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Ypapuenue npuxenus TOY@UHOr O HCTOWHHKA CKANAPHOrO Nons
B ofwe# TeopHn OTHOCHT@ILHOC TH

B pa6ore Brieeneno YPaBHeHHEe NBHXEHAS TOY
CKaJISpHOro moia B ofmek TEOPHH OTHOCHTEN
Cs 0Ba BapHaHTa ypaBHeHHS CKaNfipHOr'o MoJs - C T
dopMHO-UHBApHAKTHOMN KHHeMATHYeCKON wacThio.
K BBIBOOY YypaBHeHHS NOBHXEHHS H3ygawouero 3sa
pa3BHTHe moaxona [Ou
Oxaasiaercy,

€YHOro HCTOYHUKa (a3apg-
na) bHOCTH. Paccmarpreapor-
PAOALUHOHHOR | H KoH=
CpapuuBanoTcs apa noaxona

pafa: obiepeNsaTHBHCTCKOe
PaKa u HemmoCpeaCTBeHHOE BhineneHme pacxoagnMmocrei,

9TO NMepBHl M3 HHX He naer npaemileMoro peayanTara B Chyyagd
xouq;opMno-nnaapnanrnon KHHeMaTHgecxoll 4yacTh, a BTOPOA NPHBOOHT K ypap~

HEHRIO [BHXeHHs 3apsana, e SaBHCRmeEMYy OT BHIGOpA ypaBHeHHS nonsa. Kak n
B Clyqae aNlexTpHYeCKoro aapsana, Ha CRanapHEIA 3apsa neficTByeT cuna, sa-
BHCSIIAS OT KDHBH3HLI TPOCTPAHCTBA-BPEMEHH B TOUKe HAXOXIeHHs aapsaa,
4TO NPOTHBOPEYAT HEKOTOpLIM POPMYTHPOBXAM NpHHIHMA SKBHBAEHTHOC TH.

Pa6ora Bunonnena s Jla6oparopuu TeopeTudeckoh ¢ua uxw OUSIU.
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The Equation of Motion of Point Scalar Field Source
in General Relativity

A general relativistic equation of motion of a point source of
a scalar field is obtained. The equation has the same form for two
different forms of the field equation, one with the traditional kine-

matical part and the second with the conformal= invariant one. As in
the case of electric charge /2.10/ the source 'is subjected to a force
that deperds explicitly on the space-time curvature in the point of

localization of the source, Disagreement of this fact with the prin-
ciple of equivalence is discussed,

The inmvestigation has been
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1, FORMAL PRELUDES

i i etric ten-
i Riemannian space with a m . :
: 1'2 zi) > xeV, ,, of signature +2 (space-time);
sor’ v ' ,
detEp) = 0,1,2,3refer to an arbitra-
i i ’V!‘°'= [ dad ] )
,#(eigtsofelsdl;ejvhiqe a,B,...,A=0,1,2,3 refer to a point
o 3 .
rc?:l ‘tahe world—iine z% =z% () ?f the pon_ﬂt séot;;cci:zx
(charge), r being its proper tm;e. Aepgnm;a, e .
to the argument z’=z(r. , oSy :
Fefe’;\ie covariant derivative with respect Dt;)drr Ix\'TsOte
denoted by a dot over a function or as .
e

that
. . . 2
- gaB 3 ZB el iant differen:
i i The covarian i —
pbeing the light velocity. ¢
t(i:ation V\gnth respect to x# or z% is deur;ote:orzyerspon_
dot in the lower indices in front of the oSk
2" 0indices which may be both of th.e lowwter"me
umger cases. As an example we» write tousor
c‘c)::ldition that determines the curvature ten
R¥iop (R):
2 p r*  A°
A “vp - A pv_  vop ’ ol
Ak (x) being an arbitrary vector field,
op
R#V=g R{va
is the Ricci tensor, o
is ta(x z) is the half of the geodesic 1?ter.'va'l .
betwe ,n points x and z (" world function"); it is
e e .
termined by the equations



and the conrdition 1j
M om . .
ol ondit XfZO. For instance, in the Min-

= — 0y2 1
2 === 2% o2 (kB B)R L (531,32

Buqa (x,2) is th :
pa (X,2) 1s the two-point tenso
port, It is defined by the conditir;)nof parallel trans-

