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INTRODUCTION 
In a previous paper / i / we have examined the 

free scalar mass l e s s field in two space-time 
dimensions. The quantum theory of that field was 
formulated in coordinate a s well a s in momentum 
s p a c e representation taking into account the ex i s 
tence of two nonzero charges . In the present paper 
the sca l a r field is u sed to construct the solution 
of the Thirring model and to exhibit the transforma
tion properties of the latter under the two dimensio
nal conformal group. 

1. THE SCALAR M A S S L E S S FIELD 
We first briefly remind certain ba s i c definitions 

and results from pape r ' ",which we u s e in the 
present paper. 

T h e free quantum sca la r mass l e s s field in two 
space-t ime dimensions satisfies the following equa
t ions: 

n* ( i )=0 . (1.1) 

[^(x),0(y)] = iD(x-y). (1.2) 

V\fe note that there a r e two fields <£(x) and ф(х) 
(sometimes they a r e called "conjugate" and some
times "dual") satisfying these equations, related 
between themselves by the differential equalities 
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3 ^ 0 0 = - ^ " диф{х) (1.3) 
and satisfying the nonlocal commutation relation 

[ф(х),ф(у)\ = iD(x-y) (1.4) 

(The explicit form of the functions D(x-y) and 
D(x-y) and other commutation functions, which we 
u s e in the present paper a r e listed in the Table 
at the end of the paper). 

For the fields <£(x) and ф(х) we can define the 
creation and annihilation parts <Д~(х) and ф~{\), r e s 
pectively. Starting with eqs . (l.2) and (l.4), we ob
tain the following commutation functions between 
these parts 

[ф±{х),ф+{у)\ = [ £ * (x),^ +(y)] = ±D± (x-y), (1.5) 

[ф* (х).ф +(y)] = I D * (x -y ) . (1.6) 

All other commutators a re zero. 
T h e solutions of eqs . (l . l)-(l .6) a r e found a s 

operator valued generalized functions integrable 
over the s p a c e of test functions K = S(R ), i.e 

2' - • t 

the space of the complex infinitely differentiable 
rapidly decreas ing functions of two var iables . Be
s ides , the solutions a r e supposed to satisfy the sub 
sidiary condition that the quantities 

a 1 (0) = - i V - 1д0ф ±(x)dx l , (1.7) 

b ± (0) = i V ~ }д0ф ±(x)dx * (1.8) 

exist and that a+(0) and a~(0) (as well a s b+(0) and 
b~(0) ) a re not equal to each other. 

The decomposition of ф{\) and ф(х) in ф - (x) 
and ф - (x), respectively, is carr ied out by using 
the formula 

0 * (x)=- i /dz 1 D ± (x-z)7 0

z </ , (z) (1.9) 
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(for more details s e e ref. / * / ) . With the help of 
eq. (1.9) one can determine the regularization of 
the Fourier integral for the fields </>(x) and ф~(х) 
provided the regularization of the commutation func
tions D~(x) and б - (x) is given. + 

If we denote the Fourier transforms of ф "(х) 
by A* (p ^.respectively, then the relation between 
the functionals of the fields in coordinate and mo
mentum space representat ions is given by the 
equation 

;^ ± (х)Ф(х)с1 2 х = 
(1.10) 

= >/•£" J — [ A * (p 1 )f(p) - a ±(0)f(0) 0Ы - |p l | ) 1 , 
2 I P M 

where Ф(х) is an arbitrary function from ft, 

f (p 1 )=F(jp 1 | ,P 1 ) & S(C+) (1.11) 

and F(p) is the Fourier transform of Ф(х) 

F(p) = ^_/Ф(х)е" 1 р ! £ d 2 x. (1.12) 
Zn 

A n analogous to (l.lO) equation for <£(x) one can 
obtain by substituting А ± (p) - В ± (p), a * (0) -. b 1 (0) 
into the R.H.S. of eq. (l.lO) (B~(p) a r e uhe Fourier 
transforms of ф ~(х) ). 

