/lr

(5.4)

Now we can calculate the matrix elements fcr the radiative
decays of the vector mesons., Methods of calculation were developed

in refs., /1-3/ and in sections 3 and 4., Here we present the results

only.

I, Tﬁe decay ‘/1"’ /34/

This decay is described by the Feynman diagram shown in

Fig. 7. The matrix element corresponding to this diagram is

written for uncolored quarks in the form

T 5 fe Sl G
< di0e) G 17)].




Since /\" i/,‘fyl}z(/ we will neglect this parameter.

For the width of this decay we obtein for the uncolored quarks

[(vV-Py)= 5’2 i"f’/ /%3//_ %)

M)

Forg = 2564 L LR (5) B

Here /gyp are the SU(3) indices:

27 >
=8 - -1
/Z‘f?‘?—f’;( )B‘fﬂ— ) ﬁk*l{*‘g—)ﬁ;?“:;ﬁ
The functions /?V/’(}) are defined as follows:

= _ou? .
R =fyy=Rus=Rey = s ingufuemsi-grsie],
0

> 224t )
'?‘P? = fo(u'u € § 3'5“;1([1,11( CNTU +21}'5m§u],
. oo i )
R 2t '=}0(1W€ & [0,49 Judin2yu +0,55ﬁ~.2}u _0’075}—;(2})

Riroye —_:-fo(u'u e-z'/uzd’&n;u[f)OSu CoTu + O,S;Jo'ng’u] _
[¢]
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M (p°—mop)(KeV)

i A N I I

1 12 14 16 18 20 22 24 2627 5

Fig 8.

The behaviour of the rate /7/)00—?JOJ) as a function of ?
is shown in Fig. 8.

For the colored quarks we obtain the rates

/:(V—»P/) = \7/’7/[/4&)
The numerical values of the rates are given in Table 1,

column VI is for the uncolored quarks when 3 = 2,6 and

column VII is for the colored quarks when }' =1,7.

27



-f- -—
2, The decay l/"’ g 4

This decay is described by the Feynman diagram shown in
Fig. 9. The matrix element corresponding to this diegram is of

the form as for the uncolored quarks
7"“:__6’2;(_2.)3]/02)_’_/
S (2m)* ¢/ 4s rME O
Here

L(@) = £ Jie Sply o ta)5(4)),
Q'=-0F =Lme)?

> >, -
The width / /V-—)/ // for the uncolored quarks is

[(vs>e7¢)= & (/_ B

Here

/@f(}')zfﬁ (}):o/t/u d’[nj?zf €~u2

/Qf (}’) = /o/’l( 3&«;1«6“71'2

28

Fig.9 k,
- -
The behaviour of the rate / /FO—P /f‘/ / as a function
of ? is given in Pig. 10.

For the colored quarks we obtain
/Z(I/—)[f(’.)= S%F/Ve(T/_} .

The numerical values of these rates are given in Table 2,
colunn A is for the uncolored quarks when X =2,6 and
column B is for the colored quarks when }' =1,7. In the second

case the agreement with experimental data is quite good.

16t [lp—ee)
(kev)

151

14

13

1.2

11

1 1 'l I
1 15 2 25

Fig.10
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3. The decay STO""' d’(

Iinally we want to consider the decay ‘BT(L"dtr in our
model, This matrix element was calculated i# section 4. The rate
-7
/ /J"-—?d’d’)

quarks

can be written in the form for the uncolored
(’—»0 . T 2 3 2
/ S>> — —
(fd/) & %ijﬁ/{ )

2 L A 2
fj'-od/d' - A Z

1872

and for the colored quarks

' 83 ~
[(2=yy) = 3% (rgy) .

The nunerical value of this rate is given in Table 2.

Thus our results are in satisfactory agreement with the
experimental data, It should be noted that the model with
colored quarks looks more preferable since it gives good agreement

with experiment,

The authors are grateful to Dr,A.B.Govorkov for useful

discussions,
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