Ay =g, x22 @,

wh A i
poirif :\\#(x) IS a resultant of the parallel trans
port of za (gef.ari.c:ﬂg the geodesic segment connect;ng
X . Inition and properti
: it p les of o(x, z),
pa ) and other two-point functions are)perfect

ly represented in t i
he f
DeWitt and Brehme irst part of paper /1/ by

Our i P
cordance with theire, notation is in complete ac-

2, FORMULATION OF THE PROBLEM

Our purpose is t
) o deduce th
e : . € general relativis-
e eSqCL;éll(:onf' of mot1.on of the point particle ;2:2?8
eSS th; ;eiid' v.vhlch takes into account the ree:::lg
e adiation on the particle (the radiatio )
oo caugec.i uch a source of the scalar field ma .
De o thera; ?:arllir charge only conditionally be?-,
conservati
that of electric charge Hon law analogous to
T . .- 3 '
Lorenkzz—gfeneral relf?.th‘lStIC generalization of th
lrac equation for point electric chargee
e

with (physical) rest
. mass :
in the following form M was obtained by Hobbs /2

Mz & = ec“lF(in)a - B 2
glAz" +2 (M _pY |

2 ~1-8 T .yt 1
+ e~¢C VA _ofofaﬁy(z’z,)zy dr" ( )

“‘llsle I ( XX) 1S Hle te}lSO! Cf an e::tEIllal eIECt!o
1 I}
“ﬁgl letlc fleld, t Vp (}(,}( ) 1S a some t‘/V()—'p()“ lt

4

tensor, which is a second rank antisymmetric ten—
sor function of x (indices p and V) obeying the
free Maxwell equation and is a vector function of X7,
ess (1 —R .- 2 .
re. 1 (z -¢ z z ) (2)
3c3

is Abragam’s vector and

By . (3)

p? - —él—E[RaB(z)hB Lot iaRﬁy(z)i

Actually Hoobs corrected an error in calcula-
tion of De Witt and Brehme/1/ who had obtained
equation (1) without the term proportional to P,
They noted with satisfaction that the equation ‘does
not show any dependence on curvature at the charge
location and interpreted this fact as an agreement
with the principle of equivalence, Indeed, if their
t were correct,the equation of motion in a lo-
cally inertial reference frame (i.e., in normal coordi-
rates with origin at z() ) would differ from the
corresponding special relativistic one only by the
last "tail" term, One might conclude from such a dif-
ference only that somewhere on the world-line of
the charge tne curvature is not zero, On the contra-
ry, at least in conformal-flat V, 5, where f"VP'(x,x’)EO_,
the vector P, provides a principal possibility to de-
tect that RGB;éO, if so, at a_given point, i.e.,, through
observation of an arbitrary small part of world-line
of one point charge, This means that one may de-
termine whether a gravitational field is present at
the point, This possibility of course is a local ma-
nifestation of the nonlocal system "charge+ its field"
and it should be considered as an indication of
f a more exact formulation of the prin-
ciple of equivalence rather than as a contradiction
with the latter (see also a discussion in /3/).

So, the presence of the vector P, in the equa-
tion of motion of an electric charge is of principal
importance and it is interesting to know how equa-
tions of motion of point sources of other fields

resul

necessity o



appear. The case of the scalar field is of parti-
cular interest because various authors write the
kinematical part of field equation in two different
forms: in the traditional minimal form

af3 % % _a
06 =£%g. 5 - o) RIC I Baﬁw

and in conformal- inva riant one /4.5/. (g 4

2 -%— )b, where

is the scalar curvature, The term with R in the
latter case is also considered sometimes as a break-
down of the principle of equivalence and the ques-
tion arises whether equation of motion of a scalar
charge depends on choice of the field equation,

The starting point of our consideration is the

system of equations describing interaction of a sca-
lar field ¢ with rest mass m and

its point source
(charge) with rest mass M, :

O+ 2R - w2 gm=he [drs {x.2).
dii-%[momgé(z)fz“f —xele ().

To make the constant of interaction A dimension-
less, we have introduced here m- mec y Wo=Mge/h.

The invariant & -function 34(x,z)is defined by the
condition

J(@) 4V -g®64(x, 2) 1(x) = 1(z).

The constant A in Eq, (4) is introduced as to take

into account the two aforementioned forms of the
scalar field equation, corresponding to the values
A=0 and A=1.
System (4),(5) is of a formal sense since ¢ and
.q¢ include selfinteraction of the charge and take
infinite values on jts world-line, It is, however,

remarkable that the infinities can be separated

in
the form "const .7 % (7) "

and can be included into
the observed mass of charge Y so that X o acqui-
res the meaning of a bare mass, Such a renorma-
lization of mass requires intermediate regularization
of the field ¢(z) which actually reduces to consi-