It is e a sy to s e e that the regularization of the 
Fourier integrals of the fields <,& - (x) is fixed by 
eq. (1.10) (and analogously for <£~(x)), and that 
this regularization is equal to that obtained in pa
p e r ' 1 ' . All results of the latter paper c a n be formula
ted in terms of functionals using formula (l.lO). 
Since there is no any principal difficulty in such 
a procedure we do not d i scuss this problem further. 
Nevertheless, it s e ems to us that it is n e c e s s a r y 
to make a comparison with the regularizations used 
in certain papers / 2 - 3 / . In the latter the functional 
analogous to (l.lO) h a s the form 
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/0±(х)Ф(х)(12х= V 4 / — А ± (P)ff(P)- f(°)b ( 1 Л З ) 
г I P M 

It is easy to s e e that the operators of the fields 
ф±(и) defined by (l.lO) and (1.13) differ by the fol
lowing constant opera tors : 

G * = v T / - ^ [ A * (P) - a * (0) 1. (1.14) 
2-4c|pl| 

The main drawback of the regularization (l,13) is 
that it is noninvariant with respec t to the group of 
translations in the two-dimensional space-time. T h e r e 
fore, a s is s e e n in / 2 / , the commutation relations bet
ween such fields a r e translationally noninvariant. A t 
the same time the operators G * compensate the non-
invariant terms, and therefore the regularization 
(l.lO) appears to be invariant. 

The operators A - (p1) satisfy commutation relations 
which differ from the canonical ones by a counter-
term with support a t the point p l = q l = 0 ( p * and q l 

a r e the arguments of the commutator). In our c a s e 
the operators A-(p*) differ from usua l ones by two 
specific features. 

a. The condition that the quantities (1.7) a r e 
nonzero implies the following representat ion: 

A ± ( p 1 ) = a ± ( p 1 ) + « ( p l ) b ± ( p 1 ) . (1.15) 

where a-(p*) and b-(p l) a r e cer ta in new operators 
while t t p ^ + l if p r > 0 or p l<0, respectively, with a nor 
malization c(0)=0, s o that «(p1) = !P-L(here 9 denotes 

4 P 

the principal value). 
b. The quantities a^O) from eq. (1.7) should be 

treated a s values of the operators a*(p) a t p l = 0, 
i.e., а * ^ 1 ) must have the following representat ion: 

a ± ( p J ) = a ± ( 0 ) + | P V c ± ( p 1 ) , (1.16) 
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where Rea>0, while c-fp^are certain operators that 
tend to a constant operator when p 1 -»0. 

2. THE THIRRING MODEL 
The fields <£00 and <£(x) satisfying e q s . (l . l)-(l .6) 

can be used for the construction of solution for 
the quantum Thirring model. Such solution is con
structed with the help of exponents from the fields 
ф~ (x) and ф~ (x) only. The solution of this type 
has first been obtained in p a p e r s ' 3 - 4 ' . Since the 
regularization (l.lO) and the condition for finiteness 
of the operators (l.7) and (1.8) lead to fields with 
somewhat unusual features, we want to show in 
this section that the fields ф~(х),ф --(х) a r e indeed 
adjustable for construction of solution for the 
Thirring model. Namely, we shall proove the fol
lowing statement: 

± ~± 
Theorem: Let ф (х) and ф (х) be the quantum 

fields satisfying e q s . (l . l)-(l .6), defined a s operator 
valued generalized functions with the help of eq. 
(l.lO), then the two component quantity 

4* ( x ) = e i ( ~ 1 ) k ^ ~ ( x )

 e-ia,f>~W e~W»+(x) e»(-l) k/30+(x) ц к к 
(2.1) 

v/here a 2 + / 3 g 

(ft i s a constant with dimension of m a s s squared, 
related to the regularization cons tan t к), 
while 

v l + h H 1 - h Zn 
satisfies the renormalized quantum equation of the 
Thirring model 

7 



iy vd „WOO = -gy ": J v(x)4»(x): , (2.2) 

where yv are the Dirac matrices in two-dimensional 
space-time (f.i. y°=a , y 1 = i<j , and a are the Pauli 
matrices). The renormalizea current is defined as 
a bilinear form of the fields Ч'(х) in the following 
way: 

J„(x) = ,/a[j^(x)+ J (X)], 
- - (2.3) 

j (x) = lim j (x . f ) ; j „ (x) = lim \ ( x . t ) , 

W h e r e 2 i f l 2 
'/г 4 , 7 

j ( i .e) ='/ 2(-f 2 ) [Ф(х+<т)у Ч'(х)-Ч-*(х}у°у Ч' (x-*)|. 