6

int of location
i field not at the poin . |
deratlonhc;frgtzebut "beside" it. The regulérlzatlon
2 th('et Cremoval may be performed in Yanol,(s‘m:/::‘z
anccii lsSince in general relativity there is lnge;u]t o
anc:e condition, the independence of fln%er S ro-
o larization is not obvious. We const [wo bre
gzizres here, the first being the gen;elx;?/l ;sd ivistic
1,2/ of Dirac’s approac . v
ment 1.2/ o \ th
Ssr\lfslcl)f:eing that has been used in the book by
Sokolov and Ternov,

3. DIRAC'S APPROACH

The approach is essentia lly atid flc-l)i::wiss. ;I\:felo_
ia ble point z%() of charge wor ~li > 1o envel
od bv a closed hypersurface 2 which is -
F?ed y't height and radius being 2Br and €4 ,rl.ke
lmde.l”, Iy, The latter is measured along a sPace—l
peCtlve.IY- normal to the world-line. One applies t.he
gzojsesSlfheorem to the conftraction of tTe sygqnﬂtiglc

tensor T, with vectors 3
??eigly;mgz)eng?zrbitrary gield of reperes, i.e.,

v p
vk

Y(x)= Yo rav, T,

zde#(X)T#,,(x)«fi (X)—‘{th4(T#V§I ) ‘{4 2Tk o

s in virtue of Eqs.4),(5). , ,
T, . =0 in wvir o
Her; «fv&l)/ is a Killing vector, then T#V«f .

i : here is a natural repere
If" o N}}(?l;«)xigh Siza(éimtpOSed of four Killing vec_:-
e, git enerates the translations. Then the f:ohn
tors thfargthe integral over X in Eq.(.6) to vanis ]
Z{UZZ r('-;se to the Lorentz-Dirac equation. Igrege;niqeeid
ol i i h natural rep ,
- relatiVlt{ thi:fsiésall;ojussli;:ﬁed way to introduceld-
e por O?;Idpis to relate it with the ch'arge wor.
? repf Ei)l Hobbs /2/ accomplished this by the
ine -



parallel transport of

at z? an orthonormal re .

me’/1 (r)u t<(>jx along the geodesic, De Vsiet:eansc{p(eBCIfled

nate re :re actually parallel transport of a c rgh-
at ,za(,F;) e (fogr vectors tangent to coordinateocl).rdl—

ween thes:e, We uéh:,vj;’e isth somewhat intermediate lzzi
has bee : ; e hypersurface 3 .
n described (Fig. ) and introduce any :intl't

1-

nous field fia -£,%() along the world-line z%2=2%(r)

(denote it by C) of charge. Then the repere £t

at an arbitrary point x in the neighbourhood of C

is obtained by parallel transport along the geodesic

perpendicular '’ from X ’to C, i.e.,

® - ’ a ,
¢ (X)=gp'a’ (x,20¢ ",
z"=2z(r") is the end of I'" on C,

The energy-momentum tensor T
variation of the action for system

m is obtained by
(4),(5) and has the

form

(?)

» 1¢))
T (x;A):T#V(x) +T#V (x;A),

wv
2@ ) [ (28 (1208, gk 2T B
o =¢ ot X))-LT X278 0 (%28, 8%, z=
(8)
0_ 1 P2 ARyp2_ A 2 2 2
10-¢ 0, e, Jo,¢F +(n*-ADR)-FIR, & v 2, oL
(9)
Let us substitute into T#V (x;A)
o0 =" ®+d (0, B
where the qf)m (x) is a free external field and ¢ (%)
/17,

is the retarded field of the charge

Ya 7
¢ (%) =- _)ic_{é__(_x_z) - farrvx,z)Y (10)
4r 5(x,z) —° -
Here
(11)

Yoo Ve
A(x,z) = - detlo W-gx)  (-8(@)

v(x, z) is a two—point solution of Eq.(4) with the
vanishing right-hand side which is regn;lar on the
1,8

light-cone and satisfy. the condition

lim v(x,y) = —1—:——A—R(y) —Ym? (12)
9



and 7 _(X) is the proper time of intersection of the
charge world-line and the past light-cone of the
point x (Big, ).

Evaluate now the limits of €9~0 of integrals in
the main equality (6). We start with the right-hand
side and omit the repere index i for simplicity

’

IIJ/ - a
Fy=[dV, TV x:M)g, . &9 4
Vi, ¢ Hav (13)
B o BT - it
+ (g ﬂa,‘ﬁ.g z +g#a,:f yrood

v

Having differentiated the orthogonality condition for
C anda I'”

’

o .(x,202z% _g
-a

one obtains

o=k (x.29D,.(x,2979
where D (x, Z)=—0,#a (x,2) and
K2 = —.O.(X,Z)! ’

Z=12
Now we take into account that a close neigh-
bourhood of the curve C is under consideration only
and substitute expansions in powers of geodesic

distance ¢ from x to C into Eaq.(13). We cite them
for some quantities/1 .

—_ 6_81 ’

- Y 2
g#a"ﬁ’ = 2 gfl RB’Y’(I‘B’ Q +O(f ), (14:)

where Q7 ig the ,unity tangent vector to C at the
point z’ | i.e,, a7 Qy’ =1, Q’ zy,= 0,

’

rd 1 - * a

T =T 5Bur 2 (14 0(e?)], (15)
K
¢‘(x)=_%_c_[L - [ dr*v(z’, 2% + 0(2)], (16)
7T €K -—o00

10

e

T Ae = 1@ e’
¢_F(X)—4m~2g#a'[‘<—ﬂ + 5z + 03], (12)

- Xe = = 14t B aB | .ah B
T e Y U
@ P P oty (18)

2«

Actually, r* | ¢ and Q7 form the Fermi coor-
dinates /9/  of the point x with respect to the curve

C. The invariant volume in these coordinates gives
T+ 0r ‘o 2
f dV4 = 1 Jodrt de(zf ﬂK——’— . (19)
Vy ¢ rlor 0 A(x, 2

An integral of any term containing an odd number
of the "direction cosines" Q" over d?  vanishes,
The use of thig fact, of properties of g i 1 ,of
expressions (14)-(18) and o ther necessary expan-
sions leads to

a’, T =T+37
Iy = %[‘f Z,. - G )Jl,':,_(s, -
1 T+Or veq’ (20)
- [ drié iz WGy o
Corlsr “
a’ g in /\2c r’
z4 d_) dr’'v(z",z°)]},
" dr'[ ® 4o —ofo e
where
; Xe T
NG = )nl + Agpliny fdrv(z, z) (21)
T
and
2 ‘o
ml - mo - 27 im / de[‘s—(‘)—— 1—(1 - ZM)L (22)
4m €0 0 € 2¢% 3

1



The contribution to the second~ ter_‘_;n m' mlT(f)ls .
iven by ¢~ in T{® and Bu®p® in 1'tyw(/6)
g‘Consider the left-hand side of the main ecll;la 1e .
The hypersurface X is composed cc)if ttll:ee War;—:i s
parts: the two "cups" p andy,E an
In the coordinates 17, €, QY we have

€o
aQ Hy' ,
J dZ# =-‘;%‘ ({d“z ITD Zy"f’:'r +or

s*

€2 T+87 dQ 5 - y, 3))
at =g e, 0l
30 =01

a'D#'B'— ga’B'+ 0(?) the integra-
Fis practically reduced to the same v
as for integration over .

Since 1_)‘1'.3 = g
tion over X~ *
integrals over dr and d

The result has the form
’ r+0r
v a’. L TE (23)
(fas” + (27,8 R WP (130 T
P b

into £q.(6) this term cansels

Having been substituted (o) the s

with the first term in Jg,
side of Eq.(h) reduce to
3D - SH T(Q‘EV

30 go H

i ® _g on =°.
since T = .

To H::/alculate Jg?: , we need expressions of the

form of Eq.(15)-(18), but of higher powers %211;,
. eci )
h are too cumbersome, .esp .
I—IS)Weverc’i tdﬁy to cite them in this schematl'c
¢.# o i spi iust these orders contain
description, in spite of jus orde e e
various contractions of Rggys amn aB .

d z°? that give rise finally to the terrn a |
fin the equation of motion. Calculating the integrals
n .
lover directions, we make use of the relation

for

12

R —-2 . -
fdQQaQﬁ = 3—(gaﬁ +C Za ZB)
and come to the following expression

(f) 7407

a’ in
Tgo=C L4 Do+
A D . in /\20 T’
to—p —— [Z r(/\ —— ’ ’ s
302 @7 CarP etz )] +

(24)

L -1
lim €0 +Fa,_pa, +

-
‘o

2 .o
/\ 1 2 Za'
+ y [é(l-—?A) =

’
’

7
4 4 r, 1 rd ’ ¢
+c_;£o dr v.a,(z "Z°7) - <viz',z )Za, 11.