"(2.4) i ' 

j „ ( x . f ) = j j , ( x , r ) , f = - e 2 , f , f 0 . 

The proof of the statement should be carried in 
two stages. First one must substitute the quantity 
(2.1) in (2.2) and (2.3) and by direct calculation 
show that it is a formal solution of (2.2), and se
cond one must prove that exponentials of the 
fields ф "(x) and ф ~ (x) are well defined as genera
lized functions. 

The first stage of the proof has two parts. We 
first calculate the current (2.3). For this purpose 
we substitute (2.l) into (2.4). If we reorder the ope
rator exponentials for sufficiently small t *" , we 
have 

- 2 и(к+1) а о a + 

4<(x+e)y ¥(z)= S (-1) |u | exp[(« +/3 V « -
M k = 1 k (2.5) 

-2Л-1) D «Hl-iae^dц<£(х)-1/3(-1)кЛ„<£(х)]. 
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If w e d e n o t e 
о l ,n - ( - * ) k / 2 

V i u)=( i^ i i i iO- ) > ( 2 6 ) 
k

 f ° + e

v - i 0 
w h e r e 

hm Vk(f) = e =1-1) 

T h e n w e h a v e 
\cv 2 д(кН)+1 , к - , 

j ( x , e ) = - i l = , S ( ~ l ) V..U)<9 [a<Mx) + /3(-l) 0(x)]. 
f 2 W - ^ 2 k = 1 * V (2.7) 

P r o m t h e la t ter e x p r e s s i o n we c a n ob ta in a c c o r d i n g 
to e q . (2.3) the q u a n t i t i e s J (x) a n d j (x) 

: 2 Ц(к + 1)+ l+'/4(-l) k , ч 

j 00= - i -S( - l ) <M„00. (2.8) 
/* 2irk=l ! k 

i 2 /x(k+l) + 1^ . . 
j ( X ) = - L _ £ ( - 1 ) 5 n F

k ( x ) . ( 2 - 9 ) 
^ 2ff k=l ° K 

w h e r e 

F k ( x ) = a<A(x) + / 3 ( - l ) k 0(x ) . 

I n s e r t i n g (2.8) a n d (2.9) into (2.3), w e ob ta in 

J u ( x ) = -L(a + p)d й(х) . (2.10) 

N o w to comple te t he proof we must i n s e r t the q u a n 
t i t ies V(x) a n d Jfi(x) de te rmined b y e q s . (2 , l ) a n d 
(2.10), r e s p e c t i v e l y , in to eq . (2.2). A s a r e s u l t w e 
h a v e the following r e l a t i on for a a n d fi 

h(a + /3) = /3 - a . (2.11) 

It i s e a s i l y s e e n tha t a a n d j8 s a t i s fy th i s identity, 
a n d th i s a c c o m p l i s h e s t he formal proof. 

If w e remind the d i f ference b e t w e e n K l a i b e r ' s 
a n d o u r r egu l a r i z a t i on ( s e e s e c t i o n 2) t h e s e c o n d 
s t a g e of the proof i s implicit. A s w e h a v e s e e n the 
s c a l a r fields of K l a i b e r differ from o u r s b y the 
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constant operator (1.14). Therefore we come to the 
conclusion that the quantities :<£n(x): and :e Ф№; 
(the symbol :...: denotes normal ordering a s 
usual) can be regarded a s operator-valued gene ra 
lized functions in the space S(R p) in our c a s e too. 

3. TRANSFORMATION PROPERTIES 
OP THE FIELDS ф(х) AND Ч1 (x) 
In paper ' ' the transformations of the fields 

</>~(x)and 0~(x) under the two-dimensional Lorentz 
group have been found. It appeared there that the 
latter were nonhomogeneous with constant operator 
nonhomogeneous terms. Thus, one can show that 
the 4' (x) field is not a true spinor. Indeed if we 
substitute in eq. (2.1) the values of ф ~ (x) and <? ~(x) 
obtained after a Lorentz transformation Л : 

д X 
«£*(*) -^L ф± (\.,x) ^ - ь ^ о ) , (3.1) 

A 2V/2TT 

• + Л Х -+ у ± chy shy 
ф (x) _ ф ( A i ) t 4 r « (0) Л(у)=( * J" ) 

X 2V27T S " X C " X 
(3.2) 

w e obtain the t r ans fo rma t ion l aw for the Th i r r i ng 
field in the form 

A v iX(aS+/3y5L> 
V(X) J L :e ¥(Л x): . (3.3) 

w h e r e L and S a r e t he following o p e r a t o r s 

L = - L = . [ a + ( 0 ) + a~(0) ], S = —L=[b +(0) + b " (0) ] . (3.4) 
2V/2TT 2V2TT 

It is evident from this transformation law that the 
quantity (ФФ) is not Lorentz invariant, while the 
quantity (Ч/у̂ ЧМ is a true Lorentz vector . 

Now we p a s s to the transformation properties 
of the fields with respec t to the group of dilatations. 
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However, the method which we have exploited in 
order to obtain the representation of the Lorentz 
group is not useful here. The transformation laws 
of the_dilatation group, under which the fields ф _(x) 
and ф ~ (x) are transformed, we shall establish 
using the condition of invariance of the commutators 
(l.5) and (1.6). Unfortunately, the latter procedure 
does not determine this representation uniquely. 

Going ahead for a while, we point out that 
when the special conformal transformations are con
sidered this arbitrariness is ruled out. Meanwhile 
we fix the representation by making use of the 
condition for dilatation invariance of the procedure 
of separation the creation and annihilation parts of 
the field operators, i.e., we impose the condition 
that the equalities 

0±(x)|O> = ф~±(х)\0> = 0 (3.5) 

are invariant. This constraint implies that the non-
homogeneous terms in the transformation laws for 
Ф (x) and ф (x) must also annihilate the vacuum. 

After these remarks it is easy to obtain the ex
plicit form of the dilatation transformation D for the 
fields ф~ (x) and ф ~ (x). Namely, if A > 0 is the para
meter of this transformation, we have 

ф± (x) -£*— ф ± (A x) + a аЦ InA , (3.6) 
2V2TT 

ф* (x) i L 0 * (A) - -5J9LI„A . (3.7) 
2\/ 2n-

+ 
The absence of a term with b (0) in eq. (3.6) and 
of a term with a-(0) in eq. (3.7), ie. due tt» the 
fact that such terms would violate the covariant 
sense of these relations with respect to space pen i-
ty (since ф±{%) and 0 ± (x) ,as well as a. ±(0) and 
b- (0) cannot be scalars or psreudoscalars simul
taneously). Inserting eqs. (З.б) and (3.7) into (2.l), 
we obtain the following transformation law for the 
fields 4>(x): 
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DA U n A ( a L + / 3 y 5 S ) # , . 
<P(x) , : ft ^ 4»(Ax) : . (3.8) 

S i n c e th is t ransformat ion is o b v i o u s l y not t h e s t a n 
da rd one , it i s m e a n i n g l e s s to a s s i g n a n y conformal 
d imens ion to t h e field 4"(x), a l t h o u g h s u c h a d i m e n s i o n 
a p p e a r s in t he G r e e n func t ions . T h i s i s a v e r y im
portant f ea tu re , s i n c e e v e n in a s t a n d a r d formula
tion of t he o p e r a t o r s Ф(х) (i .e. , in the Hi lber t s p a c e ) 
relat ion (3.8) r e m a i n s va l id . 

Hav ing def ined the r e p r e s e n t a t i o n s (3 . l ) a n d 
(3.2), on o n e s i d e , a n d (З.б) a n d (3.7), on the o ther , 
the s p e c i a l conformal t rans format ions for the fields 
ф-(x) a n d ф~(тС) a r e in g e n e r a l de t e rmined . T h e 
meaning of t h i s s t a tement w e i l lus t ra te by t h e 
example of t he fields ф - (x). 

We first def ine the commuta to r s of the g e n e r a t o r s 
of the r e p r e s e n t a t i o n s (3 . l ) a n d {З.б) with t he fields 
ф- (x).For this purpose we wr i te down a n y t r a n s f o r 
mation in t h e form 

lTV(x)U g = T g0(x), (3.9) 

w h e r e T g s t a n d s for the R .H .S . of a n y of t h e r e l a 
t ions (З.1), (3.2), (З.б), or (3.7). Differentiating bo th 
s i d e s of e q . (3.9) with r e s p e c t to the p a r a m e t e r s of 
the t ransformat ion , multiplying b y (-i) a n d e v a l u a t i n g 
the r e s u l t a t t h e unit e l emen t of the g r o u p , w e 
obtain t he n e c e s s a r y commutation, r e l a t i o n s . In p a r 
t icular , 