To obtain an equation of motion, we bring to-
gether Eqs,(20),(23) and (24) into Eq.(6) and use
arbitrariness in ¢ «’ and &7 However, Eq.(24) still
shows that we have different equations for the dif-
ferent values of A. In the case A =1, the equa-
tion so obtained is wittingly unappropriate because
it does not coincide with Eq.(4), the terms I’ ,
and "tail" term (i.e., radiation damping) being %eglaec—
ted, We think the reason is that the Gauss theorem
may not be applied to the singular expressions that
arise from the terms with second derivatives in
le (x; 1), Strictly, the theorem may not be
applied even to T#V (x; 0), but still in this case

(A=0) Dirac’s approach gives rise to the result

which is proved by other approaches, Therefore,as

a final result obtained by the method of Dirac, we

write down now only the equation of motion for

charge of the Scalzar field obeying Eq.(3) with A=0:
T

0, x2S T arva el ) -

dr 7T —oo
2 T 2 2
2 in A c , , A C 25
== [/\¢) + 7"— fdf V(Z,Z )].a + 477 (Fa —Pa ). ( )

13



Note that derivatives of the upper limits of the in-
tegrals cancel because 7., =—c'2za according to
Eq.(15). The physical (renormalized) mass W, is
related to the bare mass My as follows

€

0 25(() __1__)_ 1

2
A .
M =My - = lim [ [ del—— -
2= 70 An (0_’0 ) € 9 2 2(0

If one assumes
€

o

f dfé_(f_). = __1._\

0 € 2( e=x0
then the field contribution into the mass is a diver-
gence of the form - (A2 /8r)e 7} le 2o -

In the next section we shall show that the equa-
tion of motion for the case A=1 has the same form
as Eq.(25).

4, DIRECT SEPARATION OF DIVERGENCES

Now we will separate infinities and renormalize
the mass directly in the Eq.(5) following the proce-=
dure that was used for electric charge in special
relativity in book /1/ and was considered for general
relativity in paper/lo/ . We formally substitute into (5)

$@=9¢" @D+ (2

representing the retarded field ¢ (z) through the
retarded Green function G (x, ¥):

¢ (2) = -)\c_LG‘(z,z')dr', (26)

G (z,2°) = —8177—§A1/2 (2,28 lo(z,2")] —0l-o(z,2")IW(z,2 ) x

x [1+ elr=77,

where 0(x) is the unity Heavyside function and
(%) =0(x) - 0(-%) . Obviously Eq.(26) may be expressed
in the form

14

. Ac )
$ (@ == 5% [ & Tivct-rA" (2,29[0(2 2] +

;
LA L
. _!odf vz, z").

To calculate ¢ - .
. (Z), ¢ Z -
to the integration with res:apéczt tand ¢ (2 we pass

pand the inte : o t=r-7’ and -
on 91) grand in powers of t ex

for x-x’ of . using ex i
) two- . pressi-
A A 2-/,1 : O-point functions ¢ , ,
__1.2. 2 1 .
o =-2ct . 2452
2 24 t z” 4 Ot 5),

0.3 =tz go L2y 1 3
P pBgtzpr gttapgroet),
_1_ 1 o ..
L= gt R aPercoe®), (27)

yT—— :
5] -é—tR/g},Zer ()(tz)’

6(0) = 2_[1+ 0(t2)] 6 (t)
c? It]

We use for
. ; calcula ti .
include 6°(0) the formula ton of the integrals which
d 1
—_— _ t -.2
a0~ ! +—z" 100

c?t et a

which follows fr
om (27) and af i
o . after integra ti
pa we obtain the following formal egxpm;cs)g'by
ions
¢ () - - A 1) Ac [
4770—!0 [t] a ;T-—cof v(z.29dr, (28)

(- A [ 25 A
¢ @ 2nc_mTt]-dt+'4—:V(Z,z)+

BT (29)
+47—Z f V.’B(z,z')dr',

—00

15



S T Ay [ g
b0 @52l T T G e T

(30)

A Al N Ac e
—-——(Fa—Pa)— z v(z.2 Y+ 2= [v (2.2 Ydr .

4n 4nc T —o0

Substitution of Eqs. (28)=(30) with addition of cor-
responding derivatives of ¢ into Eq.(5) leads
finally to Eq.(25), where M, is changed by

o0

A A
3113_3110 8170_{0 T dat.

But this equation is correct now both for A=1
and for A =0, and the difference between these
two cases is that ¢'™ and v(x,z) obey the diffe-

rent equations,

5, CONCLUSIONS

1. The use of Dirac’s method to obtain an equa-
tion of motion of a point source (charge) of a scalar
field gives an acceptable results only when the
field obeys Eq.(4) with A=0, ie,when the kinematic
part is traditional.

2, The direct separation of divergences in Eq.(5)
gives an equation of the same form both for A=0
and A=1 in Eq.(4).

3. The equation of motion of a scalar charge
contains the vector Pa explicitly depending on the
Ricci tensor at the point of charge localization with
the coefficient % in comparison with the case of
electric charge.

4, The diverging contribution of scalar field in

the charge mass is negative,
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