[ M ^ . * 1 (x)] — i ( y „ - ^ ) * ± Ю + - Л = < / И , Ь ± ( 0 ) . ( 3 . 1 0 ) 

[D,<^ ±(x)] = i / 5 „ 0 ± ( x ) + - Л г г т а ^ О ) , (3.11) 
P 2у/2тт 

w h e r e M^,, i s t he g e n e r a t o r of the two-d imens iona l 
Lorentz g r o u p 

<эи у 

M = if — i - l (3.12) 
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(Uwis t h e r e p r e s e n t a t i o n of this group) , whi le D 
is t h e g e n e r a t o r of t he di la ta t ion t r ans fo rma t ions . 

If w e d e n o t e the R .H.S . of eqs . (3 .10) a n d (3 .1 l ) 
A + + * ± ± 

b y M ф and D ф r e s p e c t i v e l y , we s e e that 
A + V A + 
M a n d D c a n formally b e written in t h e form 

A + A A + 
M~ = M° u + i S v , 
A 4. Л + \3Л 13) 
D~ = D° + i d ~ , 

* + 
w h e r e M° a n d D° d e n o t e t h e differential p a r t s of M" 

and и - r e s p e c t i v e l y , while 

*,+ * uv ± , д 
s:,,, = —-—ь (0) 
*-+ a~(0) 

^ 2V& дф± ( 3 > 1 4 ) 

d" 
2y/&r ~ дф± 

(the o p e r a t i o n д/дф~ h a s s e n c e of o r d i n a r y differen
tiation with r e s p e c t to ф-, r e s p e c t i v e l y , t h e la t te r 
being t r e a t e d a s o r d i n a r y v a r i a b l e s ) . 

T h e formal e x p r e s s i o n (3.13) p r o v i d e s a method 
for ob ta in ing a s imilar e x p r e s s i o n for t he g e n e r a t o r s 
of the s p e c i a l conformal t ransformat ion . H a v i n g in 
mind t he commutator 

[p, .kv}=-3UgJ> + V U (3.15) 
A 

w h e r e P„ = id„, we c a n wri te down К in t h e form 

K ^ = K° - 21х^сГ - 2ix " l ^ , (3.16) 

w h e r e 

K° = i (x 2 d - 2 x xv<9 ) . (3.17) 
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Therefore the commutators of the genera tors of the 
representation of the special conformal transforma
tions can be written a s 

[K / 1 , ^ ± (x ) ] =K*</, ±(x). (3.18) 

Inserting K~ from eqs. (3.16) and (3.17) taking 
into account eq. (3.14), we finally obtain 

[К{1,ф± (x)] = i ( x 2 ^ - 2 x / i x l / ^ ) 0 ± ( x ) -

+. i x v . 

The corresponding commutator with the fields 
is obtained analogously 

[K^.^-(x)] = i ( x 2 ^ - 2 ^ x , / ^ ) 0 ±(x) + 

+ . v ib-(0) . x V + / m 

+ _ _ _ x + 1 ___T a - (0 ) . 

(3.20) 

In order to reconstruct the global representat ions 
we note that the special conformal transformations 
a r e decomposed into two transformations. Let 

x + = x° + x 1 and x_ = x° - x 1 

then these coordinates transform a s follows 

x + l » . _ ^ ± _ and , _ J 5 _ %- , (3.21) 
P (S,x+) P~(5,xJ 

where 
p ± ( S , x ± ) = l + (S° + S 1 ) x ± (3.22) 

and 8^ a r e the parameters of the spec ia l conformal 
transformations. 
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Since p + and p are transposed under space pa
rity transformations, it is evident that the quantities 

l n | P

+ p ~ | в In И ; p(S,x)= P

+(S.,x)p"(S,x) (3.23) 
and + o + (8 x } 

ln| JL- | = InH ; a(S,x)= - L±L (3.24) 
p~ p-(S,x_) 

are a scalar and a pseudoscalar, respectively. 
Therefore the general form of the special conformal 
transformation for the fields ф-{\) must be the fol
lowing : 

Kc- X 4- S X 
ф1 (X)_£ +ф (JL—£— ) + c1a±(0)ln|p| + c2b±(0)ln|£7|j(3.25) 

p(S,x) 
In view of eq. (3.19) the constants с and с are uni
quely determined. For the fields <£~(x) an analogous 
formula takes place, but one must interchange a±(0) 
and b~(0). Finally, we have 

( ^ ± ( x ) _ ? > 0 ± ( ^ i i l - ) - - ^ : l n | p ( S > x ) | +_blM.in|CT(5,x)|> 

p{8,%) %№ 2V2r 

^ ( ^ A - ^ L ) + 4 l n W »)| - ^ E l n |oW. x)|. 
P(S,X) 2var 2Var / 3 2 7 ч 

To accomplish the proof that the above transforma
tions provide a representation of the two-dimensional 
conformal group, one must check the commutation 
relations between the generators. Since the latter is 
an elementary procedure we ommit it here. 

Using eqs. (2.1), (3.26) and (3.27) we can obtain 
the corresponding global transformations for the 
field 4»(x): 

4 . (x) i ! l : |p(5 ,x) | 1 ( a L + ^ 5 s ) | a ( S ,x) | i ( a S + ^ 5 L ) Ч Ч ^ Й : 
p(5,x) 

(3.28) 
A representation similar to (3.2б) has been consi
dered in paper/7/, but there the term with ln|a(5,x)| 
(in our notation) has been missed. 
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4. THE OOVARIANCE OP THE THIRRING 
EQUATION 
The representat ions of the two-dimensional con-

formal group, constructed in the previous section, 
have the remarkable feature that the Thirring equa
tion (2.2) is covariant with respect to the correspond
ing' infinitesimal transformations. In this section we 
prove this fact, and find those representat ions of the 
universal covering group of the two-dimensional 
conformal group for which the Thirring equation is 
globally covariant. 

The Lorentz covar i ance of eq. (2.2) a s well a s 
its covariance with respec t to the dilatation t rans
formations (3.a) a r e not only infinitesimal but global 
a l so . This can be checked straightforwardly. How
ever, we will proceed in a different manner. It is suf
ficient to convince onese lves , that the commutation 
relations (l.5) and (l.6) between the fields ф - (x) 
and ф ~(x) a re invariant with respec t to the given 
representat ions. Since eq. ( l . l ) is a l s o covariant 
we come to the conclusion that the transformed 
fields (<£~(x))' and (<£*~(x))' satisfy the same equations 
a s the fields <£~(x) and <£~(x). Then according to 
the second section^ the quantity (4*(x)) 'constructed 
out of (<£~(x))'and (ф ~ (х)У, i.e., the transformed Thirring 
field, satisfies eq. (2.2) a lso. The latter proves the 
covariance of this equation under the Lorentz and 
s c a l e transformations. 

We apply the same method to prove the cova
riance with respect to the special conformal t r ans 
formations. Namely, if we prove that the transformed 
fields (ф~(х))' and (ф~~(х)Уsatisfy the same equations 
(l . l)-(l .6) that a r e satisfied Ъу ф~(х) and ^5"~(x), 
then according to the statement of the second s e c 
tion, the transformed field (*(x))' (it is obtained from 
(2.l) by substituting the transformed fields (ф- (х))' 
and (<£ ~(x))') satisfies equation (2.2) a l so . And this 
again proves its covar iance . 

Equation ( l . l ) is covariant with r e spec t to the 
global transformations (3,26) and (3.27). Indeed, we 
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note the following equalities 

ln|P(S,x)l =ln| P

+ (S,x + ) | +ln|p~(8,x_}|, , 

ln|a(8, x)| =ln|p + (S,x+)| -ln|p"(S,x_)| 

and therefore 

oln|p(S,x)| - nln|a(S,x)|=G. (4.2) 

Thus the transformed fields satisfy eq. (l.l). 
Let us pass to the commutators (l.5) and (l,6). 

We must note that they are not invariant with res
pect to the global transformations (3.2б) and (3.27). 
Therefore we consider the infinitesimal transforma
tions 

(ф±(х))'^ф±{х) - ia^tK ,ф ±(х)] > (4.3) 

(0* (x))' = ф±{х) - la* [Ки , ф ± ( x ) ] . (4.4) 

We now evaluate the commutators of the transfor
med fields. We have, f.i. 

[Ц + (x))', (ф ~(x)) ')=[</. +(x), ф ~(y) ] -

-ia^tfK .ci"W<£~(vU-ia' i[<f> +(xUK ...6~{y)]]. 
fi • (X • 

Making use of eq. (3.19) and of the identity 

i (x 2-y 2)(a ,Л -2[(aX)(X.<3)-(a.y)(y.d)]iD+(x-y) = —(-^.(4.6) 

We see that the second and third terms in the 
R.H.S. of equality (4.5) cancel and therefore the 
commutator is invariant. One can analogously prove 
the invariance of all other commutators. In the case 
of the commutator [ф (х),<£~(у)] one must use the 
analogous to eq. (4.6) identity for the D + (x-y) 
function, which has the form 
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l(x 2 -y2)(«.5)-2[((axXx.d)-(ay)(ya)]|D+(x-y) = ̂ ~e (x+y)1': 

Here a s in the identity (4.6) the following notations 
a r e current (a/3)=a'z/3„, and д is the differentiation 
with respect to the full argument of the D-functions. 

Thus , we have proved the covar iance of eq. 
(2.2) with respect to the infinitesimal transformations 
of the two-dimensional conformal group. 

The method used to prove the previous s ta te
ment shows how to obtain the global transforma
tions of the fields, under which eq. (2,2) would be 
covariant. For this purpose we must note that the 
transformations of the quantities x + and x_ (3.21) and 
(3.22) belong to the SL(2, R) group, and that they 
must be treated a s the limits of the corresponding 
afine transformations of the lower complex half-
plane, when they tend to the real ax i s . Then the 
function 

£(z) = - -J-M-^z z ) (4.8) 

defined on the lower complex half-plane of the 
complex variables z + and z_ transforms under these 
transformations a s 

I ' ( z ) s I(z') -Ж( 2 )+ +-\nP\5,z+)p~(8, z~). (4.9) 

When Im z + -» 0 we have 

D(z)- >D +(x o+i0,x 1) and D'(z)-.D+'(x°+iO,x1) (4.10) 

and therefore 

D ± ' (x°i- i0 ,x 1 ) = D +(x o+i0 1x 1)+—lnp(x°+i0 1x 1 ,S).(4.1l) 
47T 

We have analogously 

D + '(x°+iO,x ) = D+(x°+iO,x )+-Llna(3,x°+iO,x ),(4.12) 
47Г 
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where p(8,x) and 0(8, x) have been defined in the 
previous section. 

Equalities (4.11) and (4.12) show that if in for
mulae (3.26), (3.27) and (3.28) we write o(S, x°+iO.x 1) 
and ст(5,х°+Ю,х *) instead of |p(S,x°, x*)| and \o(8, x°,xl)\, 
respectively, we shall obtain just these global t rans 
formations under which equation (2.2) is covariant. 
It is e a s y to show that the so-obtained transforma
tions belong to the universal covering group of the 
two-dimensional conformal group. 

In conclusion the authors express their deep 
gratitude to Prof. I.T.Todorov for his interest in this 
work and for the numerous usefull d i scuss ions . We 
a r e grateful to Drs. M.I.Palchik and P.Koulish 
for interest in this paper a s well a s in the work '", 
Thanks a r e a lso to the participants of the seminar 
of the Laboratory of Theoretical Phys ics of the 
Joint Institute for Nuclear Research. 

Table of Commutation Functions 

D ( x ) = - i - / d 2 p t ( p ° ) S ( P

2 ) e ~ i p * = 
2m 

= - i [ 6 ( x 1 + x ° ) - 0 ( x 1 - x ° ) ] , 

4тг | p l | P =lp I 

=+—In(-fi2x2+i0x°) = An 

= 7 — 1 1 ф 2 х 2 | - l~e(x°)6(x*), 
An 4 
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(Cont.) 

* _ rлг^,rf,l^яrn2^0-^Px = 

2n\ 

= _i_[e( xi + x ° ) - e c x ^ x 0 ) ] , 

4гг p 1 P = I P I 

4 " x° + x * + Ю 

= ±J_ln|_£ziL| _± c (x )6( - x 8) . 

Here 9 S denotes the principal value of the integral, 
and 

1 x>0 
0 0 0 = ! e(x) = 0(x ) - f l ( -x ) . 

0 x<0 
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